MESSAGE ORDERING IN A MULTICAST ENVIRONMENT

Hector Garcia-Molina
Annemarie Spauster

CS-TR-161-88

June 1988

MESSAGE ORDERING IN A MULTICAST
ENVIRONMENT

Hector Garcia-Molina
Annemarie Spauster

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

A multicast group is a collection of processes that are the destina-
tions of the same sequence of messages. These messages may originate
at one or more source sites and the destination processes may run on one
or more sites, not necessarily distinct. A multicast protocol ensures that
the messages are delivered to the appropriate processes. Some applica-
tions require that the protocol provide some guarantees on the order in
which messages are delivered. In this paper we characterize three order-
ing properties and discuss their solutions. We concentrate on the mulli-
ple group ordering property, which guarantees that two messages des-
tined to two processes are delivered in the same relative order, even if
they originate at different sources and are addressed to different multi-
cast groups. We present a new protocol that solves the multiple group
ordering problem. We address the issues of performance and reliability
by providing comparisons with other techniques for ordering multicasts.
In many cases this new algorithm solves the problem with greater
efficiency than previous solutions without sacrificing reliability.

MESSAGE ORDERING IN A MULTICAST
ENVIRONMENT

Hector Garcia-Molina
Annemarie Spauster

Department of Computer Science
Princeton University
Princeton, NJ 08544

1. THE PROBLEM

A multicast group is a collection of processes that are the destinations of the same
sequence of messages. These messages may originate at one or more source sites and
the destination processes may run on one or more sites, not necessarily distinct. Each
source message is addressed to the multicast group (as opposed to individual sites or
processes). The multicast protocol ensures that the messages are delivered to the

appropriate processes.

For some applications, the multicast protocol must provide guarantees regarding
the order in which messages are delivered to the destination processes. The properties

are usually the following ones, arranged by increasing strength.

(a) Single source ordering. If messages m; and m, originate at the same source site,
and if they are addressed to the same multicast group, then all destination

processes get them in the same relative order.

(b) Multiple source ordering. If messages m; and my are addressed to the same multi-
cast group, then all destination processes get them in the same relative order (even

if they come from different sources).

(¢) Multiple group ordering. If messages m; and my are delivered to two processes,

This work has been supported by NSF Grants DMC-8351616 and DMC-8505194, New Jersey Governor's Com-
mission on Science and Technology Contract 85-990660-6, and grants from DEC, IBM, NCR, and Concurrent
Computer corporations.

9.

they are delivered in the same relative order (even if they come from different

sources and are addressed to different but overlapping multicast groups).

There are of course applications that do not require all of these (or even any of
these) properties. But there are applications where the receipt of messages in differing
orders will lead to inconsistency or deadlock problems. To illustrate, consider a bank
with two main computers. Each computer has a copy of the entire banking database
and will process all transactions arriving from the branch offices. (The second machine
is needed for disaster recovery.) The two main computers constitute a multicast group,
and each branch office is a potential source site. Transactions should be executed in
the same order (property b) at the main computers, else the database state will differ.
For instance, consider a deposit and a withdrawal to the same account. If the with-
drawal is done first, an overdraft occurs and a penalty is charged. With the deposit
first, no penalty is incurred and the resulting account balance is different. See [GAS87]

for additional details on this type of application.

In our same banking example, consider now a second multicast group to distribute
new software releases or system tables (e.g., defining overdraft penalty charges). This
second group includes the two main computers, but in addition other development
machines. Even though two separate multicast groups are involved, it is probably still
important to process all messages in the same order at the machines in the intersection
of the groups (property c). [KG87] considers another application that relies on ordered
multicasts. See also [BJ87] for other uses of ordered multicasting. Reference [CD85]
discusses multicasting in internetworks and gives strong justification for the use of mul-
ticasting.

The objective of our work is to present a novel message ordering technique that
guarantees all the properties listed above. Of course, in many cases, the multicast pro-
tocol must exhibit some reliability properties, as well. Here, however, we will focus on

ordering and not reliability. We view the reliability issue as roughly orthogonal to the

-3.

ordering issue. We believe that any one of the ordering mechanisms we study here can
be made reliable to varying degrees by applying different message loss and site crash
recovery techniques. We therefore study message ordering separately. Eventually, the
ordering mechanism must be combined with the reliability mechanisms and in Section 6

we briefly touch on this subject.

