SEARCHING FOR EMPTY CONVEX POLYGONS
David P. Dobkin
Herbert Edelsbrunner
Mark H. Overmars
CS-TR-153-88

May 1988

Searching for Empty Convex Polygons!

David P. Dobkin?, Herbert Edelsbrunner® and Mark H. Overmars*

Abstract

A key problem in computational geometry is the identification of subsets of a point set having
particular properties. We study this problem for the properties of convexity and emptiness. We
show that finding empty triangles is related to the problem of determining pairs of vertices that
see each other in a star-shaped polygon. A linear time algorithm for this problem which is of
independent interest yields an optimal algorithm for finding all empty triangles. This result is
then extended to an algorithm for finding empty convex r-gons (r > 3) and for determining a
largest empty convex subset. Finally, extensions to higher dimensions are mentioned.

Keywords: Computational geometry, empty convex subsets, analysis of algorithms,
combinatorial geometry.

'The first author is pleased to acknowledge support by the National Science Foundation under grant CCR-8700917.
Research of the second author was supported by Amoco Foundation Faculty Development Grant CS 1-6-44862 and
by the National Science Foundation under grant CCR-8714565.

*Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA.

3Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

“Department of Computer Science, University of Utrecht, P. O. Box 80012 NL-3508 TA Utrecht, the Netherlands.

Empty Convex Polygons 1

1 Introduction.

A fundamental problem in geometric complexity concerns the counting and reporting of objects
from a collection that have certain desirable properties. We consider here instances of this problem
involving subsets of a finite set of points in Euclidean space that form the vertex sets of convex
polytopes which are empty, that is, the polytopes contain no other points of the set in their interiors.
We refer to such subsets as empty convez subsets. If the point set S is given in the Euclidean plane,
then we call an empty convex subset of size r an empty convez r-gon. We are specifically interested
in the following problem.

Let S be a set of n points in general position in the plane. For a given positive integer r,
3 < r < n, find all empty convex r-gons of S.

A solution of this problem is called an enumeration of the set I';(S). The cardinality of this set is
represented by 7,(S). The reader should note that the naive algorithm consists of enumerating all
subsets of r points, determining whether they all lie on their convex hull and finally determining
whether any other point is interior to this convex hull. This algorithm runs in time O(n"*!logr)
and can have output size as large as (}') or as small as 0 as n and r vary. This range of possible
values is an interesting problem and is briefly addressed below.

We present a solution with running time proportional to v,(S) when r = 3,4 and v3(S) + 7,(S)
when r > 5. As an intermediate result we get an algorithm that determines a largest empty convex
subset in time proportional to 43(S), which compares favorably with the O(n®) time algorithms given
in [1] and [4]. Indeed, [2] shows that the expected value of 43(S) is quadratic in the size of S if the
points are chosed uniformly in the unit-square. The amount of space of the algorithms in [1] and [4]
is O(n?) and O(n), respectively. The space needed by our algorithm is somewhere in between, that
is, proportional to the maximum number of empty triangles with common leftmost vertex.

Our algorithms extend a result for computing the visibility of vertices of a star-shaped polygon.
Hershberger [8] has previously given a linear time algorithm for this problem. We present a different
approach that leads to a considerably simpler (although highly recursive) algorithm which is readily
applicable to our more general problem. In all of our algorithms, we assume that the points lie in
general position. If this is not the case, it is possible to find modifications of our algorithms with the
same running times.

In the next section, we give an overview of the algorithm to come. The following three sections
then fill in the details with section 3 describing the visibility algorithm, section 4 showing how to
find the longest convex chain and section 5 dealing with reporting empty convex r-gons. Section 6
summarizes the results and comments upon the range of values possible for 4,(S) as S ranges over
all point sets of size n. The final section describes extensions to higher dimensions.

The problem of finding empty convex r-gons has a long history. Erdds [6] asked whether there
was a value f(n) such that all sets of at least n points in general position in the plane determine
an empty convex r-gon. It was shown that f(3) = 3, f(4) = 5, and f(5) = 10 by Harborth (7.
Horton [9] has shown that f(n) is infinite for n > 6. The value of f(6) remains open, although
[11] detected a set of 26 points without empty convex hexagon using an incremental version of the
algorithm described in this paper. This implies f(6) > 27.

