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Abstract

The concept of a large-scale information retrieval network incorporating hetero-
geneous retrieval systems and users is introduced, and the necessary components
for enabling term-based searching of any database by untrained end-users are out-
lined. We define a normal form for expression of queries, show that such queries
can be automatically produced, if necessary, from a natural-language request for
information, and give algorithms for translating such queries, with little or no loss
of expressiveness, into equivalent queries on both Boolean and term-vector type
retrieval systems. We conclude with a proposal for extending this approach to
arbitrary database models.
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1. Overview

Present-day retrieval systems are larger, more numerous, and more sophisticated than
ever before, yet usage of publicly available databases remains disconcertingly low. The prob-
lem of making computer-based information accessible to the population at large has a four-
component solution: a reliable digital communication network connecting information pro-
viders to homes, businesses, and libraries; inexpensive personal computer systems (PCs) pro-
viding individuals with personal information storage and processing capabilities; easy-to-use
query interfaces, customizable to each user, through which queries can be expressed without
knowledge of online searching techniques or of the query languages of specific IR systems;
and algorithms for translating queries submitted via such an interface into equivalent queries
processable by any retrieval system attached to the network.

With the advent of ISDN the necessary public telecommunication networks are fast
becoming reality. Such a network can be expected to provide the services of the first four
layers of the ISO/OSI protocol, specifically message routing and reliable transmission of mes-
sages from node to node, and provide a base upon which an enormous variety of
information-exchange applications may be implemented. We can thus envision a large-scale
information network populated by both information providers and information seekers
numbering, potentially, in the millions. Providers may include commercial information ser-
vices, businesses, civic organizations, government agencies, professional societies, libraries,
and individuals.

The second component is also in hand; within very few years we can expect PCs, in
their role as communication and storage devices, to become as ubiquitous as telephones —
provided, of course, that their ease of use can be made to approach that of telephones. With
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PCs within the reach of the average person, it is reasonable to anticipate that individuals
increasingly will store their important information in computer files and databases, as most
businesses do now. It will also be desirable to exchange information with others, and to add
to one’s personal database items received directly from other machines.

This scenario has clear implications for the hundreds of phblic and commercial informa-
tion services now in operation. The potential users exist; what is lacking is a truly ““friendly’’
interface between them and information databases, rather than the current hodgepodge of
query languages, thesauri, menus, manuals, and expensive subscriptions. These factors,
intended to facilitate information access, often have the opposite effect of discouraging access
— particularly in the case of the average person whose occasional information needs do not
warrant the effort and expense of using present-day retrieval systems. A well-designed infor-
mation network should enable users to query in a natural, uniform way any of the information
providers attached to the net. This is not only a desirable enhancement of the present opera-
tion of remotely accessed information services, but an environment in which new services
may easily arise. Even very small or specialized databases will find a large population of
users ready to access them. An important design goal, therefore, is the provision of a single
unified interface to the many information sources, but customized to each user. In particular,
naive (untrained) users should be able to enter queries without having to learn the file struc-
ture, query language, or any other idiosyncrasies of a particular retrieval system, and to
receive documents relevant to those queries without necessarily knowing how, or even by
whom, they were answered.

While attempts have been made to define a single interface to multiple retrieval systems
[MARCUSS81, MOULINOUXS83], the interface defined is fixed and not customizable to the
requirements of individual users. On the other hand, a method for partially customizing inter-
faces for users of varying experience levels has been proposed [TAGUES87], but this central-
ized design, wherein a single system maintains records of usage patterns and preferences of
its users, would not scale well to a large number of users.

We argue that it is possible to have it both ways; fully customized interfaces can be
implemented on each user’s PC, decoupling query entry (handled by the PC) from query pro-
cessing (performed by the information service, or ‘‘host’’). In fact, a user’s processor should
be able to accept a query, locate hosts capable of answering it, query those hosts, and collect
responses, integrating them into its own database. To achieve this separation of function we
propose a simple common language for communication of queries. We will call this
language, motivated in Section 2 and presented in detail in Section 3, query normal form
(QNF).

