NEGOTIATING DATA ACCESS IN
FEDERATED DATABASE SYSTEMS

Rafael Alonso
Daniel Barbara

CS-TR-160-88
June 1988

(Revised October 1988)

NEGOTIATING DATA ACCESS IN FEDERATED DATABASE SYSTEMS 7

Rafael Alonso
Daniel Barbard

Department of Computer Science
Princeton University

Abstract

The ever growing need for information is put-
ting pressure on organizations to share data with
their partners. However, although the different enti-
ties would like to share information, it is clear that
each individual system administrator would like to
preserve his or her control over the system. This
concern with each system’s autonomy has led to
the notion of federated databases. Previous work
in this area has touched upon the topic of negotiat-
ing access in a federated database (i.e., determining
what local information may be accessed by any
particular remote user), but we feel that the topic
has not been studied in depth. In this paper we pro-
pose a new scheme, based on the notion of quasi-
copies, which may be used for interaction among
autonomous databases. We also provide protocols
for access negotiation, as well as simple cost
models for estimating the expense involved in
allowing remote access to information. One of the
main advantages of our scheme is that it provides a
very precise way of establishing how much auton-
omy is given up by the owner of the information
when he or she decides to share data. Finally, our
approach may be used in both the case where the
databases systems in question have a common
query language (or there exist facilities for query
translation), and when they do not.

T This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and by the Office of Naval Research under Contracts Nos.
N00014-85-C-0456 and N00014-85-K-0465, by the Na-
tional Science Foundation under Cooperative Agreement
No. DCR-8420948, and New Jersey Governor’s Commis-
sion Award No. 85-990660-6, and grants from IBM and
SRI's Sarnoff Laboratory. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the U.S.

1. Introduction

The growing need for information is putting
pressure on organizations to share data with their
partners. Also, individuals are ever more eager to
obtain information about a wide range of topics.
Some institutions are already providing such infor-
mation for a fee. (Dow Jones [D84] and the Source
[ED83] are two examples.) The spread of network-
ing technology will make possible in the near
future for a person to have access to a huge network
of “‘information stations’’.

In terms of technology, this concept presents
a challenge to the way database management archi-
tectures are conventionally defined. In an environ-
ment such as the one described above, databases
tend to proliferate across the network, without fal-
ling under the control of any single authority and
with very little standardization among them. In this
situation, individual systems will want to preserve
their autonomy while still being capable of sharing
data efficiently with others in the network. An
architecture that supports data sharing among dif-
ferent database systems while preserving the auton-
omy of the individual entities has been called a
federated database. (See [HM85].)

In such systems, we will define for each piece
of data two different classes of components. The
owner of the data is the member (or group of
members) of the federation that controls that data
and is free to share it or not with the rest of the
members of the federation. The importers are
those other members of the federation that are
interested in accessing the data.

The following conditions must be met for a
system to qualify as a federated database.

Government.

« Any individual component of the federation
has sufficient local control so that it may
autonomously determine which local infor-
mation it will share with the rest of the
federation and in what capacity. The owner is
also free to refuse access to any particular
importer for any reason it deems important.
For instance, a component of the federation
might not want to share data with another
component if that sharing implies the com-
mitment of keeping the importer informed
about updates to the data.

H Each component is free to determine which
data is of interest to its users. Furthermore,
each importer may negotiate with the owner
of the data for whatever type of commitment
that may be necessary for the intended appli-
cations of its users. For example, the
importer may specify that it wishes to be kept
appraised about future updates on a data item
that it has just read. Or perhaps a site may
stipulate that not only does it require access to
the information, but that queries about the
data must be completed with a certain max-
imum response time.

In the past, the notion of data sharing has
been synonymous with letting importers query the
local database. We feel, however, that there is a
broad spectrum of choices in this area. For exam-
ple, for performance reasons, one may consider
giving the importer a copy of the data. If the
importer has very stringent requirements for
response time, a local copy might be the answer to
efficient sharing. Placing a copy in the importer’s
site has the added benefit that it also provides a way
of lowering the query traffic to the owner site, thus
reducing the competition for the owner’s resources.

