This paper will appear in the
Proceedings of the ACM Siggraph '88

Atlanta, Georgia, August 1-5, 1988

AN EFFICIENT ALGORITHM FOR FINDING
THE CSG REPRESENTATION OF A STIMPLE POLYGON

David Dobkin
Leonidas Guibas
John Hershberger

Jack Snoeyink

CS-TR-152-88

May 1988

An Efficient Algorithm for Finding
the CSG Representation of a Simple Polygon*

David Dobkin', Leonidas Guibas®®, John Hershberger®, and Jack Snoeyink?
!Princeton University, 2Stanford University, >DEC Systems Research Center

Abstract

‘We consider the problem of converting boundary representations
of polyhedral objects into constructive-solid-geometry (CSG)
representations. The CSG representations for a polyhedron P are
based on the half-spaces supporting the faces of P. For certain
kinds of polyhedra this problem is equivalent to the correspond-
ing problem for simple polygons in the plane. We give a new
proof that the interior of each simple polygon can be represented
by a monotone boolean formula based on the half-planes sup-
porting the sides of the polygon and using each such half-plane
only once. Our main contribution is an efficient and practical
O(nlogn) algorithm for doing this boundary-to-CSG conversion
for a simple polygon of n sides. We also prove that such nice
formulee do not always exist for general polyhedra in three di-
mensions.

CR Categories and Subject Descriptions: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems-Geometrical problems and computa-
tions; Computations on discrete structures; 1.3.5 [Computer
Graphics|: Computational Geometry and Object Modeling—
Curve, surface, solid, and object representations; Geometric al-
gorithms, languages, and systems

General Terms: Algorithms, theory

Additional Key Words and Phrases: Solid modeling,
constructive solid geometry, boundary-to-CSG conversion algo-
rithms, simple polygons

"The first author would like to acknowledge the support of the National
Science Foundation under Grant CCR87-00917. The fourth author was sup-
ported in part by a National Science Foundation Graduate Fellowship. This
work was begun while the first author was visiting the DEC Systems Re-
search Center.

1 Preliminaries

One of the most important topics in solid modeling is the math-
ematical representation of solid objects. It is desirable that such
representations be compact and efficient in the simulation of the
real-world operations that we may wish to perform on the ob-
jects. Over the years two different styles of representation have
emerged; these are used by nearly all geometric modeling sys-
tems currently in existence. The first style of representation de-
scribes an object by the collection of surface elements forming its
boundary: this is a boundary representation. In effect, bound-
ary representations reduce the solid modeling problem to that of
representing surface elements. This is a somewhat simpler prob-
lem, since we work in one dimension less. The second style of
representation describes a solid object as being constructed by
regularized boolean operations on some simple primitive solids,
such as boxes, spheres, cylinders, etc. Such a description is re-
ferred to as a constructive solid geometry representation, or CSG
representation, for short. Each style of representation has its
advantages and disadvantages, depending on the operations we
wish to perform on the objects. The reader is referred to one
of the standard texts in solid modeling [12, 15], or the review
article [21] for further details on these representations and their
relative merits.

If one looks at modelers in either camp, for example the ROMU-
Lus [15], GEoMoD [23], and MEDUSA [16] modelers of the bound-
ary persuasion, or the PADL-1 [25], PADL-2 [2], and GMsoLID [1]
modelers of the CSG persuasion, one nearly always finds provi-
sions for converting to the other representation. This is an impor-
tant and indispensable step that poses some challenging compu-
tational problems®. In this paper we will deal with certain cases
of the boundary-to-CSG conversion problem and present some
efficient computational techniques for doing the conversion.

Peterson [19] considered the problem of obtaining a CSG rep-
resentation for simple polyhedral solids, such as prisms or pyra-
mids (not necessarily convex), based on the half-spaces support-
ing the faces of the solid. Such solids are in effect two-dimensional
objects (think of the base of the prism or pyramid) in which
the third dimension has been added in a very simple manner.
Thus Peterson considered the problem of finding CSG represen-
tations for simple polygons in the plane; this problem is related
to the problem of finding convex decompositions of simple poly-

!To quote from [21): “.the relative paucity of known conversion algo-
rithms poses significant constraints on the geometric modeling systems that
we can build today.”

gons (3, 17, 18, 24, 26]. By a complicated argument, Peterson
proved that every simple polygon in the plane admits of a rep-
resentation by a boolean formula based on the half-planes sup-
porting its sides. This formula is especially nice in that it is
monotone (no complementation is needed) and each of the sup-
porting half-planes appears in the formula exactly once. We call
such a formula a Peterson-style formula.