There are two basic requirements to be made of QNF. First, it must be possible for PC
software to automatically generate QNF queries from input provided by a naive user. In Sec-
tion 4 we discuss how this can be done in a straightforward manner, even if the input is
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natural language prose. Second, QNF queries must be automatically translatable into the
query language of any information retrieval system. Each host must take responsibility for
performing this translation for itself. In Sections 5 and 6 we give algorithms for processing
QNF queries on Boolean-model retrieval systems and term-vector systems respectively. In
both cases a ranked collection of documents is produced in response to the query and
transmitted to the user.

In Section 7 we consider possible extensions to query normal form which could enable it
to be used with a wider variety of retrieval and database systems.

2. Querying in a Heterogeneous Environment

In designing an application for a network of national and perhaps international propor-
tions, there are two characteristics that must be given serious consideration: autonomy and
heterogeneity of participants. Autonomy means freedom from any sort of control by other
nodes, and freedom to define as much as possible one’s own view of the network and means
of interaction with it. This implies the need for completely decentralized control and process-
ing. A node must never be required to cooperate with other nodes. Standards should be
minimal, and universal enough that they enhance, rather than inhibit, a node’s ability to parti-
cipate in the net. Heterogeneity of participants must be expected and accommodated. This
encompasses hardware, software, storage systems, retrieval languages, and the needs and
interests of users themselves. It is certainly unreasonable to expect much uniformity among
computer systems in the near future. By concentrating on integrating heterogeneous systems
rather than imposing uniformity, several benefits are obtained: present systems are already
usable, new equipment and software are easily introduced, diversity of information services is
encouraged, and nodes are free to upgrade their capabilities at any time without disrupting the
operation of the network. Simplicity of design and operation is key to maximizing network
participation. Ideally any node, even a small home computer, should be capable of function-
ing as both a querier (information seeker) and a source (information provider).

As aresult of the stated goals of preserving autonomy and heterogeneity while providing
a single interface to diverse databases, we propose a noninteractive, one-question/one-answer
protocol for node-to-node communication. We will not require that any node support interac-
tion with another, since that would necessitate each party keeping track of the state of the
interaction until the session ends (violating the autonomy criterion) and would make it
difficult to insulate the user from the host’s own query language (violating the unified inter-
face criterion). Therefore the language in which queries are expressed must be rich enough to
express a complete information need, or question, in a single query.

While it is desirable to minimize the imposition of standards over the network so as not
to restrict its inherent flexibility and diversity, it is necessary that hosts understand the queries
submitted to them and that users understand the responses. Since responses are assumed to be
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human-readable documents, their representation as a string of natural-language text seems
sufficient. Queries, on the other hand, must be machine-processable and so must be carefully
designed. In a network of very many nodes it is clearly impractical to require direct transla-
tion between the query languages of every pair of processors; a practical approach is to
impose some common query language, which we will call query normal form (QNF).

This query language, to be maximally expressive, must be based in natural language. It
should be easily generatable by users and their processors. For the benefit of very naive
users, it is important that automatic procedures exist to convert a natural-language prose
request by such a user into a correct, equivalent QNF query. Furthermore, QNF queries must
be processable by any host system on the network. Yet it would be undesirable to require
hosts to make modifications to their file structures or retrieval operations in order to process
QNF queries; both autonomy and heterogeneity would suffer. Instead, we ask only that each
source perform some preprocessing to translate QNF queries into its own query language,
then execute the resulting queries normally. Some postprocessing of the results may also be
required. We will first present a normal form, then show that such queries can indeed be both
generated automatically and translated to either term vector format or Boolean format for pro-
cessing.

3. Query Normal Form

A QNF query is of the form <T,N,W> where T = {t,/w; , ..., t,/w,} is a set of
weighted terms, N is a positive integer indicating the maximum number of documents
desired, and W is the minimum acceptable weight of a document, where a document weight is
taken to be the sum of the weights of the query terms under which the document is indexed.
Weights are rational numbers in the interval (0,1]. The querier uses them to indicate the rela-
tive importance of the terms to the query. A weight of 1 indicates a required term. Equally
weighted terms have a special interpretation; they are taken to be synonyms. The constraints
N and W combine with the term weights to give the user fairly fine-grained control over the
ordering and quantity of the retrieved documents that will be returned. This is important
because the characteristics of sources will vary widely — some may have only general infor-
mation on a topic while others treat it in great depth; some may have thousands of relevant
documents. By incorporating control information (N, W, and weights) into the query itself,
some of the benefits of interactive access can be attained in a noninteractive environment. A
QNF query includes an upper bound on quantity, a lower bound on quality, and a means of
ranking responses so that the most relevant ones are returned first, even by sources (such as
Boolean retrieval systems) that do not normally rank query responses.