Heterogeneity is a second important reason
for using copies. If the systems do not share a com-
mon query language, and no copies are kept at the
importer’s site, all importer queries will have to be
made using the owner’s query language (which
implies the overhead of a query translation mechan-
ism). Of course, once data sharing has been agreed
upon, the importer can always keep a copy of the
data items without notifying the owner (say, by
storing the result of its previous queries). But in
reality this is not a feasible solution in many appli-
cations since in this case the importer can never be
sure of the consistency of the data.

However, when the owner grants a copy of
the data, the responsibility for data consistency is

an issue that can (and must) be resolved before-
hand. The choices range from giving a copy
without any commitment (i.e., providing the
importer with a hint about the data) and leaving the
responsibility of the consistency to the importer, to
keeping the importer posted of every update. It is
clear that the choice has a tremendous impact over
the amount of autonomy that the owner has over his
or her data (where by autonomy we mean the
degree of freedom that an owner has to update local
information). For instance, in the second case
above, the owner cannot proceed with an update
without informing all the importers first (possibly
requiring the expense of two-phase commit or some
other type of transactional protocol).

As can be appreciated from the comments
above, the interests of the owner and the importer
of data may often conflict. The needs of both
types of entities must be taken into account, and an
agreement (if possible) should be reached. The
process of reaching an agreement is called a nego-
tiation, and is a key element to the federated sys-
tem. If such negotiation is to take place automati-
cally, the need for a protocol is evident. Such a
protocol should specify the following two items:

e A way to precisely express the needs of the
importers and the degree of sharing that the
owner is willing to offer.

e A way to estimate the cost of a specific agree-
ment, both for the owner and for the importer
of the data, as a means for justifying such an
agreement.

In this paper, we address the basic aspects of
a negotiation protocol for sharing data in a
federated database system. This protocol is based in
the concept of quasi-copies (See [ABGS88]). A
quasi-copy is a cached value that is allowed to
deviate from the central value in a controlled
fashion. The degree of consistency of the quasi-
copy is established by the entity where the quasi-
copy is to reside. In the next section, we present
some background information about quasi-copy
management, and note the role of quasi-copies in
data sharing. In Section 3, we explain the model of
negotiation and the protocol. In Section 4, we
develop techniques to estimate the cost of a pro-
posed agreement. Finally, in Section 5 we offer our
conclusions and point to some directions for future
work.

2. Quasi-Copies

The notion of quasi-copies was originally
developed for a centralized information retrieval
system (IRS) [ABGS88]. In those systems, a central
node holds all the data and is responsible for all
updates and management of data. The idea behind
quasi-copies is to cache data on remote worksta-
tions to improve performance. The gains in perfor-
mance come from two different sources. First,
caching data may eliminate multiple requests for
the same data, eliminating redundant requests to the
central IRS. Secondly, it off-loads work to the
remote sites.

However, although caching data is a very
natural idea, it does not come for free. Every time a
cached item is updated at the central node, the new
value must be propagated to the copies. Moreover,
if we insist in complete consistency of the copy, the
propagation must be done immediately.

On the other hand, caching can be made less
costly if a weaker type of consistency is allowed.
A weaker form of consistency may be quite
sufficient for some applications. For instance, if a
user is interested in stock prices of oil companies,
he or she may be satisfied if the prices that are
given to him or her are within five percent of the
real values at any time. The concept of quasi-
copies is a generalization of this notion.

A quasi-copy is a cached value that is allowed
to diverge from the central copy in a controlled
way, which is determined by the actual user of the
data. For instance, a user may specify that a copy
should not diverge by more than 10% from the cen-
tral value, or that the information be no more than
one hour old. We feel that quasi-copies are a very
natural way of dealing with data and are used
already in many organizations in an implicit way.
Consider, for example, that the CEO of a large
company is not normally notified every time an
employee quits, but a massive exodus of employees
should probably be brought to her or his attention.
Magazines and newspapers contain data that is in a
way out-of-date in a controlled manner (i.e., the
‘‘data’’ is supposed to be no more than a day old).

Although quasi-copies were developed in
another context, they are also very attractive for
federated database management, and we have used
them in our architecture as the basis of data shar-
ing. As will be seen later, we propose that in
federated databases the owner of the data can share
information by giving quasi-copies to the import-

ers, with the added commitment of honoring the
consistency requirements that the importers and the
owner agree upon. In the reminder of this section,
we describe the relevant issues of quasi-copies. A
more detailed description can be found in
[ABG88].