2. EXISTING SOLUTIONS

We begin our study by considering previous solutions that guarantee some or all of

the ordering properties presented in Section 1.

Guaranteeing the single source ordering property (a) is relatively simple and is
sometimes done by the underlying communication network. The basic idea is to
number the messages at the source and to have destination sites hand the messages to
the destination processes in that order. Note this also allows the destination to deter-

mine if it is missing any messages.

Enforcing the multiple source and group properties (b, ¢) is harder. One way to do
it is to assign a timestamp to each message at the source and to then deliver messages
in timestamp order [Lamp78, Schn82]. To illustrate, consider the scenario of Figure 1.
Sites z and y are sending to multicast group @ = {a,b,c,d}, while site z is sending to f§ =
{c,d,e,f}. We use a, b, etc. to refer to both the destination process and the site where it
resides. Suppose that z sends to o message m; with timestamp T;. When site ¢
receives my it cannot immediately give it to its destination process. It first must find
out from all potential sources if there are other messages with smaller timestamps.
Only when a site is certain that a message has the smallest timestamp of any
undelivered message does it deliver it. For property (b), site ¢ must check with all «
source sites (e.g., y). For property (c), site ¢ must in addition check with potential £

sources. If the potential sources are unknown, ¢ must check with all sites in the system.

Birman and Joseph have proposed another solution [BJ87| that is especially

/1N
4

Figure 1
interesting. The algorithm (attributed in part to Dale Skeen) is similar to two-phase

commit. Fach site maintains a priority queue per process. The sender sends the mes-
sage to the multicast destinations who each give it their own priority number, a
number higher than any given so far for that process. The message is marked
"undeliverable” and put on the queue. Each receiver returns the priority number to the
sender. The sender picks the highest priority number it got and sends it back to the
receivers who replace their original number with the new one and tag the message as
"deliverable." Each receiver reorders its queue. Whenever a message at the front of the
queue is "deliverable", it is delivered. Note that this algorithm guarantees all three

ordering properties without requiring receivers to contact all potential sources.

The two approaches we have sketched are fully distributed and may have substan-
tial message overheads. A more centralized approach is suggested in [CM84| to reduce
the synchronization cost. Here all sources transmit to a central site, which assigns
sequence numbers to the messages and forwards them to the destination sites. (The
central site is identified with a token, and this token circulates through the system.
However, from the point of view of ordering, the fact that the central site moves over
time is not important.) The paper [CM84| does not discuss multiple multicast groups,
but the same approach could be used to guarantee the multiple group ordering pro-

perty, as long as all overlapping groups use the same central controller.

-5-

There are also other solutions that we do not review here. In particular, [Wuu85]
uses logs of message receipts at each site. The paper [GKL88| focuses on the single

source problem and how to make failure recovery particularly efficient.

3. OUR SOLUTION

In this paper we propose a new solution for guaranteeing property (c) in a multi-
cast environment, called the propagation algorithm. Our algorithm is inspired by
[CM84] and also attempts to reduce some of the overhead of fully distributed solutions.
However, instead of ordering all messages at a single central site, they are ordered by a
collection of nodes structured into a message propagation graph (in particular, a forest).
Each node in the graph represents a computer site. The graph indicates the paths mes-
sages should follow to get to all intended destinations. Instead of sending the messages
to the destinations and then ordering them, the messages get propagated via a series of
sites that order them along the way by merging messages destined for different groups.
Eventually, all messages end up at their destinations, already ordered. The key idea is

to use sites that are in the intersections of multicast groups as the intermediary nodes.

z,y z
N f/
Q alf
b d f
Figure 2

Using the example of Figure 1, a simple propagation graph is indicated in Figure 2.
In order to guarantee that all messages are delivered in the same relative order, z, v,
and z send their messages only to site ¢, who merges them. Site ¢ forwards the group «
messages from z and y to a and b, the # messages from z to e and f, and the merged o,

f# messages to d. Thus, all sites deliver their messages in the order defined by site c.

-6-

It is important to make the distinction between "logical” and "physical” paths.
The propagation graph indicates logical paths. For instance in Figure 2, an o message
must be sent from node ¢ to destination a, but it is not necessarily the case that there
is a direct link from ¢ to a. The message will follow some physical path from ¢ to a

that we do not indicate here.