Let us look at an example. The query
QI: < {home/0.7 , water/1.0 , filter/0.9 , pure/0.9} , 20, 1.9 >
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expresses an interest in home water purification. No more than 20 documents are wanted, and
only those indexed by one of the following minterms (an overbar denotes complementation):

home AND water AND filter AND pure
home AND water AND filter AND pure
home AND water AND filter AND pure
home AND water AND filter AND pure
home AND water AND filter AND pure
home AND water AND filter AND pure

There is no single Boolean query which incorporates all of the information in this QNF query.
There is, however, a procedure for generating an equivalent sequence of Boolean queries,
which will be presented in Section 5. The best one-line approximation to Q1 is the pseudo-
Boolean

BI: water AND (filter OR pure) ANDMAYBE home

“Water’’ is a required term, ‘‘filter’” and ‘‘pure’’ are ORed because they are synonymous,
and ‘‘home’’ is optional. The construct ANDMAYBE indicates that the presence of ‘‘home’’
as an index term of retrieved documents is desirable, but not necessary; the practical interpre-
tation of this is that documents containing ‘‘home’’ should be ranked above those lacking it.

As a second example, consider the query
Q2: < {home/0.7 , water/1.0 , filter/0.9 , pure/0.9} , 20, 2.0 >

By increasing W to 2.0 we have composed a more selective query, equivalent to the union of:

home AND water AND filter AND pure
home AND water AND filter AND pure
home AND water AND filter AND pure

or more succinctly:
B2: water AND (filter OR pure) AND home

‘““Home’’ is no longer optional if the minimum weight specification is to be met;
““home AND water AND filter AND pure’’ does not satisfy the W constraint because *“filter”’
and “‘pure’’ are designated as synonyms — both terms together have the same weight (0.9) as
either one alone. We might call this the true synonym interpretation of equal weights. An
alternate interpretation is as heavy synonyms, where a little extra weight is given to minterms
incorporating more than one term of a synonym group, on the assumption that they are
slightly more relevant to the query than if only one were present. In this case m synonymous
terms with weight w appearing uncomplemented in a minterm contribute w + (m—1)-w-€ to
the weight of that minterm, where € is small. For example the six minterms given for query
Q1 were shown in ranked order; their values are, respectively, 2.6+(0.9¢), 2.6, 2.6,
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1.9+(09¢), 1.9, and 1.9. The host has the option of choosing which interpretation to
implement.

As a final example to illustrate the meaning of term weights with regard to ranking, con-
sider the query

03: < {home/0.5 , water/0.9 , filter/0.7} , 20, 1.4 >
The applicable documents are those specified by:

home AND water AND filter (total weight =2.1)

home AND water AND filter (" " =1.6)

home AND water AND filter (O " =14
The single Boolean query

B3: water AND (home OR filter)

while logically equivalent to the union of the minterms given, is incapable of representing the
user’s preference for ‘‘water , filter’” over ‘‘home , water’’ or for ‘‘home , water , filter’” over
either.

4. The User Query Interface

As already mentioned, the query entry procedure may be customized by each user to
meet his own needs and preferences. We must guarantee, however, that some interface can
be designed which will enable naive users to enter queries which are syntactically correct and
which express their information need adequately.

It has been established that automatic indexing techniques applied to document texts can
generate satisfactory document descriptors. By the same mechanisms, which are simple
enough to implement on PC systems, query descriptors can be generated from natural
language queries. Such a procedure, given in [SALTON83], consists of these steps:

1. decompose the NL text into a list of discrete words

2. delete low-content stopwords

3. remove suffixes to reduce words to word stems

4. eliminate duplicates, assigning higher weights to terms occurring more than once.