The two principal characteristics of quasi-
copies are the selection conditions and the
coherency conditions. The first refers to the set of
objects that the importer wants to request and the
way the copy should be maintained. The second
refers to the degree of consistency requested. The
set of objects involved can be expressed in a rela-
tional language [D81]. For instance, a importer that
desires to have a quasi-copy of the list of flights
arriving in New York may request it by issuing the
following command:

SELECT: Flight Number
FROM: FLIGHT SCHEDULES
WHERE: Flight_Destination = New York

The coherency conditions may adopt a variety
of forms. Three useful types are:

(1) Delay Condition. 1t states how much time a
copy may lag behind the true value. For and
object x, its copy x ', and allowable delay of
o, the condition is given as:

Vtimes t 20k suchthat()s’k <o
andx (¢)=x(t—k)

(2) Version Condition. Instead of using time, ver-
sions are used to specify the window of
allowable values. We represent this condition
as V(x) =P, where x is the object and B the
maximum version difference. That is,
V(x) = is the condition

Vtimes ¢t 20k, tosuchthat 0<k <B
and0<¢tp<t
andv(x(@)=v(x(to))+k
and x'(¢) =x(tg)

(3) Arithmetic condition. If the value of the
object is numeric, the deviations can be lim-
ited by the difference between the values of
the object and the copy.

Ytimest 20 |x'(t)-x()|<e
or that

Vtimest 20

o |
x(t)—x(t
I —%?T(l 100 |[<e%
We represent the first condition Ly A(x)=¢ and the
second one by A (x) =& %.

More conditions can be built out of the ele-
mentary ones, connecting them with logical
“OR”, ““AND”, and ““NOT”’. For example the
condition

V(x)=20R A(x)=10%

means that the copy x~ can lag two versions behind
x or differ 10% from the value of x.

A crucial point regarding the use of quasi-
copies in a federated environment is that their
management can be jointly carried out by the
owner and the importers. The main reason for an
owner to offer a quasi-copy to an importer is to
avoid the constant traffic of queries to its facilities.
We obviously do not want the load caused by the
management of quasi-copies to offset the gains of
not having the constant querying of the owner’s
database. Therefore, it is important to distribute the
work effectively.

Clearly, checking the consistency conditions
at the owner’s site requires massive amounts of
storage and a considerable amount of processing
power. To honor a consistency condition, the owner
must have a model of the state of the importer’s
copy. For instance, consider the condition A(x)=35
and x = 10. If an update arrives that makes x = 15,
the owner must know the value of x". If x"= 10 the
condition still holds; if x' =8 it does not. If the
database holds m items and there are n importers,
the owner’s site will have to store O (mn) values,
plus the associated conditions. Fortunately, there
are ways to substantially decrease this overhead.

First, there are some coherency conditions
that are easy to check at the importers nodes them-
sclves, without bothering the owner’s database. An
example is a delay condition in which the value x’
is valid only for a window of time. After that period
has passed, the importer simply purges the value
forcing the next request to be directed to the owner.

Secondly, the storage requirements at the
owner’s site can be reduced substantially by the

following scheme. Each time an importer receives a
new (current) value for an item x from the owner, it
computes a pair of values xf,, and xj; based on
the importer’s coherency conditions. These values
represent the lowest and highest values that x could
reach at the owner’s site, without the need to send
an update to the importer. The importer sends these
values to the owner which in turn computes the
tolerance interval for x atimporteri as
Ag = [Xfow Xhigh]

And now the owner need only store the global
tolerance interval = Ay = [Xpighest_low Xlowest_high s
defined as the intersection of the individual toler-
ance intervals for importers of item x. Whenever an
update of x sets the value outside A,, the owner
will broadcast it to all the importers holding a copy
of x. The storage needs are reduced now to O (m),
at the cost of potentially higher message rates.
However, if a broadcast mechanism is available,
this may not result in much added overhead for the
owner. Finally, it is easy to see that the technique
just described may be applied to versions as well.