Empty Convex Polygons 2

2 The basic algorithm.

Let V be the set of n points in the plane for which we want to find all subsets of r points that form
a convex r-gon that is empty, i.e., does not contain any other point in the set. We assume that the
points in V lie in general position and that no two points lie on a common vertical line.

To find all empty convex r-gons we will locate for each point p all empty convex r-gons that have
p as leftmost vertex. In this way, each empty convex r-gon is reported exactly once.

Globally, the algorithm works as follows:

1. For each p € V, sort all other points by angle around p, resulting in an ordered set V,. From V,
remove all the points to the left of p and add p instead. This results in a star-shaped polygon
P, with p in the kernel.

2. For each p € V', compute the visibility graph VG, inside P,, including the edges of P,, not
including the visibility edges involving p.

3. For each p € V, compute all convex chains in VG, of r — 2 edges. Each of these forms, together
with p, an empty convex r-gon.

The correctness of the method follows from the following observations:

1. Any convex empty r-gon has a unique leftmost point p. This follows from the fact that no two
points lie on a vertical line.

2. Whether r points form an empty convex r-gon with p as leftmost vertex is independent of the
points to the left of p. Hence, these points can be discarded (as happens in step 1).

3. Any convex empty r-gon with p as leftmost vertex must lie inside P, and has edges of VG, as
edges.

4. p can see any vertex of P, (it lies in the kernel). Hence, if py, ..., p,—1 form a chain in VG, the
r-gon p,pi,...,Pr-1 1S empty.

5. p lies to the left of the other points and the other points are sorted by angle about p. Hence,
if p1, ..., pr—1 is a convex chain, the r-gon p,py,...,p,—1 is convex.

We will now describe the three steps of the algorithm in more detail. Step 1 asks for each point
p of V' to sort the other points around it. Using standard sorting methods this can be done in
time O(n?logn). Using the results of [3,5] it is possible to do the sorting around all the points
simultaneously in time O(n?). Removing the points to the left of p and forming the polygons P, can
easily be done in time O(n?).

Step 2 of the algorithm asks for computing the visibility graph inside a polygon P. There is an
algorithm for this problem which runs in time linear in the output size [8]. In our case the polygon
P has a particular shape. First of all it is star-shaped and secondly one of its vertices lies inside the

Empty Convex Polygons 3

kernel. For this input there is a simpler algorithm with the same asymptotic running time. This
algorithm is presented in the next section.

Step 3 will be split into two steps. In the first step, to be described in section 4 we will determine
the longest convex chain in the visibility graph. In fact, we determine for each edge of the visibility
graph the longest convex chain that starts there. In the second step we use this information to
determine all the chains of length r — 2. Both parts will run in time the size of the visibility graph.

3 The visibility graph of a star-shaped polygon.

We are now given a star-shaped polygon P of N vertices with one vertex p that lies in the kernel.
We are interested in obtaining the visibility graph inside P, denoted as VG. For a pair of vertices of
P we say that they are visible within P if the line segment joining them lies entirely in P (including
its boundary). Note that, because of our assumption that the points lie in general position, the line
segment will either intersect the boundary of P in its two endpoints or is an edge of P. The wvistbility
graph inside P consists of all pairs of vertices of P that are visible within P.

The vertices of P are ordered counter-clockwise around p. We number them in this way p1,...,py—_1.
Because of the requirements we have later we will compute the visibility graph as a directed graph
in which edges run from lower indexed to higher indexed vertices. (Moreover, we will not include
the visibility edges involving p.) The edge (in the visibility graph) between p; and p; (¢ < j) will be
denoted by 17.

We will construct the visibility graph VG during one counter-clockwise scan around the polygon.
When we visit p; we construct all incoming edges of p;. With each vertex p; we maintain a queue
Q; that stores the starting points of some of the incoming edges of p; in counter-clockwise order. It
contains those points p; such that j7 is an edge of the visibility graph and we have not yet reached
another point pg with k > 1 such that jk is an edge of the visibility graph. Hence, @; is a kind of
waiting list. It contains those points that could be seen by p; but could not be seen since, because p;
blocks their view. The required operations that can be performed in constant time are the following:

1. ADD(tj): it creates an edge from i to j. This edge will be stored at both p; and p; for later
use.

2. TURN(i7,7k): it returns left or right depending on whether pj, lies to the left or to the right of
the directed line passing through p; and p; in this order. (Note that it cannot lie on the line.)