We establish some terminology for message passing. We call the site that ori-
ginates a message for a multicast group the source and the group that is to receive that
message the destination group. The source sends the multicast message to one site in
the multicast group, called the primary destination. (The primary destination could be
the source.) Any time a site sends a message to another site, we refer to these sites as

the sender and receiver, respectively.

One important requirement for the algorithm is that property (a) of Section 1 be
satisfied; if the underlying network does not provide this, we use sequence numbering.
Note the implied use of single source ordering in the example of Figure 2. Site ¢
delivers its @ and # messages locally in the same order in which it sends them to site d.
Site d is able to determine the order in which they were merged by the sequence
numbers. In fact, every edge in the graph relies on the messages being ordered at the

receiver the same way in which they were sent by the sender.

In Figure 3 we show a propagation graph for a more complicated example. Here
we have nine sites: @, b, ¢, d, e, f, g, h and j and eight destination groups:
oy = {c,d}, oy ={a,b,c}, a5 = {bc,d e}, oy = {d.e.f}, a5 = {e,f},
ag = {b,g}, a7 = {c,h} and ag = {d,}.
Site d is the primary destination for a;, a3, a4 and ag, ¢ is the primary destination for
@y and a7, e is the primary destination for @y and b is the primary destination for oy.
Note that messages do not necessarily flow down to the bottom of the tree. For

instance, g only receives oy messages.

Figure 3
Our propagation algorithm has two components: the propagation graph (PG) gen-

erator and the message passing (MP) protocol. The PG generator builds the propaga-
tion graph for a given set of multicast groups. For simplicity, we assume one site runs
the PG generator and transmits the resulting graph to the other sites. Dynamic
changes to the set of multicast groups are discussed in section 4. Once a site knows
what the graph looks like, it uses the MP protocol to send, receive, propagate and for-

ward messages.

Detailed pseudo-code for the PG generator and the MP protocol is given in Appen-
dix I and a proof of correctness is provided in Appendix II. In the rest of this section we

present our approach in a less formal fashion.

3.1 The PG Generator
Our technique must guarantee the following two properties:

(1) Property (c) of Section 1, i.e., all messages are delivered in the same relative order,

and
(2) If zis in group ¢, then z gets all messages destined to group «.

To satisfy these requirements, it is sufficient for the propagation graph to have the

following two properties:
(PG1) For every group « there is a primary destination p; and

(PG2) For every site z € o, there is a unique path from p to z.

=

There are also two optional properties that the graph can exhibit and which our

PG generator attempts to provide:
(PG3) The primary destination of group « is a member of a; and

(PG4) Let p be the primary destination of @ and z be another site in @. Then, the

nodes in the path from p to z are all members of .

When there exists a node a on the path from p to z where a is not a member of «, we

call @ an eztra node.

Both of these properties are desirable because they yield more efficient graphs:
there is no need for nodes that are not involved in a multicast group to be handling
messages for that group. Our PG generator does guarantee property (PG3), but unfor-
tunately does generate extra nodes sometimes. For example, if we add group oy = {d,
a} to the example of Figure 3, we obtain the same tree. However, node ¢ is an extra
node for ag. We discuss the impact of extra nodes in Section 5 and in the conclusions

we briefly mention how to eliminate some of the extra nodes.

To start, the PG generator selects the site in the largest number of groups (d in
our example) and makes it a root. This greedy heuristic helps keep the trees in the
forest short. (We therefore do not consider the cost of processing the messages at a pri-
mary destination to be substantial, but rather attempt to minimize the length of the
path down the tree to cut communication cost.) For purposes of explanation, we call
the groups to which the root belongs root groups and the other sites in the root groups

intersecters. The root, then, is the primary destination for all root groups.

To determine the children of the root, procedure new_subtree is called, with the
root d as parameter. This procedure works as follows. It partitions the non-root
groups so that no group in a partition intersects a group in another partition. In our
example there are two partitions, P; = {a,b,¢},{b,9}, {c,h} and Py = {e,f}. This step
also has the effect of partitioning the sites (,b,c,9 and e,f). In an attempt to achieve

property (PG4), among the partitions, the generator only considers those that contain

-9-

an intersecter. From each of these, one of the intersecters is chosen to be a child of the
root using the same heuristic used for picking the root: choose the site that is in the
most groups in the partition. In our example, for Py, b and ¢ occur in the most groups,
so we arbitrarily pick ¢ over b. In P,, we arbitrarily pick e over f. Finally, there may
be sites that are intersecters but do not occur in any partition. In our example, this is
true of j. These sites become children of the root. At this point the tree looks as shown

in Figure 4.