Thus, the only drawback of this approach is
that the frequency of update propagation may be
increased by taking the intersection of the intervals.
This may happen if a particular user sets a very nar-
row interval or the importers start to cache an item
at different times. Regrettably, there is no way of
telling at the negotiation time whether a new
importer may narrow the interval just by examining
the coherency conditions. To see this, consider an
owner that has granted a quasi-copy to an importer
with condition A (x)=10% and is negotiating a
request with an importer that is asking for
A (x) =10. In a situation when x = 10 and it is then
updated to x =11 the new importer condition will
have no effect and there will be no need to pro-
pagate the new value. However, if x = 1000 and it
is updated to x = 1100, the second condition would
force a broadcast. On the other hand, this problem
may not arise in practice, because if all the import-
ers of the information are running similar applica-
tions, it is not inconceivable that they will also
share similar coherency requirements.

Finally, an important point in the implemen-
tation of quasi-copies is how to deal with failures
and transmission delays. To illustrate, consider the
condition A(x)=¢ and assume that an update of
more than 2¢ is about to occur. The condition indi-
cates that the difference between the value in the
central node and the quasi-copy must ‘‘never”
exceed € However, this would imply that the

update to the image must be performed ‘‘at the
same time’’ as the update in the owners site.
Strictly speaking, this is not possible because of
transmission delays. The owner of the data, when
operational, will make sure that the importer
receives a message every & seconds. If Tp is the
maximum message delay, this condition implies
that if no value has been propagated to the importer
in 6 — Tp seconds, the owner must send a “‘ny
message. Therefore, the semantics of a coherency
condition C (x) must be interpreted in the following
way

Cx)VW({x)=90

This means that all conditions will have an implicit
delay window of .

Failures can be treated in a similar way. In
fact, when the importer notices that & seconds have
passed without a message from the owner, it
declares a local variable FAILED (x) as true. Then
the condition can be interpreted as:

C(x)VW(x)=8V ~FAILED (x)

The absence of a message after & seconds can be
attributed to one of two causes. Either the owner
site has failed or the communication between
owner and importer has been interrupted (i.e., a
partition of the network has occurred). In the first
case, obviously the value of the item will not
change, since the updates to x will stop. Thus, the
condition may remain in effect. In the second case,
there are two alternatives.

a) The owner site can honor the contract with
the importer by refraining itself from instal-
ling new updates that violate the condition
C(x). In many applications, however this
alternative is not feasible and will cause the
owner to surrender an intolerable amount of
autonomy over its own data. For instance, the
price of stocks cannot be stopped from
fluctuating just because the customers cannot
communicate with the source of the data. Or,
in a system that controls a physical process, a
measured parameter cannot be prevented
from changing. (L.e., a temperature will
change without regard to partitions in the net-
work.)

The condition will be declared without effect
for the duration of the partition. In this case,
the variable FAILED (x) will be declared as
true. This will be the most commonly used
alternative.

b)

In practice, however it may be difficult to dis-
tinguish between a partition and the crash of the
owner site. In this case, we must content ourselves
with invalidating the condition for the interval of
the failure.

In the next section, we make use of all these
concepts in describing a precise protocol with
which to carry out the negotiation for data sharing.

3. The Protocol

In this section we describe the actions
involved in negotiating for access. Throughout, we
refer to the site which owns of the information as
the “‘owner site’’, and we will denote as ‘‘importer
site’’ that machine which wishes to share the data.

The first step in our protocol is for the owner
to publish its export schemas (i.e., the list of data
items it chooses to make available). The decision
of to which items access will be allowed is orthogo-
nal to our discussion, but clearly will be related to
the types of interactions anticipated by the owner.
For example, a stockbroker company will be eager
to publish information about stock prices, but will
never want to publish internal information like its
own payroll.

At some point in the future, a importer site
may become interested in a piece of information.
That site then tries to find an owner site that will
provide the data. For the moment we will assume
that this can be done by examining a federated dic-
tionary. (In a truly large system, there will not
exist a single federated dictionary containing
pointers to all the information on the network.
Rather, there will be a service analogous to a name
server. Currently, another aspect of our research
involves analyzing the structure of such a naming
service.)

Once the importer site determines which
owner site to contact, it will do so by sending a
message containing an access request, as well as a
few other parameters. (Those parameters will be
used to determine the cost to the owner site of pro-
viding access to the data. This point is discussed in
more detail in the next section.)