In this paper we first give a short and elegant new proof that
every polygon has a Peterson-style formula (Section 3). Peter-
son did not explicitly consider algorithms for deriving this CSG
representation from the polygon. A naive implementation based
on his proof would require ©(n?) time for the conversion, where
n is the size (number of sides or vertices) of the polygon. We
provide in this paper an efficient @(n logn) algorithm for doing
this boundary-to-CSG conversion (Section 4). We regard this
algorithm as the major contribution of our paper; the algorithm
uses many interesting techniques from the growing field of com-
putational geometry [4, 20]. Nevertheless, it is very simple to
code—its subtlety lies in the analysis of the performance and
not in the implementation. Finally (Section 5), we show that
Peterson-style formul are not always possible for general poly-
hedrain three dimensions and discuss a number of related issues.

We believe that the work presented in this paper illustrates
how several of the concepts and techniques of computational ge-
ometry can be used to solve problems that are of clear impor-
tance in solid modeling and computer graphics. The solution
that we obtain is both mathematically interesting and practical
to implement. We expect to see more such applications of com-
putational geometry to other areas in the future and hope that
this paper will motivate some researchers in the graphics area to
study computational geometry techniques more closely.

2 Formulation and history of the problem

Let P be a simple polygon in the plane; in this context, simple
means non-self-intersecting. By the Jordan curve theorem, such
a polygon subdivides the plane into two regions, its interior and
its exterior. In general, we identify the polygon with its interior.
Let us orient all the edges of P so that the interior of P lies
locally to the right of each edge, and give each such oriented
edge a name. We will call these names literals. To each literal
we also give a second meaning. A literal m also represents the
half-plane bounded by the infinite line supporting the edge m
and extending to the right of that line. We will speak of such a
half-plane as supporting the
polygon (even though P might
not all liein the half-plane). See
Figure 1 for an illustration of
these concepts.

Notice that, for each point z
of the plane, if we know whether
z lies inside or outside each of
the half-planes supporting P,
then we know in fact if z is in-
side P. This follows, because
each of the regions into which the plane is subdivided by the
infinite extensions of the sides of P lies either wholly inside P,
or wholly outside it. As a result, there must exist a boolean for-
mula whose atoms are the literals of P and which expresses the

Figure 1: A simple polygon
P and the half-plane sup-
porting side m

interior of P. For example, if P is convex, then this formula is
simply the “and” of all the literals.

Since “and”s and “or”s are somewhat cumbersome to write,
we will switch at this point to algebraic notation and use mul-
tiplication conventions for “and” and addition conventions for
“or”. Consider the two simple polygons shown in Figure 2. For-
mulz for the two polygons are uv(w(z + y) + 2) for polygon (a)
and wvw(z + y+ 2) for polygon (b). The associated boolean ex-
pression trees are also shown in Figure 2. Notice that these are
Peterson-style formulz: they are monotone and use each literal
exactly once. The reader is invited at this point to make sure
that these formulee are indeed correct.

Figure 2: Formula for two polygons

A more complex formula for a simple polygon was given by
Guibas, Ramshaw, and Stolfi (8] in their kinetic framework pa-
per. That style of formula for the two polygons of Figure 2 is
uT @ v D wT DTy @ Yz © zu. Here @ denotes logical “xor” and
the overbar denotes complementation. As explained in [8], that
type of formula is purely local, in that it depends only on the
convex vs. concave property of successive angles of the polygon.
The rule should be obvious from the example: as we go around,
we complement the second literal corresponding to a vertex if we
are at a convex angle, and the first literal if we are at a concave
angle. Thus the formula is the same for both of the example
polygons.

Although a formula of this style is trivial to write down, it is
not as desirable in solid modeling as a Peterson-style formula, be-
cause of the use of complementation and the “xor” operator. The
Peterson formula is more involved to derive, because it captures
in a sense how the polygon nests within itself and thus is more
global in character. It can be viewed naively as an inclusion-
exclusion style formula that reflects this global structure of the
polygon. We caution the reader, however, that this view of the
Peterson formula is too naive and gave rise to a couple of flawed
approaches to this problem.