This process results in a single set of terms, possibly with weights based on frequency of
occurrence in the NL query. The user can be prompted for a value for N, or some small
default can be used. W can perhaps default to the lowest assigned term weight to effect high
recall, or to the sum of most or all term weights to effect high precision. Natural language
query interfaces to specific retrieval systems have already been implemented with success
[BERNSTEIN84, DOSZKOCS83]; they can be implemented in this environment as well.

Of course, users willing to put more effort into creating queries can easily generate quite
specific and expressive requests. One can readily envision an easy-to-use graphic interface
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permitting entry of words, adjustment of their weights, spelling correction, and so forth. The
exact choice of weights is not particularly important; it is the relative weights of terms and
the relationships of their sums to the W value that determine a query’s meaning. Graphic aids
to setting and understanding these relationships can also be devised.

At this point we should mention briefly a mechanism for choosing the information
sources to which a given query is to be sent. Given a very large decentralized information
network of changing composition, a complete, consistent, universally accessible index to its
contents would be impossible to construct and maintain. Any index used will be a distri-
buted, dynamic, and often inconsistent one; each node should store locally as much of this
index as it wants and/or needs, and be able to query remote portions of the index when the
local portion is insufficient or out-of-date. We call each node’s portion of the index its direc-
tory. The directory is a list of node addresses together with summaries of the information
each can provide. These summaries, which we will call node descriptors (NDs), can be sup-
plied by the source nodes themselves. Nodes may acquire new NDs for their directories by
asking neighbors (known source nodes) for copies of their directories, by asking source nodes
for their own NDs, and by receiving unsolicited ‘‘announcements’’ of NDs from information
sources.

An ND is a weighted term set, similar in format to the T component of a QNF query.
When a user composes a query his processor will search its directory for NDs which match
the query, using some similarity measure. (Inner product, with the weights of missing terms
taken to be zero, is a simple and accurate measure to use.) If a good match is found, the
query can be sent to the appropriate source(s). If not, the user’s processor can automatically
build its directory by requesting copies of neighbors’ directories. Thus the pool of neighbors
increases, and the process repeats until a promising source is found.

A consequence of heterogeneity is the possibility of incompatible vocabularies among
user and host systems. Liberal use of synonym terms in a query can help to make the query
understandable to a wide range of hosts, or a querier can use a synonym dictionary during the
query/ND matching process. A host, likewise, may maintain a dictionary or thesaurus with
which it can map query terms into index terms acceptable to its retrieval system. In general,
however, a high degree of matching with index terms can be expected in queries simply
because the source’s ND contains only valid index terms, and it is (presumably) a close match
between the QNF query and the ND that causes the query to be submitted in the first place. A
small number of unrecognized terms may be dropped by the host before processing, but the
retrieval result will entail lower precision and recall than intended. If too many mismatches
occur, the host may choose not to process the query and to send instead to the querier a
current copy of its ND, on the assumption that the querier’s copy is incorrect or outdated.

Depending on the capabilities of a particular querier and host, the querying and transla-
tion processes may be smooth or awkward. All adjustments to queries during the process
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may result in a loss of expressiveness, and this double-translation technique (NL to QNF to
host language) can be expected to produce less exact queries in general than a user trained on
the host system could produce. However, it is a flexible design which permits each participat-
ing node to contribute as best it can to the translation. Some nodes will be more *‘intelli-
gent’’ than others, but any node with minimal PC software can ask a question and receive
some relevant response. Modular design and a simple communication protocol can open up
database access to millions of untrained potential users.

5. Query Processing on a Boolean Retrieval System

Any QNF query can be translated into a sequence of Boolean queries in such a way that
weights are interpreted properly and the N and W constraints are met. The response consists
of a list of sets of documents such that all members of a set have equal document weights, no
document appears more than once, and every member of a given set is returned before any
members of a lower-weighted set. We now describe procedures for translating from QNF to
Boolean queries.

5.1. All-Minterm Algorithm

The most general approach is to generate all of the possible minterms, exclude those in
which one or more required terms (weight = 1.0) is complemented, rank those remaining by
decreasing weight, and execute the Boolean query corresponding to each in turn until either
the maximum number of documents N has been retrieved or the value of the next query is
below the threshold W. This procedure is simple and effective. The full degree of document
ranking requested via the QNF query can be provided by a Boolean retrieval system.