Once the owner site receives the request, it
decides whether to allow access or not. It then
notifies the importer site of its decision. If the
owner decides to grant access in the form of a
quasi-copy, it will then commit itself to maintain
the coherency conditions associated with the
quasi-copy. At this point the two sites are said to
have ‘‘negotiated a contract’’.

The contract will be in effect until the owner
decides to terminate it. (If the importer site ever
wants to terminate the contract it can simply disre-
gard all owner messages with quasi-copy updates.
Notifying the owner is then only a matter of
efficiency, not correctness.) For the present we will
assume that the owner will always reserve the right
to deny access to its information at some time in
the future, although there may be applications
where this is not desirable. However, if the owner
decides to terminate the contract it must then notify
the importers of this fact. If the communication
links between owner and importers have failed, all
contracts are assumed to be invalid until the failure
is repaired. (Although, as we suggested in the pre-
vious section, another possibility is for the owner to
refrain from any updates that violate coherency
conditions.) All sites may be quickly appraised of
network failures by making sure that periodic “‘I'm
alive’” messages are sent by all the sites involved.

Clearly, the only difficult aspect of the
interaction we have just outlined is making the
determination of whether to grant access or not.
There are two possible situations to consider, and
we will examine both of them in this paper. The
first is the heterogeneous case, i.e., where we
assume that the sites in question do not share a
common database schema, and that sharing infor-
mation may only take place by providing the
importer site with a copy of the owner’s data. (In
other words, the importer site may not generate
direct queries to the database of the owner site.) In
that case the only decision for the owner to make is
whether to grant a quasi-copy or not. We will con-
sider this case in detail in Section 4.1 below.

The other possibility is that the two sites
indeed share a database query language. We call
this the homogeneous case. Now the owner node
may consider the following possibilities. Either it
grants access or not. If access is given, the owner
must decide if it will let the importer site query the
database directly or whether a quasi-copy will be
provided. We consider this more complex case in
Section 4.2.

4. Computing the Costs

A crucial aspect of the negotiation protocol
involves the computation of the cost incurred by
allowing access to importers. In this section we
describe precisely how to compute those costs. In
Section 4.1, we consider the heterogeneous case,

and in Section 4.2 the homogeneous case.

4.1. The Heterogeneous case.

We begin this section by describing the infor-
mation that must be provided by importers and
owners of data in order to compute the cost of shar-
ing. We will start by discussing the information
required from the importer. In Table 4.1 we
present a set of three parameters with which the
importer defines precisely its needs for the data
controlled by the i-th owner. Each parameter is
subscripted with i, indicating that it is going to be
used in the process of negotiation with the i-th
owner.

Parameter Symbol
querying rate Ad
coherency condition PX)
selection condition S;

Table 4.1. Importer Parameters

The querying rate is the importer’s estimate
of the number of queries per second that will
involve the requested data. The coherency condi-
tion was explained in Section 2. The selection con-
dition represents the importer’s way of specifying
the data it wishes to import from a particular owner
i. This condition can be written as a query in an
SQL-like language, as explained in Section 2. The
entire set of data that any site desires to use from
other databases is defined by the union of the S;
and corresponds to the definition of import schema
in [HM85].

From the point of view of the owner, there are
two types of information that must be specified in
the negotiation process. The first is a list of the data
items that the component is willing to share with
the rest of the system. This is called the export
schema in [HMS85]. The second kind refers to the
internal parameters that the owner uses to decide
whether the negotiation will culminate in an agree-
ment or not. These parameters are shown in Table
42.