In general there are many boolean formulze that express a sim-
ple polygon in terms of its literals. Proving the equivalence of
two boolean formula for the same polygon is a non-trivial exer-
cise. The reason is that of the 2" primitive “and” terms one can

form on n literals (with complementation allowed), only ©(n?)
are non-zero, in the sense that they denote non-empty regions of
the plane. Thus numerous identities hold and must be used in
proving formula equivalence.

The decomposition of a simple polygon into convex pieces [3,
17, 18, 24, 26] gives another kind of boolean formula for the
polygon, one in which the literals are not half-planes, but convex
polygons. Depending on the type of decomposition desired, the
convex polygons may or may not overlap; in the overlapping case,
the formula may or may not contain negations. If we expand the
literals in a convex decomposition into “and”s of half-planes, the
result need not be a Peterson-style formula: negations, repeated
literals, and half-planes that do not support the polygon are all
possible.

If we leave the boolean domain and allow algebraic formulz for
describing the characteristic function of a simple polygon, then
such formulze that are purely local (in the same sense as the above
“xor” formula) are given in a paper of Franklin [5]. Franklin gives
algebraic local formulz for polyhedra as well. We do not discuss
this further here as it goes beyond the CSG representations we
are concerned with.

3 The existence of monotone formul=

In this section we will prove that the interior of every simple
polygon P in the plane can be expressed by a Peterson-style for-
mula, that is, a monotone boolean formula in which each literal
corresponding to a side of P appears exactly once.

As it turns out, it is more natural to work with simple bi-
infinite polygonal chains (or chains, for short) than with simple
polygons. An example of a simple bi-infinite chain ¢ is shown
in Figure 3. Such a chain ¢ is terminated by two semi-infinite
rays and in between contains an arbitrary number of finite sides.
Because it is simple and bi-infinite, it subdivides the plane into
two regions. We will in general orient ¢ in a consistent manner,
so we can speak of the region of the plane lying to the left of ¢,
or to the right of ¢, respectively. By abuse of language, we will
refer to these regions as half-spaces.

the semi-infinite rays

Figure 3: A simple bi-infinite chain

The interior of a simple polygon P can always be viewed as
the intersection of two such chain half-spaces. Let £ and r denote
respectively the leftmost and rightmost vertex of P. As in Fig-
ure 4, extend the sides of P incident to £ infinitely far to the left,
and the sides incident to r infinitely far to the right. It is clear
that we thus obtain two simple bi-infinite chains and that the
interior of P is the intersection of the half-space below the up-
per chain with the half-space above the lower chain. Notice also
that the literals used by the upper and lower chains for these two

half-spaces form a partition of the literals of P. Thus it suffices
to prove that a chain half-space admits of a monotone formula
using each of its literals exactly once.

Figure 4: The interior of a simple polygon P

We will prove this fact by showing that, for any chain ¢, there
always exists a vertex v of ¢ such that if we extend the edges
incident to v infinitely far to the other side of v, these extensions
do not intersect ¢ anywhere. In particular, the extensions cre-
ate two new simple bi-infinite chains ¢; and ¢; that, as before,
partition the literals used by ¢. See Figure 5 for an example. It
is easy to see that the half-space to the right (say) of ¢ is then
either the intersection or the union of the half-spaces to the right
of ¢; and ¢;. It will be the intersection if the angle of ¢ at v in
the selected half-space is convex (as is the situation in Figure 5),
and the union if this angle is concave. .

Figure 5: The splitting vertex v for a chain ¢

The existence of the desired vertex v is relatively easy to es-
tablish. Of the two half-spaces defined by ¢ there is one that
is bounded by the two semi-infinite rays in a “convex” fashion.
What we mean by this is that when we look at this half-space
from a great distance above the zy-plane (so we can only discern
the semi-infinite rays bounding it) it appears as a convex angle
(£ 7). For example, in Figure 5, the right half-space R of ¢ is
the convex one. If we now look at the convex hull A(R), this hull
will be a polygon whose vertices are vertices of ¢. Clearly at least
one such vertex has to exist, and any vertex on this hull is a good
vertex at which to break ¢, that is, it can serve as the vertex v of
the previous argument. The reason is clear from Figure 6: at any
such vertex the extensions of the sides incident upon it cannot
intersect ¢ again.