3. FRONT(Q): it returns the index of the first point in queue Q.
4. DEQUEUE(Q): it removes the first point from queue Q.
5. ENQUEUE(k,Q): it adds the point p; to queue Q.

The algorithm now looks as follows:

procedure VISIBILITY;

Empty Convex Polygons 4

fori:=1to N — 1do Q; := 0 end,;
for i := 1 to N — 2 do PROCEED(i,i + 1) end.

procedure PROCEED(¢,5);
while Q; # 0 and TURN(FRONT(Q;)i,ij)=left do
PROCEED(FRONT(Q;),7);
DEQUEUE(Q;);
end;
ADD(i7);
ENQUEUE(%,Q;).

PROCEED adds an edge from point p; to p;. It also checks whether any of the points in the
waiting queue of p; are visible from p; and, if so, recursively calls PROCEED. Because the points in
the queue are sorted counter-clockwise only a first portion of the queue needs to be checked.

Note that the new edge is added after all the recursive calls. This guarantees that the points in
the queues are indeed sorted counter-clockwise. Also, for each node we will collect the incoming and
outgoing edges sorted counter-clockwise.

The correctness of the method follows from the following lemma:

Lemma 3.1 Let j > 1. 1) € VG if and only if j =1+ 1 or there is a vertez p, { < k < j, such that
tk € VG, kj € VG, and TURN(ik, kj) = left.

Proof. First note that because p lies inside the kernel, i € VG if and only if triangle pPiD;
empty. Now the proof goes as follows:

if: If j # 1+ 1 take the point p; between p; and p; that lies nearest to > the line 7. As the triangle
ppip;j is empty, TURN(tk, kj) = left. Moreover, obviously 1tk € VG and kj € VG.

only if: If j =i+ 1 4j clearly is in VG. If § > ¢ + 1 both the triangles pp;p; and ppirp; are empty.
Moreover, p;, lies beyond 17 since p;, py, p; form a left turn. Hence, the triangle pp;p; must be empty
and 17 € VG. O

Lemma 3.2 Finding the visibility graph takes time O(|VG]|).

Proof. This follows immediately from the fact that with every call of PROCEED an edge will
be added to the visibility graph. O

4 Finding the longest convex chain.

Given the visibility graph as a directed graph in which edges run from lower indexed vertices to
higher indexed vertices (as produced by the algorithm described above), we will now determine a

Empty Convex Polygons 5

longest convex chain. This is equivalent to finding a largest empty convex subset with a fixed leftmost
vertex. In fact, we will determine for each edge e of the visibility graph L, being the length of the
longest convex chain starting with e.

To this end we will treat the vertices clockwise, starting at the highest indexed vertex. We will
take care that after treating some vertex p; all incoming edges of p; have their L field set to the right
value.

The method works as follows: Assume we are at some vertex p. Let the incoming edges of p be
%1, ..-,%imaz and the outgoing edges 01, ...,0,maz both ordered counter-clockwise by angle. Note that
the algorithm for computing the visibility graph inside P gives us the edges in this order. For all
outgoing edges we know the length of the longest convex chain that starts there.

We will treat the incoming edges in the reversed order, starting at #;mqz. For this first incoming
edge we look at all outgoing edges that form a convex angle with it. Let these edges be oy, ..., 0omaz-
If they don’t exist, we set L;, _ to 1. Otherwise, let m be the maximal value of the L fields of them.
Then L;, .. = m+ 1. Clearly, all edges that form a convex angle with ¢; form a convex angle with
i;—1. But we don’t have to check these edges again. We already know that m is the maximal length
among them. Hence, for the next edge we know that the length of the chain is either m + 1 or there
is an edge with index smaller than [with larger L field. Hence, starting at [— 1 we look at preceding
edges that form a convex angle with the incoming edge. [will become the new minimal index, m
the new maximal L field (if any). In this way we continue.