The drawback to this approach is that it is of exponential time complexity. A query of n
terms yields 2" minterms, each of which (except the fully complemented one) describes a set
of documents at least partially relevant to the query. In the worst case, then, the host system
must generate 2"—1 distinct sets and transmit them in ranked order to the querier.

For this reason we present an alternative algorithm requiring the production of at most
2n-1 sets for transmission. It is also simple to execute, and its linear time complexity should
make it more palatable to those who might implement QNF query processing on a Boolean
retrieval system. The price paid is the precision with which the ranking is done; it is no
longer guaranteed that the weight of every document returned is at least as great as that of all
documents which follow it, although an approximate ranking is maintained.

5.2. An Approximate-Ranking Algorithm

Step 1. Retrieve a core collection of document sets, one set per term weight, as follows.
(a) Retrieve the set of documents indexed under each separate term #;, 1<i<n, to yield n
document sets S;,, 1<i<n.
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(b) For all §;, where w; = 1.0 (documents indexed under required terms) execute the Boolean
operation S, , yielding the intersection set S of documents containing all the required
terms. Discard the original sets S;,.
(c) Forall §;,...,S;, where w; = . . .= w, execute the Boolean operation \ S;,....S;, , yield-
ing the union set S,, containing all documents indexed under at least one of the synonymous
terms of weight w;. Discard the original sets S, ...,S;, .
(d) Each of the remaining sets S;, pertains to a uniquely weighted term; rename them by their
weights to S,,, .
There are now k core document sets, each corresponding to one of the k distinct term weights
from the query. The actual weights do not affect the remainder of this algorithm, so for
simplicity’s sake we will rename the sets to have integer subscripts ranging from 1 to %, in
order by increasing term weight (S, represents the lowest-weighted term and Sy the highest-
weighted).
Step 2. Generate and execute a sequence of k—1 queries producing the sets
Sk AND Si_
St AND S;_; AND S;_»

Ry = Sy ANDS;_; AND...ANDS,

Set R |, containing the highest-weighted documents, is the first response set and is transmitted
to the querier. (At any point, if the cumulative size of the response sets exceeds N, the first N
documents are sent and the search terminates).

Step 3. Execute k—1 queries producing the response sets

R, = Sy AND S;_; AND...AND §, NOT S,
R3 Sy AND S;_1 AND...NOT S,

R, = Sy NOT S,
At this point, all documents containing the term(s) of highest weight have been retrieved. If
that highest weight is 1.0, then the search ends here.
Step 4. Execute the final k-1 queries yielding the response sets

Ry = Sg-1 NOT S
Ress =  Si_p NOTS;_; NOT S;

Rok-1=  §1NOT S, NOT...NOT S;

If all 2k—1 sets are transmitted, the user receives all documents indexed under at least
one of the query terms. If the query specifies a nontrivial value for W, however (greater than
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the lowest term weight), not all sets should be returned. Choice of the exact cutoff point
involves a precision/recall tradeoff: if we guarantee that no documents of weight < W will be
returned, we cannot guarantee that all documents of weight = W will be, and vice versa. (The
only exception to this occurs when the distinct query term weights all differ from each other
by a factor of two or more. In this case a perfect ranking of sets will be produced, although it
will still not be as fine-grained as that produced by the O (2") algorithm). The choice of
interpretation of W can be made by the host.

Although steps 2 - 4 appear to perform O (k%) Boolean operations, only O (k) operations
are actually required if queries make use of the results of previous queries. As an example,
suppose the following query, concerning outdoor activities in Canada, were received:

< {camp/1.0 , boat/0.7 , cave/0.6 , spelunk/0.6 , Canada/1.0 , mountain/0.4} , 100, 2.5 >

The following Boolean queries could be executed. Note that sets are numbered as they are
created, as in a typical interactive retrieval session; the numbers thereafter may be used to
identify the sets. To the right of each is shown the weight, or range of weights, of documents
in the set, followed by the effective query. Response sets are starred.