d

/

¢ e
& 1
]
1
1

b

(@oik) ()

Figure 4

J
’I

To generate the next level of the tree, a recursive call is made to new_subtree for
each child, with the child as parameter. Since by determining the root and adding the
children, we have found primary destinations for the groups {c,d}, {a,b,c}, {b,c,d e},
{d,e,f}, {e.f}, and {d,j}, we no longer consider these groups for partitioning in these
recursions. Also, we have placed d, ¢, e and j in the graph, so these are no longer candi-

dates as children.

In our example, the recursion on ¢ leads to one partition consisting of {b,g}. Sites
a, b and h are attached as children of ¢. The recursion on e leads to no partitions and
to attaching fas a child of e. The recursion on j leads to no new nodes in the tree. At
the next level, new_subtree is called four times with a, b, h and f as parameters. The
call with b as parameter leads to g being added. The others result in no new nodes.
Finally, the recursive call to new_subiree for g leads to no new nodes and the process
terminates having determined the propagation graph. In this case, just one tree is
obtained. If, however, there were still sites that had not been placed (hence, groups

whose primary destinations had not been determined) after the original call to

- 10 -

new_subtree returned, another root would be picked from the groups left and
new_subtree called again to determine the next tree. The loop continues until no more

sites are left.

3.2 The MP Protocol

The propagation graph specifies the flow of the messages in the network. The pri-
mary destination for each multicast group is the member closest to a root. A site that
receives a message propagates it down any subtree that contains members of the desti-
nation group for the message. In our example, d is the primary destination for {c,d},
{b,c,d,e}, {d,e,f} and {d,j}, c is the primary destination for {a,b,c} and {¢,h}, and so on.
When for instance d receives a message for {b,c,d, e}, it sends copies to ¢ and e. Site c,

in turn, sends a copy to site b.

To be more precise about processing messages, we describe the message passing
protocol (given in Appendix I in pseudo-code) for the case of point-to-point networks.
The MP protocol requires every site to maintain sequence numbers for each site to
which it sends messages. This guarantees that a receiver can order the messages from
a sender correctly in case they arrive out of order. Also, each site keeps track of which
sequence number it expects next from each sender. In addition, each site maintains a
queue for messages destined to its local process, and a wait queue for messages received
from other sites that are out of sequence. When a site receives a message, it checks the
sequence number against the sequence number it expects from that sender. If they do
not match, the message is queued on the appropriate wait queue until the earlier one is
received. If they do match, the receiver determines if any of its descendants in the tree
are destinations for this message. If so, it sends it to the children that are the subroots
of those subtrees, using the appropriate sequence number for each child it sends it to. If
the receiver is a member of the destination group, the message is queued for local
delivery. In addition, the receiver checks if there are any messages in the wait queue

from that sender that were waiting on this message. If so, it processes these message(s)

- 11 -

in the same manner.

4. DYNAMIC MULTICAST GROUPS

The solution presented in Section 3 is correct for static multicast groups. In this
section we describe modifications to the algorithm that allow for deleting, adding and
modifying groups dynamically. The main goal is to perform such changes without
requiring too much coordination among the sites and without preventing the delivery of

messages for long periods of time.

One possibility is to have one site compute the new graph and use a type of com-
mit protocol involving all the sites to terminate the old graph and install the new
graph. This is a clean solution that prevents discrepancies over the state of the system;
however, it involves high communication overhead and long delays. Instead, it is possi-
ble to take advantage of the ordering properties guaranteed by the propagation graph

to make the change to the graph consistently.

The new algorithm is essentially the same as for the static case, except now we
designate one site as the manager. When the multicast groups change, the manager is
responsible for computing a new propagation graph and initiating the change system
wide. Two operations are required: Close and Open. First the manager Closes the old
tree by broadcasting a Close message. (Broadcast simply requires sending the message
to each root and having it propagated down to every node in the trees.) Upon receiving
the Close, a site stops processing later messages (i.e., does not deliver them locally or
propagate them). Any new messages from sources are queued. Note that messages
from sources are the only messages a site will receive on its tree after a Close since each
parent Closes before its child and then does not propagate any more messages. Since
the Close message is ordered along with all other messages, for a message m, either all
destinations will order m before the Close or all destinations will order m after the
Close. Thus, a message m is either delivered at all destinations before the Close or is

not delivered anywhere until the next graph is Opened.