Parameter Symbol
update frequency i
number of quasi-copies of the item ky
average load w
maximum load W max
number of bookkeeping instructions I

number of instructions per broadcast 1 (ky)

number of instructions per query I,

probability of triggering a broadcast Py(ky)

system capacity i

Table 4.2. Owner Parameters

The update frequency for item x is based on
accumulated experience or on an estimation of the
number of times the item x experiences an update
during a given period of time. The number of
quasi-copies of the item reflects the number of
importers that have been already granted a quasi-
copy of x. The average load in the system is related
to the average amount of work that the users of the
owner site are expected to generate. It is measured
here as mean response time of user queries. The
maximum load represents the highest delay that the
owner is willing to tolerate. (The difference
Wmax — W is the spare load that can be used to han-
dle extra work due to importer requests.) The aver-
age number of instructions to perform quasi-copy
bookkeeping represents the cost of checking the
predicate conditions once an update has occurred.
The average number of instructions to broadcast is
defined as the number of instructions executed by

the network protocols to broadcast a value. It is
shown as a function of the number of granted
quasi-copies to account for the case in which there
is no broadcast facility in the system and extra
quasi-copies mean extra messages to send. (If a
broadcast facility is available the cost remains con-
stant, i.e., I;(k.)=1I;.) The average number of
instructions to query the local database is based on
path-lengths on the owner’s database. The proba-
bility that once the request is accepted an update of
x will trigger a broadcast depends on whether there
are other importers of the same data and how strict
is the coherency condition requested by the
importer with which the negotiation is being car-
ried out. The capacity of the system is defined as
the number of instructions per second the owner’s
CPU is able to deliver.

With these parameters, we can compute the
amount of extra work that the owner site will
encounter if the quasi-copy is granted.

Mira = Wx[lp + P (DI (1)]

ifk, =0
Aira = Wx [Py (ky + DI (ky + 1) = Py (ky) (k)]
ifk, 20)]

Using an M/M/1 model [K75], we can com-
pute the rate of the work (instructions per second)
that arrives to the system without considering the
new request:

L
A=p W)

If the owner accepts the negotiation, the new
rate will be:

7L-new =A+ lgftra 3
Wiy = 4———)
W = 7\'g;l:ctm

To compute the cost, the only remaining
difficulty is the estimation of P,. Clearly, the
stricter the coherency conditions, the larger P, will
be. A simple, worst case model would set P, =1
for all k.. In general, P, (k,) will be a monotoni-
cally increasing function of k.. Below, we present
two methods for computing the function P,. The
first is suitable for numerical data, and the second
becomes useful when the coherency conditions are

expressed in terms of versions.

(1) Numerical data. A simple technique for
estimating P, may be derived from the assumption
that update values follow a normal distribution with
mean equal to the quasi-copy value value x’, and
variance ©. If ®(x) is the standard normal distribu-
tion function, the distribution function for the
update random function X would be: '
PX sx)=0(X %) ®)
Now, the probability that an update results in
a broadcast may be computed as
Prob [X < Xhighest_tow OF X 2 Xiowest high] (see Fig-
ure 4.1), with Xhighest_low and Xiowest_high Tepresent-
ing the extremes of the tolerance interval A,, as
defined in Section 2. Let A, be the current toler-
ance interval, with k, quasi-copies granted. (If no
quasi-copies have been granted so far, we may
define A, as infinite.) At this point we can compute
Ay (the tolerance interval that would apply if we
grant the new quasi-copy) by applying the
coherency condition P (x) to the value x . That is,
we can compute the values Xpighest fow and
Xlowest_high- W€ can use those two values in turmn to
compute now Py (k, + 1) as follows:

Pelly +1)=1- 6)

[B(xl;we.rt g:gh -x’) - .x;;igh“gcl;w -x)]

(2) Versions. Let us define the value Bpi(x) as the
minimum version difference requested so far by the
importers to whom a quasi-copy of x has been
granted. (If none has been granted, Bpmin(x) is
defined as infinite.) Let P(x)=V(x) be the
coherency condition under negotiation. Define
Bmin(x) = min [Bumin(x),V (x)]. We may now com-
pute Py (k; + 1) as follows:

|

P,(kx.-l- D= B

Equation (7) follows from the fact that the
object must be updated Brin(x) times before a
broadcast is triggered. For instance, if Brin(x) =3,
the broadcast will occur after the third update.
Thus, over time the probability that an update

triggers a broadcast will be %—

M

To recap the results of this section, in the
heterogeneous case the importer and owner sites

’

’
X highest_low

’
Xlowest_high

Figure 4.1

may only share information via quasi-copies.
When the owner site receives the quasi-copy
request, it compares Wi5, to Wyhax using Equation
4). If Wi5, < W nax. the quasi-copy is granted, oth-
erwise access to the data is denied.