The following procedures state the algorithm precisely:

procedure MAXCHAIN;
for i := N — 1 downto 1 do TREAT(p;) end.

procedure TREAT(p);

Let 11, ...,7;mqz be the incoming edges of p, and let
01,...,00maz e the outgoing edges of p, both ordered counter-clockwise.
| := omaz;m :=0;
for j := imaz downto 1 do

L,-J. =m+1;

while [> 0 and TURN(¢;,0;)=left do

if L,, > m then

m = Lg,;
L,'j =m+1
end;
l=1-1
end
end.

The correctness of the method easily follows from the above discussion. (Note that in the algo-
rithm the function of [is slightly different than described. Rather that being the minimal index that

Empty Convex Polygons 6

does form a convex angle it is the first one that does not form a convex angle and, hence, the first
one that has to be checked with the next incoming edge.)

Lemma 4.3 Finding the mazimal chain and filling in the L fields takes time O(|VG|).

Proof. For each vertex p we look at every incoming edge and every outgoing edge once. So in
total we look at each edge twice. As the size of the visibility graph is larger or equal to the numer
of vertices of the polygon, the bound follows. O

5 Reporting the empty convex r-gons.

We now have for each edge in the visibility graph the length of the longest convex chain starting
there. We will now use this information to determine all the chains of some given length r — 2
(resulting in empty convex polygons of r vertices). We will do so during one scan of the vertices in
counter-clockwise order.

For each edge e we will maintain a set C, of all chains of length less than r — 2 ending on e of
which we know (using the L field) that they can be extended to a chain of length r — 2. A chain will
be stored as a sequence of points. Moreover, with the chain its length will be stored. We will use
the following operations on chains. The first three require constant time and the fourth takes time
linear in its output size.

1. LENGTH(ch): returns the length of chain ch.
2. EXTEND(ch,e): extends chain ch with the edge e.
3. CREATE(e): creates a chain of length 1 out of edge e.

4. REPORT(ch): reports chain ch as an answer.

To be able to form and extend chains in an efficient way, for each point p; we sort the outgoing
edges by decreasing L field. As we know that each L value lies between 1 and N — 2 we can do
this during one global radix sort in time O(N + [V G|). For a point p let S! = o}, ...,0) .., be this
sorted list of outgoing edges. As before S, = 01, ...,0omaz 18 the list of outgoing edges sorted counter-
clockwise. We assume that we have pointers from the elements in S, to the elements in S! such that

given a point in S, we can remove it in time O(1) from S;. The algorithm looks as follows:

procedure CHAINS;
for : := 1 to N — 2 do TREAT(p;) end.

procedure TREAT(p);
Let S; =11, ...,%imqz be the incoming edges of p.
Let S, = 01, ...,00maz be the outgoing edges of p.

Empty Convex Polygons 7

Let S] = o}, ...,0,4, be the outgoing edges of p sorted by L.
for j := 1 to omazx do
if L,; > r — 2 then C,; := {CREATE(0;)} else C,, := @ end
end;
m = 1;om := omaxz;
for j := 1 to tmazr do
while m < omaz and TURN(¢;,0,,)=right do
Delete o, from S);
om:=om—1m:=m+1
end;
for all ch € C;; do
t := 1;1 :=LENGTH(ch)
while t < om and L,,i >r—-2-1ldo
EXTEND(ch, o});
if | = r — 3 then REPORT(ch) else C,; := C,y U{ch} end;
t:=t+1
end
end
end.

The routine TREAT creates the sets of chains for all outgoing edges of the point p. All incoming
edges will have their sets of chains ready. As a first step for each outgoing edge with a L-field greater
or equal to r — 2 we create a chain consisting only of the edge. We know for sure that this chain can
be extended to a chain of length r — 2. Next we will extend chains on incoming edges by moving
them to the appropriate outgoing edges. This is done by first removing all the outgoing edges that
do not form a convex angle with the current incoming edge. (Because of the order in which we treat
the incoming edges they also won’t form a convex angle with the other incoming edges.) Now we
know that all outgoing edges form a convex angle with the current incoming edge. For each chain ch
on this incoming edge we extend it with all outgoing edges it can be extended with (note that there
is at least one such outgoing edge). To this end we treat the outgoing edges by decreasing length.
As long as the L-field of the outgoing edge is at least r — 2 — LENGTH(ch) we can extend the chain
ch with it. If it gets length r — 2 we report it, otherwise it will be stored on the outgoing edge.