12 -

The manager Opens a new graph by broadcasting an Open message to each new
root; along with the new graph information. This Open message is also ordered among
the other messages. When a site receives an Open it incorporates the new tree informa-
tion, is able to process messages again according to the new graph and propagates the

Open to its new children.

There are several issues that must be resolved in order for this to be correct. We
cannot go into these in detail here, but we briefly mention some of them. First, when
the graph changes, so may the primary destination. The old primary destination may
have queued messages that it is no longer responsible for ordering. These must be given
up to the new primary destination. Second, due to communication delays, Open and
Close messages for different graphs may become intermingled. Graph sequence numbers

are required to ensure that all sites have Opened the same graph.

Finally, failure of the manager must be considered. It turns out that this is easily
tolerated. The remaining sites can elect a new manager or there can be a backup
manager. A simple polling of the roots can determine if there is an Open or Close in
progress. At the same time, the roots can be directed not to accept any more messages
from the old manager which may be en route. If there is no Open or Close in progress,
the new manager then easily takes over. Otherwise, the new manager can complete the

Open(s) and/or Close(s) and then take over.

5. PERFORMANCE

In this section we compare the performance of several multicast message ordering
algorithms. Due to space limitations, we only consider the following point-to-point net-
work model. For a single source to send the same message to n sites it must send =
messages, one to each receiver. For site a sending a message to site b, we say it takes a
processing time P to put the message on the network and it takes latency time L for
the message to get to site b (network delivery time). Thus, a simple multicast with no

ordering requirements from source s to n sites requires n messages and the time elapsed

-13 -

before the last site receives the message is nP+L. We compare our propagation method

to the two-phase algorithm of [BJ87] and to a strictly centralized version of [CM84] T.

We look specifically at two performance measures: N, the number of messages
required to send a multicast under the multiple group ordering property and D, the
time elapsed between the beginning of the ordered multicast and the time when all the
members of the multicast destination group can mark the message ready for local

delivery. Table 1 indicates the performance of the three methods for the two measures.

Consider first N for an ordered multicast from source s to n sites. The two-phase
algorithm requires n messages to initially get the message from the source to the desti-
nations. Another n messages are required to return the locally-assigned priority
number from the destinations to the source. Finally, the source sends out the final prior-
ity number of the message, for a total of 8n messages. The centralized solution requires
one message from the source to the central site and n-I messages from the central site
to the remaining nodes, for a total of n messages. The propagation algorithm requires 1
message from the source to the primary destination. In the best case, only group
members form the path down the tree, so n-1 more messages are required to get the
message to every destination. If there are extra nodes on the path, then the number of

messages totals n+¢, where € is the expected number of extra nodes.

To compute the delay for the two-phase method we consider the three rounds of
messages. The time it takes between when the source sends its first message and the
last site receives the message is L+nP. Then, the delay for that last site to send the
local ordering information back to the source is L+P. The source then sends the final
priority order to the sites, again L+nP. The total is S3L-+(2n+1)P. The centralized
algorithm has delay L+P from the source to the central site plus L-Hn-1)P delay from

the central site to the last recipient, for a total of 2L+nP.

+ Since [CM84] relies on a broadcast network we do not consider changing the central site. In-
stead, we look at a centralized solution which is essentially a propagation graph that consists of
one tree of depth 1.

- 14 -

The delay in the propagation graph case depends on the length of the longest path
from the primary destination to a member of the multicast destination group. We
introduce the variable d to represent the expected depth of this recipient from the pri-

mary destination.

The total delay in this case, then, is the sum of the delays from the source to the
primary destination and the delay from the primary destination to the group member
that is furthest away (at depth d). The delay from the source to the primary destina-
tion is simply L+P. It is simple to show that the delay from the primary destination to
the group member at depth d is maximized at dL+(n-1+€)P (and in general is much

less). Total delay then for the propagation algorithm is at most (d+1)L+(n-+¢)P.

Clearly, the performance of the propagation algorithm depends on the values of €
and d. It turns out that in most cases of interest, € and d are small. We established
this via experiments on randomly generated multicast groups. For a given number of
total sites, a number of groups, and an average size of a group (exponentially distri-
buted), we generated a random set of multicast groups and computed their propagation
graph. Graphs 1 and 2 show results for a fixed number of sites (20) and sizes of groups
ranging from 2 to 30. The three curves represent average group sizes 3, 5 and 10. Each
data point is an average over 100 runs of the average value of d or € for all the groups

in a run.