(1) mountain 0.4-3.7
(2) cave OR spelunk  0.6-3.7
(3) boat 0.7-3.7
(4) camp AND Canada 2.0-3.7
(5) 3AND4 2.7-3.7 (campNCanada) N boat
(6) 2ANDS 3.3-3.7 (campNCanada) M boat N (caveuUspelunk)
(7) 1ANDG6 3.7 #* (campnCanada) N boat N (caveUspelunk) N mountain
(8) 6NOT7 3.3 * (campnCanada) N boat N (caveUspelunk) N mountain
(9) 5NOT6 2.7-3.1 =* (campnCanada) N boat N (caveUspelunk)
(10) 4NOTS5 2.0-3.0 #* (campnCanada) N boat
(11) NOT 4 0.0-1.7 (campnCanada)
(12) 11NOT3 0.0-1.0 (campnCanada) N boat
(13) 12NOT2 0.0-0.4 (campnCanada) M boat N (caveUspelunk)
(14) 3AND 11 0.7-1.7 * (campnCanada) N boat
(15) 2 AND 12 0.6-1.0 * (campnCanada) N boat N (caveuspelunk)
(16) 1AND 13 0.4 =* (campnCanada) N boat N (caveUspelunk) N mountain

Since (in this example) set 4 is required, execution would end after production of set 10 (the
last set containing set 4). The W constraint is, however, not necessarily met by all documents
in set 10. The host chooses whether to stop after set 9 or set 10.

This particular algorithm places emphasis on the highest-weighted term, retrieving all
documents containing it before any not containing it. Thus it should perform well on queries
containing required terms, and in general when the high-weighted terms are of much greater
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importance to the querier than the low-weighted ones. Other algorithms can be devised; there
is, for example, an O (n 2) algorithm which provides a finer ranking than the linear algorithm
of the response sets not containing the highest-weighted term.

6. Query Processing on a Term-Vector Retrieval System

Since QNF is based on a weighted term set, processing by a retrieval system which
represents documents as vectors of index term weights and expects weighted term-vector
queries as well should be fairly straightforward. In fact, if query/document similarity is com-
puted as the inner product of the two vectors (as will be assumed throughout this section),
index weights are binary, and no synonyms or required terms are specified in the query, the T
component can be processed as is. Response documents are then transmitted in ranked order,
using N and W to set a cutoff point.

For the general case, where synonyms and/or required terms are present, some pre- and
postprocessing must be done to combine the weights properly. In addition, if index weights
may be nonbinary (real numbers in the interval [0,1]), W must be reinterpreted. We will treat
binary and nonbinary index weights separately, beginning with the simpler (binary) case.

6.1. Binary Document Term Vectors

A term-vector retrieval system is a collection of r documents, d1,d3, * * * d,, indexed by
s terms, 71,9, * * - t;. The indexed collection is represented by an rxs matrix D in which the
entry D;; is 1 if document d; pertains to term #; and O if it does not. A query Q is an sx1
matrix whose entry Q; is 1 if the query pertains to term #; and 0 if it does not. (Our algorithm
performs preprocessing to convert the QNF query into several binary query vectors. It there-
fore can be used by a host that accepts either binary or nonbinary queries.) The similarity of
each document to a particular query Q is computed by multiplying D-Q to produce an rx1
matrix of similarity values.

Step 1. Convert the QNF query’s T component into a vector of appropriate length by
ordering its term weights to conform to the ordering of terms in D, and assigning weights of 0
to those index terms not in T. (For clarity in the examples, we will show only the nonzero-
weighted query terms and the portion of D that pertains to them.) Let us use as an example

the query
Q4 = < {Robert/1.0, Frost/1.0, style/0.8 , poem/0.3 , verse/0.3 , thyme/0.3} ,N, W >

and the document matrix

dy

0 1 1 1 1 0

d2| 1 1 1 1 1 1

D = ds 0 0 0 0 1 1

ds| O 0 1 0 1 1

ds 0 1 1 1 0 0
poem rthyme verse style Frost Robert
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The converted query is the vector [0.3 0.3 0.3 0.8 1.0 1.0].