Lemma 5.4 Reporting the chains of length r takes time O(|V G| + rk) where k is the number of
reported chains.

Proof. For each point p the following operations are performed: i) Initializing the sets of chains
for each outgoing edge. This obviously takes time O(|V'G|) in total. ii) For each incoming edge
we remove some outgoing edges. As each outgoing edge is removed at most once, this takes time
O(|VG]) in total. iii) For each chain on an incoming edge we try to find edges with which it can
be extended. We know that there must be at least one such edge. Per chain we spend an amount
of time proportional to the number of extending edges found. Hence, in total, this will add up to
O(rk) time. a

Empty Convex Polygons 8

6 The result in the plane.

Before stating the implications of the previous sections, we state a few results on the behavior of
the 7,(S). The following results on the minimum of 4,(S), denoted by g.(n), over all sets S of n
points in the plane (assuming that no three points are collinear) are essentially due Horton [9] and
to Bérdnyi and Fiiredi [2]. There is a positive constant ¢ such that

n?/2+cn < gs(n) < 2n? n?/4+ cn < go(n) < 3n?
n/6+cn < gs(n) <2n? gg(n) < n?/2

Furthermore, [2] proves that the expected number of empty triangles is O(n?) if the points are
uniformly distributed in the unit square. To present our time bounds we also need the following
result which is a lower bound on ~4(S) in terms of v3(S):

1(8) > %(9) - (*3).

This inequality can be seen if we consider the visibility graph of a star-shaped polygon P as con-
structed in section 3. Let p be the leftmost vertex of P. For every visibility edge of P which is not at
the same time a boundary edge we have at least one empty convex quadrilateral with this visibility
edge as a diagonal. The visibility edge is also an edge of the empty triangle whose third vertex is p.
Thus, for every empty triangle (except for those defined by p and a boundary edge of P) we have at
least one empty convex quadrilateral and no quadrilateral is counted twice. The result follows since

the star-shaped polygons have a total of ("_21) boundary edges.

Combining the results from the previous sections and applying these combinatorial results yields:

Theorem 6.5 Given a set V of n points in the plane, in general position, all subsets of r points
that form an empty convez r-gon can be determined in time proportional to O(ys(V) + ry.(V')). For
r = 3,4, this simplifies to O(~,(V)).

Proof. This follows from the preceding sections, noting the following: The sorting takes time
O(n?) and as y3(V) = Q(n*) we don’t have to include it in the bound. Any edge in one of the
visibility graphs computed corresponds to a unique empty triangle. Hence, the total sum of the
number of edges of the visibility graphs is equal to y3(V'). The second statement follows since 74(V)
is at least proportional to y3(V). O

Using the algorithms of sections 3 and 4 we have also established the following result:

Theorem 6.6 Given a set V' of n points in the plane, it is possible to determine a largest in terms
of number of sides empty convex polygon they determine in time O(v3(V')).

Since the expected size of y3(S) is O(n?) we have an algorithm that runs in expected quadratic
time (assuming uniform distribution in the unit-square).

Empty Convex Polygons 9

7 Extensions to higher dimensions.

The construction of empty simplices in d dimensions (that is, empty convex subsets of size d+ 1) can
be reduced to maximal (or minimal) vector computation. Here a vector a = (o, a,...,a4) EV isa
minimum if there is no other vector b = (81, f2, ..., 84) € V with §; < o; for 1 <1 < d. The reduction
can be done as follows. Take any d points py,p2,..., P4, construct their convex hull s4_; which is
a (d — 1)-dimensional simplex, and consider all points p on one side of the hyperplane spanned by
84-1. We can represent each such point p by the vector whose components are the d angles defined
by s4—1 and the d facets of the simplicial pyramid with base s;_; and apex p. (In three dimensions
these angles are the three dihedral angles at the edges of the base triangle.) Clearly, {p,p1,p2,...,Pd}
is empty if and only if there is no point ¢ whose d angles are componentwise smaller that p’s angles.
Thus, the points that together with piy,p2,...,pqs form empty convex simplices correspond to the
minimal angle vectors. Finding all minima of a set of n vectors in d dimensions can be done in
O(nlog? % n) time (see [10]). Since we do the minimal vector computation for every d points in the
set we get an O(n%™1log?~? n) time algorithm which improves the trivial O(n?*?) time method for
finding all empty simplices.