With € and d small, the propagation algorithm performs similarly to the central-
ized algorithm and both of these are substantially better than the two-phase method
for both N and D. Of course, since the work of ordering and propagating messages is
distributed over many sites, the propagation algorithm does not have the bottleneck
problem of the centralized case. So in this sense the propagation algorithm is superior
to the centralized algorithm. Although we did not discuss broadcast networks here, we
note that a similar analysis shows that the propagation method works well in most

cases for that model, too.

-15 -

two-phase centralized propagation
N 3n n n+e
D SL+H2n+1)P 2L+nP (d+1)LHn+e)P
Table 1
B
3.5 -
3 |
2.5 —
average
depth 2 -
(d) 15 —
¥ el
0.5 —
g T a | | I
10 15 20 25 30
number of groups
Graph 1
S
1.5 —
average
number
of extra 1 —
nodes
(¢)
0.5 —
0

number of groups

Graph 2

- 16 -

Finally, the propagation strategy (as well as the centralized one) does have one
important drawback: there is a substantial cost in setting up the propagation graph.
Thus, the propagation approach will only be of interest if a relatively large number of
messages are sent during the lifetime of each group. We expect this to be the case in
most of the applications that require multicast, e.g., updates to replicated data,

software distributions and mailing lists.

6. RELIABILITY

As we mentioned in the introduction, we believe that our approach can be made
reliable to any desired degree. In this section we outline two of the reliability alterna-
tives that mesh nicely with our ordering strategy (assuming fail-stop processor failures
and no network partitions). In addition, we make some remarks regarding the perfor-

mance of reliable ordering.

With our first alternative, sites do not block but message delivery is not atomic.
Sites constantly monitor the sites on the propagation tree from which they receive mes-
sages and to which they forward messages. If a failure is detected, a two phase process
is initiated among the survivors and the manager (see Section 4). In the first phase, the
manager is informed of the failure and it closes the group involved. (Since the graph
may be broken, the manager may have to send Close messages directly to the sur-
vivors.) Each site reports back to the manager the last message that was installed
before termination of each group. In the second phase, each survivor installs any miss-
ing messages that the other sites reported. At the end of the protocol, all survivors
have delivered to their local processes exactly the same set of messages, in the same
relative order, to the terminated groups. After the recovery, new multicast groups can

be defined (involving only the survivors) and transmissions can resume.

We have omitted many details (e.g., how sequence numbers are used to identify
the missing messages, the fact that the recovery messages might flow along the remains

of the propagation graph, etc.). However, there are two important characteristics we

- 17 -

note. The first is that during failure-free operation, no additional messages have to be
sent (e.g., no two phase commit). Although there is some extra bookkeeping as mes-
sages are propagated, the performance of the reliable and non-reliable versions during
normal operation is roughly the same. The second characteristic is that messages are
not delivered as an atomic operation. When a site recovers from a failure (and only in
this situation), it may discover that it installed messages in the wrong order. It will
have to roll back the installation (e.g., undo a transa,ctio.n), and then redo the missed

messages in the correct order.

If rolling back messages is not satisfactory and atomicity is desired, then sites that
detect a failure can simply block on messages destined for groups that include the failed
site. Blocking is not necessary in all cases. For example, if a site that is not a subroot
of the propagation tree fails, the other sites in its group(s) can continue, assuming the
failed site can get its missed messages upon recovery. If a subroot fails, however, the
sites to which it propagates messages must block on the messages they ordinarily
receive from the subroot. When the failed subroot recovers, it can continue forwarding

messages from where it left off.

Note that the other solutions, in particular the two-phase protocol of [BJ87], may
block under the same conditions (e.g., the source fails before it can send the second
phase messages). A three-phase protocol may be adequate to prevent blocking, but this
is even less efficient. Thus, the blocking propagation method (second solution we
described) provides the same reliability as the two-phase protocol. Intuitively, it may
seem that having a second broadcast phase is necessary for atomic delivery. However,
since sites never can refuse to process messages, the propagation graph approach
achieves atomic delivery by making centralized ordering decisions (enforced via

sequence numbers) and blocking sites when failures occur.