4.2. The Homogeneous case.

In some federated databases, some of the
databases in the network may share the same query
language (alternatively, a query translation
mechanism exists). If so, we will allow the owner
site the freedom to give the importer either a
quasi-copy or the right to query directly the data-
base. The cost of granting a quasi-copy in this
situation would be identical to that of the hetero-
geneous case which we have already discussed in
the previous section. Thus, all that remains to be
considered is the cost of granting direct access to
the owner’s database.

Using the same parameters that we have
already defined in Section 4.1, the extra cost of
direct access would be:

A&ys = My +15(1)) ®
Using this result we can compute
Aew =\ + A4y, ©
and
da _ 1
wga, _‘}_/ e (10)

Using the equations (1)-(4), the owner can compute
the cost of granting a quasi-copy and then compare
Wgs, with Wda, and W,... The possible outcomes
are:

(1) Access is denied,
W, > W max.

A quasi-copy is granted, if W45, < W&, and
Wisw < Wmax.
Query rights are granted, if Wi, < W45, and
W, < W pax.

The careful reader will note that in this sec-
tion we have assumed that the importer will have
no preference for direct access over obtaining a
quasi-copy, and thus the owner is free to choose the
option that will result in the least expense to him or
her. If the importer will rather have direct access,
we can still compute direct access costs as before,
but grant the importer direct access as long as
W, < Wax. Only if Wda, > W, will it be

if Wi > Woaax and
@
3

worthwhile considering a quasi-copy.

On the other hand, some importers will rather
have a quasi-copy than direct access. This is not so
strange if we consider that, in the case of a network
failure, direct access customers are left without ser-
vice, while quasi-copy importers at least have some
partially correct data available for their users. For
these importers the sequence of cost comparisons
changes in the obvious way.

5. Conclusions

We have presented a protocol for negotiating
access to data in a federated database. This protocol
deals with several important aspects of data sharing
in an environment where databases belonging to
different organizations coexist and cooperate. This
aspects are:

e Allowing the owner of the requested data to
evaluate precisely the expense it will incur if
sharing is accepted.

e Allowing the sites involved to deal more
efficiently with heterogeneity problems, since
owners may now give a quasi-copy to the
importer. That way the problems of query
translation disappear.

e Dealing in a systematic and precise way with
the problem of data consistency. The importer
specifies exactly what manner of consistency
it needs, and the owner decides whether it can
commit itself to maintain such a degree of
consistency over the shared data.

e The use of quasi-copies is also an effective
way of off-loading work from the owner site.
By giving the importer a quasi-copy, much of
the querying processing costs are off-loaded
to the importer site.

As shown in Section 4, a key question in
evaluating the cost of sharing is the estimation of
the probability of triggering a broadcast. We have
presented two techniques that can be used for
numerical data and for copies that rely on version
numbers. We believe that these two ideas encom-
pass many of the interesting cases in practice. How-
ever, it is also possible to fine tune the estimation
of this function once the exact semantics of the data
involved are known.

We are currently working on a prototype
implementation of a federated database system in
which these ideas can be tested in practice.

6. References

[ABG88] Alonso, Rafael, Daniel Barbard, Hector
Garcia-Molina, and Soraya Abad, ‘‘Quasi-Copies:
Efficient Data Sharing for Information Retrieval
Systems,”” Proceedings of the International
Conference on Extending Database Technology,
Italy, 1988.

[D81] Date, C.J. An Introduction to Database Sys-
tems. Vol. I, 3rd Ed. Addison-Wesley. 1981.

[D84] Dunn, Bill, *‘Bill Dunn of Dow Jones: The
Data Merchant,”” Personal Computing, pp. 162-
176. December 1984.

[ED83] Edelhart, Mike and Owen Davies, OMNI
Online Database Dictionary, Collier MacMillan
Publishers, 1983.

-10-

[HMS85] Heimbigner, Dennis, and Dennis McLeod,

““A Federated Architecture for Information
Management,”” ACM Transactions on Office Infor-
mation Systems, vol. 3, no. 3, pp. 253-278, July
1985.

[K75] Kleinrock, Leonard, Queueing Systems. Vol.
1: Theory. Wiley-Interscience 1975.