The minima finding step can be used to incrementally construct convex subsets of sizes larger
than d + 1. This can be done as follows. Consider the convex hull of an empty convex subset of
size r — 1 > d + 1. This is a convex polytope with r — 1 vertices and no points of the set inside.
If we assume that no d + 1 points lie on a common hyperplane then all facets of the polytope are
(d—1)-dimensional simplices. Using minimal vector computation we can now try to erect a simplicial
pyramid at any such facet — in order to maintain convexity we can allow only points on top of such
a facet whose angles are sufficiently small as determined by the neighboring facets.

This approach works well as long as r is a constant, however, it has the disadvantage that not all
convex subsets can be constructed this way. In three dimensions, the smallest counterexample is the
octahedron which has 6 vertices and is simplicial (as required by assumption) but has no vertex of
degree 3. In four dimensions the cyclic polytope with 6 vertices (one more vertex than the simplex)
is a counterexample since every vertex has degree equal to 5.

Still, the idea of extending the convex set by finding minimal vectors should not be abandoned
yet. In three dimensions, every convex polytope has at least one vertex whose degree is at most 5.
This implies that every convex subset can be constructed by raising pyramids on top of triangles,
adjacent pairs of triangles, and chains of three triangles. More specifically, for a given convex subset
of size r — 1 we construct the convex hull and do the following.

1. For every triangle we solve a three-dimensional minimal vector problem.

2. For every pair of adjacent triangles we solve a minimal vector problem which is four-dimensional
since every point above two triangles is represented by the vector of the four dihedral angles it
defines at the edges where the two triangles do not touch.

3. For every triplet of triangles such that the second is adjacent to the first and the third triangle
but the first and the third are not adjacent, we solve a five-dimensional minimal vector problem.

The number of triangular facets, pairs of adjacent triangles, and triangle chains of length three

REFERENCES 10

is linear in r — 1. For constant r, this process yields all empty convex subsets of size r (each one
possibly r! times) with O(nlog® n) time per set.

The difficulty in extending this approach even to four dimensions is that cyclic polytopes with
r — 1 vertices have minimum vertex degree r — 2. Thus, the dimensionality of the minimal vector
problems are not bounded by any constant independent of r. We conclude this section with an open
problem. Is there a polynomial time algorithm for finding a largest empty convex set of n points in
three dimensions?

References

[1] Avis, D. and Rappaport, D., Computing the largest empty convex subset of a set of points, In
“Proc. 1st Ann. ACM Sympos. Comput. Geom. 1985”, 161-167.

(2] Béranyi, I. and Fiiredi, Z., Empty simplices in Euclidean space, Rep. 689, School Oper. Res.
Industr. Engin., Cornell Univ., Ithaca, NY, 1987.

[3] Chazelle, B., Guibas, L. and Lee, D., The power of geometric duality, BIT 25 (1985), 76-90.

[4] Edelsbrunner, H. and Guibas, L., Topologically sweeping an arrangement, In “Proc. 18th Ann.
ACM Sympos. Theory Comput. 1986”7, 389-403.

(5] Edelsbrunner, H., O’'Rourke, J. and Seidel, R., Constructing arrangements of lines and hyper-
planes with applications, SIAM J. Computing 15 (1986), 341-363.

(6] Erdos, P., Combinatorial problems in geometry and number theory, Proc. Sympos. Pure Math.
34 (1979), 149-162.

[7] Harborth, H., Konvex Fiinfecke in ebenen Punktmengen, Elem. Math. 33 (1978), 116-118.

(8] Hershberger, J., Finding the visibility graph of a simple polygon in time proportional to its size,
In “Proc. 3rd Ann. ACM Sympos. Comput. Geom. 1987”7, 11-20.

[9] Horton, J.D., Sets with no empty convex 7-gons, Canad. Math. Bull. 26 (1983), 482-484.

[10] Kung, H.T., Luccio, F. and Preparata, F.P., On finding the maxima of a set of vectors, J. Assoc.
Comput. Mach. 22 (1975), 469-476.

[11] Overmars, M.H., Scholten, B. and Vincent, I., Sets without empty convex 6-gons, Rep., Dept.
Comput. Sci., Univ. Utrecht, the Netherlands, 1988.