-] Bia

7. CONCLUSIONS

The propagation algorithm provides an efficient and distributed method for
guaranteeing the multiple group ordering property for multicast messages. In most
cases, 1t 1s superior to the two-phase method in terms of number of messages and delay.
At the same time, it alleviates the bottleneck associated with a centralized solution. In
addition, it allows for changing the multicast groups quickly and easily. It is flexible
enough to provide differing degrees of reliability. Its major weakness is the set up cost
of the propagation graph, so it should only be used for multicast streams where the set

up cost can be amortized over many messages.

Finally, we point out that one disadvantage of the technique is that sometimes
sites are required to handle messages which they do not need to deliver locally. These
"extra" nodes, however, do not occur frequently according to experiments presented
here. Further, we are studying ways to alter the propagation graph so that the number
of extra nodes can be reduced. This involves adding edges to the graph that violate the

tree property but still guarantee consistent ordering.

8. REFERENCES

(BJ87] K.P. Birman, T.A. Joseph, "Reliable Communication in the Presence of
Failures,” ACM Transactions on Computer Systems, Vol. 5, No. 1, Febru-
ary 1987, pp. 47-76.

[CD85] D.R. Cheriton, S.E. Deering, "Host Groups: A Multicast Extension for
Datagram Internetworks," Proceedings of the 9th Data Communications
Symposium, ACM SIGCOMM Computer Communications Review, Vol. 15,
No. 4, September 1985, pp. 172-179.

[CM84| J. Chang, N.F. Maxemchuk, "Reliable Broadcast Protocols,” ACM Tran-
sactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 251-273.

(GAST| J. J. Gray, M. Anderton, "Distributed Computer Systems," Proceedings of
the IEEE, Special Issue on Distributed Database Systems, Vol. 75, No. 5,
May 1987, pp. 719-726.

(GKLS8| H. Garcia-Molina, B. Kogan and N. Lynch, "Reliable Broadcast in Net-
works with Nonprogrammable Servers," Proceedings of the FEighth

KG87]

[Lamp78]

[Schn82]

[Wuu85]

19 -

International Conference on Distributed Computing Systems, June 1988.

B. Kogan, H. Garcia-Molina, "Update Propagation in Bakunin Data Net-
works," Proceedings Sizth ACM Symposium on Principles of Distributed
Computing," August 1987, pp. 13-26.

L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, Vol. 21, No. 7, July 1978, pp. 558-
565.

Fred B. Schneider, "Synchronization in Distributed Programs,” ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 2, April
1982, pp. 125-148.

T. Wuu, "Reaching Consistency in Unreliable Distributed Systems", Ph.D.
thesis, Department of Computer Science, State University of New York
at Stony Brook, August 1985.

- 20 -

9. APPENDIX I
Here we specify the PG Generator and the MP Protocol in pseudo-code form.

The Propagation Graph (PG) Algorithm

main()
begin

groups +— the set of multicast groups;
sites +— the set of sites;
unmarked_groups <— groups;
unmarked_siles +— sites;

while unmarked_groups <> (/f

3
root +— s | s occurs most frequently in groups;
new_subtree(root);

end

new_subtree(current_subroot)
begin
intersecters +— (7;

/* Mark site since it has been placed in forest. */
mark_site(current_subroot);

/* Determine the sites that are in groups with the subroot. */
for each s € unmarked_sites
if 3 g € unmarked_groups such that (s € g /\ curreni_subroot € g)
then
inlersecters +— intersecters | s;

/* Mark all groups that contain subroot since now we have a primary destination
for them. */
for each g € unmarked_groups

if current_subroot € g

then

mark_group(g);

/* Partition groups so that no group in a partition intersects a group in another partition
and some site in some group of each partition is included in a group with the subroot (is in
intersecters). */
G + {9 g € unmarked_groups /\ s € gsuch that s € intersecters};
repeat

S« {s! 3 g € G such that s € g}

G +— GU{g!| g € unmarked_groups /\ s € Gsuch that s € S}

& O«

until no change to @
Py - - - P; + partition of G so that no group in a partition intersects a group
in another partition;

/* If sis in a group with the root but is not in a partition, make it a child. */
for each s € intersecters
if sis not in a P;
current_subroot — s; [* make s a child of current_subroot */

/* Determine a child from each partition. */
fori:=1tok

{

newsite +— s | s occurs most frequently in P; /\ s € intersecters;
current_subroot — newsite; [* make newsite a child of curreni_site */
new_subtree(newsite);

end

mark_site(s)
begin

unmarked_sites +— unmarked_sites - s;

end;

mark_group(g)
begin

unmarked_groups +— unmarked_groups - g;

end;

- 929 .