Step 2. We will define a selector query S for one or more terms #; to be a binary sx1
vector whose elements S; are 1 for each ¢; to be selected, and 0 otherwise. Compose k selec-
tor queries, one for each distinct query weight in the original query. Thus for Q4 three selec-
tors are generated:

S'D.3 — S0.8 = Sl.ﬂ -

COOC M
COoO=ROOO
——O00 0

L J L T o S

Step 3. Execute each S°, 0<i <], as a query, producing similarity vectors VieD-S':

V0.3

]
= OWwWh
b
[=]
-]

Il
—_—O O = =
=
p—

(=]

Il
SN =

Step 4. Adjust each V', 0<i <1 (not V1), to account for the query weights. Either true
or heavy synonyms may be implemented. For true synonyms: |

foralli<1l, forall j, 1Sj<r, Vi’ i+ (Vi>0)

(Logical expressions, such as (Vj- >(0), evaluate to 1 if true and O if false.) For heavy
synonyms:

foralli<1, forall j, 1<j<r, Vi i+ (1+(Vi=1)-g)- (V5>0)

In either case set V107V 10 if V10 exists. In our example, assuming heavy synonyms, this
step produces vectors:

0.3+0.3¢e 0.8 1
0.3+0.6¢e 0.8 2

V0.3f o 0 VO.S' = 0 VI.O’ =12
0.3 0 2

0.3+0.3¢e 0.8 0

Step 5. Define req to be the number of required terms in the original query:
rege—[111111]-8"0 if §10 exists; req < 0 otherwise. Then generate the final response
vector VR as follows:

for all j, 1<j<r, VR «

k 7
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For our example,

Step 6. VR contains the desired document rankings, just as it would if an ordinary vector
query had been processed. Synonyms, required terms, and weights have all been taken into
account. Now transmit the N (or fewer) highest-ranked documents whose weights are W or
greater to the querier in ranked order.

6.2. Nonbinary Document Term Vectors

Although the presence of nonbinary weights in D makes query processing somewhat
more complicated, an algorithm very similar to the one just presented can be used. Let us use
as an example the document matrix

01 07 09 07 09 00

d| 09 06 08 08 04 07
D=ds| 00 00 01 00 06 06
dg| 01 00 07 02 03 09

ds 0. 0.5 0. 0.8 00 01
poem rhyme verse style Frost Robert

Step 1. Convert the T component to a vector as before.

Step 2. Generate a selector query for each term in the original query. Where m query

. . . 1
terms share a weight w, their selector queries are labeled S¥ ,...,S" :

1 0 K 0 0 0
0 1 0 0 0 0
03_1|0 032_|0 03°_|1 08 _1|0 1.00_|{0 1.02_|0
s03=|g| s%=[g| $°F=[o| s*¥=|7| $*=|g| s*%=|
0 0 0 0 1 0
0] 0] 0 0] 0] 1]

Step 3. For each §¢, 0<i<l, compute similarity vector Vi «D-S*:

0.1 0.7 0.9 0.7 0.9 0

. |09 , |06 , |08 . |08 (04 o |07
V&=l 0o | v®¥=| 0 | v =l01| VO =0 [ VI¥=l06| V'V=|06
0.1 0 0.7 0.2 0.3 0.9

0 0.5 0.6 0.8 0 0.1

Step 4. Adjust each V* to account for query weights and for synonym relationships. The
fuzzy Boolean OR operator, max, can be used to implement true synonyms:



= Yllis

- m *x
foralli<l, forallj, 1<j<r, Vi ei- malx L4
x=

or heavy synonyms may be implemented instead:

m

: ;X m ix - ix
foralli<l, forallj, 1<j<r, Vi i malx Vi+| LV; -—malx Vi ] -e]
x= x=1 x=

Both formulas are generalizations of the binary-vector formulas given in the previous algo-
rithm. Index weights of required terms can be combined with the fuzzy Boolean AND opera-

tor, min. Where req is the number of required query terms:
m
for all j, 1<j<r, V}'O’ « req - min V}‘O
x=1

In the present example, assuming heavy synonyms, these adjustments produce the vectors:

0.2740.24¢ 0.56 0
0.27+0.42¢ 0.64 0.80
y03’ = 0.03 vo8,=| o V107 =11.20
0.2140.03¢ 0.16 0.60
0.18+0.15¢ 0.64 0