Message Passing (MP) Protocol

{{nessage m = RECORD
originator
sender
seqif
contents
dest_group
receiver

5

/* At each site, array of next expected sequence numbers, one per sender. */
integer next_seq#-_in| |;

/* At each site, array of next sequence number to use for sending, one per receiver. */
integer nexl_seq#_oul| |;

/* At each site, a wait queue for out of sequence messages, one per sender. */
queue wail_queue| |;

/* At each site, a local delivery queue. */
queue local_queue] |;

/* The following handle processing a message at site me */

receive_message(m)
begin

if m.seq# = next_seq#_in|m.sender]

if me € m.dest_group
queue_for_delivery(m);

send_message(m);
next_seq#_in[m.sender]++;
check_queue(m);

:

else
queue_for_waiting(m);

end

send_message(m)
begin

for all s such that me — s and s is an ancestor of a site in m.dest_group
{

m.seqfF +— nexi_seqH_oul[s|;

m.sender <— me

send(m) to s;

next_seq#_out[s| ++;
end

originate_message(contents,gp)
begin

m.originalor +— me;

m.receiver +— primary destination of gp;
m.group +— gp;

m.contents +— contents;

m.seq# «—— next_seq#-_out|m.receiver];
m.sender <— me;

send(m) to m.receiver;

end

check_queue(m)
begin

m' « head of wait_queue[m.sender];
if m’.seq# = next_seq#_in[m.sender]

delete m' from wait_queue[m.sender];
receive_message(m’);

}

end

queue_for_delivery(m)
begin

insert m in local_queue;
end
queue_for_waiting(m)
begin

insert m in wail_queue|m.sender];
order wait_queue[m.sender| by m.seq#

end

-93-

-94.

10. APPENDIX IT

Correctness

It is not difficult to see that the PG generator indeed builds a forest that includes
every site. To show that the forest guarantees the multiple group ordering property we
must prove two things: (1) all sites receiving the same messages deliver them in the

same order; (2) all sites receive the messages destined to them.

To see that property 1 is satisfied, say we have two sites, a and b, that receive
messages my and my. Say that a delivers these in the order m;mqy and b delivers them
in the order mgm,. If m; and m, are messages for the same multicast group «, then
initially they are ordered by the primary destination for a. It is easy to see that the
sequence numbering scheme used in the MP protocol guarantees that this order is main-

tained as m; and ms are propagated.

Suppose, then, that m; is destined for group @; and mq is destined for ay. Call
the primary destinations for these types pd(cq) and pd(as), respectively. If pd(c;) and
pd(az) are the same site, then the situation is the same as when m; and ms both are
destined for ;. Say then that pd(c;) and pd(as) are two different sites. Certainly a, b,
pd(a;) and pd(as) are all in one tree of the forest, and pd(a;) and pd(as) are both
ancestors of a, b. By the properties of trees, we know that there is only one path from
the root of the tree to any node. Thus, there is only one path from the root to a, only
one path from @; to a and only one path from @y to a. This implies that either pd(a;)
is ancestor to pd(ay) or vice-versa. Say pd(a;) is ancestor to pd(as). Then, at pd(as)
my and mgy are merged and propagated to a. By the same reasoning, m; and m, are
merged at pd(as) and propagated to b. Certainly pd(as) determines the order just once
by the MP protocol and the messages are propagated to both @ and b. Since this order-
ing is easily seen to be preserved by the MP protocol, @ and b cannot deliver these mes-

sages in inconsistent orders.

- 925.-

It is also not difficult to see that the algorithm guarantees that all sites receive
their message types. Say some site does not get some message type that it should. The
situation should look as in Figure 5, where a and b are supposed to receive type @ mes-
sages, but b is not on a path for o messages. Figure 5 indicates that the PG generator
places nodes a and b in different subtrees of z, even though they are in the same group
(). This is an impossibility since the partitioning step of new_subtree puts all sites

that share groups in one subtree of the current subroot.

0:‘\ /x
£ N .

’ N
e A

a b

N

Figure 5