Step 5. Compute the final response vector VR as follows:

forall j, 1<j<r, VR

k
zv}"*’] -(V}%>0)
i=1

For our example,

0
1.7140.42¢
VR = 1.23
0.97+0.03¢
0

Step 6. In Boolean retrieval systems and vector systems with binary index weights, the
threshold parameter W has been viewed as the minimum acceptable sum of the weights of
those query terms applicable to each document. When index weights are nonbinary, how-
ever, the value of a query term counted toward a document weight will be less than that
term’s query weight whenever its index weight is less than 1.0. To compensate for this, W
can be adjusted as follows:

’ w £ o 4
Wie-| -7 | X w)” +(reg—1)(req >0)
Y w; +(req —1)(req >0) i=1

i=l
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W is divided by the maximum possible document weight to yield the minimum accept-
able proportion of that maximum weight. W’ is set to that proportion of the weight of a
document whose index weights for all query terms are the same as their query weights. Thus,
for the present example:

W

‘ 7 2 _
03108110110 (03 H08°+10+1.0) = S5=W

W =

2.73
3.1

so that a document whose vector is [0.3 0.3 0.3 0.8 1.0 1.0], having a document weight of
2.73, would exactly meet the threshold if W =3.1. Only in a nonbinary weighted system do
the exact relationships among query weights affect the meaning of the query, indicating
acceptable tradeoffs among terms. For example, a query term weighted 0.8 is “‘worth’’ twice
as much as one weighted 0.4; the query < {#,/0.8 , £7/0.4} , N, W > matches document vec-
tors [0.8 0.41,[0.9 0.2],and [0.5 1.0] equally (the document weight is .80).

7. Future Work

Query normal form is an extension of the term-vector format for queries. It is natural-
language based, simple, and easily generated and interpreted. However, while more expres-
sive than simple weighted term vectors, QNF does not incorporate the full expressiveness of
Boolean combinations of terms. For example, ( a AND b ) OR ( ¢ AND d ) cannot be
expressed in a single QNF query. While a generalization of QNF to weighted terms com-
bined by Boolean operators would yield a more complete query language, we have in effect
traded away some expressiveness for simplicity. Naive users have difficulty formulating
Boolean queries correctly, and automatic translation from natural-language prose to a
Boolean combination of terms is a difficult problem requiring a degree of language under-
standing that cannot be expected of a home PC system.

Nevertheless, it may be worth considering extensions to QNF which would increase its
expressive power, adding negation, for example, or allowing phrases as search terms. One
possible strategy for adding such features involves attaching to a query information about
relationships between terms in the query (e.g., phrase membership, synonymity, hierarchical
inclusion). The attachments would be optional, and hosts will vary in their ability to interpret
them, but at least a mechanism would exist for those nodes that wish to communicate in a
more sophisticated manner. These possibilities are currently being investigated.

A logical next step is the development of techniques for translating QNF queries into the
query languages of general purpose (non-IR) database systems. This is a more challenging
endeavor, for several reasons. The variety of query languages is greater, and some are pro-
cedural, requiring generation of a small program to execute a single QNF query. QNF
queries may contain any NL term, whereas database schemas are extremely terse, containing
only names for files and fields, which may bear little resemblance to natural language words.
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The data dictionary or some other auxiliary device must be used to map QNF terms into file
and field names, and additional work is needed to associate terms specifying desired field
values with the appropriate files and fields. There is no ready-made concept of a document as
the unit of retrieval, and the information retrieved (e.g. a collection of stored values) is out of
context. Values have no meaning unless they are associated with a description of the contain-
ing records and/or files, as well as of the meaning of the field (or attribute) which they instan-
tiate. The questions of what values to return and how to put them in context in the response
are difficult, but must be answered if arbitrary database systems are to participate in the net-
work.

8. Conclusions

We have outlined a design for a large-scale information network composed of hetero-
geneous autonomous computer systems. Solutions were suggested for some of the basic
problems in implementing information retrieval over such a network: customizing the query
interface to individual users, discovering new information sources and choosing the proper
source to query, generating queries from natural-language input, and, most importantly,
translating queries for execution by diverse retrieval systems. Specific translation methods
were presented for term-vector and Boolean IR systems, and some of the issues involved in
translating to more general database models were discussed.
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