It is worth remarking here that the determination of the split-
ting vertex v in the above manner is not at all influenced by

Figure 6: The convex hull A(R)

whether we are are trying to obtain a boolean formula for the
right half-space of ¢ or the left half-space of ¢. The choice of
which half-space to take the convex hull of is determined solely
by the behavior of the semi-infinite rays of ¢. Indeed, if we were
to choose the wrong (“concave”) half-space, its convex hull would
be the whole plane and would contain no vertices. We can sum-
marize the situation by saying that we always split at a vertex
of the convex hull of the polygonal chain ¢; this definition auto-
matically selects the correct half-space.

By recursively applying this decomposition procedure until
each subchain becomes a single bi-infinite straight line we can
conclude the following theorem.

Theorem 3.1 Every half-space bounded by a simple bi-infinite
polygonal chain has a monotone boolean formula using each of
the literals of the chain ezactly once. The same holds for the
interior of any finite simple polygon.

If we are given a polygonal chain ¢, such as the one in Figure 3,
then certain aspects of the boolean formula of (say) the right
half-space R of ¢ can be immediately deduced by inspection. For
example, it follows from the above arguments that there exists
a boolean formula for R that not only uses each literal exactly
once, but in fact contains these literals in the order in which they
appear along ¢: if we were to omit the boolean operators and
parentheses in the formula, we would just get a string of all the
literals in ¢ in order. Furthermore, the boolean operators between
these literals are easy to deduce. As the previous discussion
makes clear, between two literals that define a convex angle in R
the corresponding operator has to be an “and”, and between two
literals that define a concave angle the corresponding operator
has to be an “or”. Thus, with parentheses omitted, the boolean
formula for the chain ¢ in Figure 3 has to look like @ + bede+ f+
gh+ij+ kl+m.

This shows that the crux of the difficulty in the boolean
formula problem is to obtain the parenthesization, or equiva-
lently, the sequence of the appropriate splitting vertices. We
call this the recursive chain-splitting problem for a simple bi-
infinite chain. The solution of this problem is the topic of
the next section. For the chain of Figure 3 a valid solution is
((a+ be)(de + £) + g(h + D)) + k(L + m).

We conclude by noticing that
our procedure for solving this
problem is non-deterministic,
since in general we will have a
choice of several splitting ver-
tices. We can in fact simultane-
ously split at any subset of them.
Still, not all valid Peterson-style
formalze for a simple polygon are
obtained in this fashion. Our
formulee all have the property
that the literals appear in the
formula in the same order as in
the polygon. Figure 7 shows an
example of a Peterson-style for-
mula where that is not true: a valid formula for the polygon
shown is (a + ¢)(d + f)(g + i) + beh.

Figure 7: Qur methods can-
not obtain all valid formulae
for this polygon

4 The conversion algorithm

‘We have seen in Section 3 that we can find a monotone boolean
formula for a simple polygon if we can solve the following recur-
sive chain-splitting problem:

Given a simple bi-infinite polygonal chain with at least
two edges, find a vertex z of its convex hull. Split the
chain in two at z and extend to infinity the two edges
incident to z, forming two new chains. Because z is on
the convex hull, both chains are simple. Recursively
solve the same problem for each chain that has at least
two edges.

This section presents an O(nlogn) algorithm to solve the chain-
splitting problem, where n is the number of vertices of the poly-
gon P. The algorithm uses only simple data structures and is
straightforward to implement.

Before we describe our algorithm, let us consider a naive alter-
native to it. Many algorithms have been published that find the
convex hull of a simple polygon in linear time [6, 14, 10, 13, 22)].
With slight modifications, any of these algorithms can be used to
find a vertex on the hull of a simple bi-infinite polygonal chain.
If we use such an algorithm to solve the recursive hull splitting
problem, the running time is O(n) plus the time needed to solve
the two subproblems recursively. The worst-case running time
t(n) is given by the recurrence

Y(n) = max (¢(k) + t(n = k) + O(n),

which has solution t(n) = O(n?).

This quadratic behavior occurs in the
worst case, shown in Figure 8a, because
each recursive step spends linear time

splitting a single edge off the end of the "
path. In the best case, on the other
hand, each split divides the current path
roughly in half, and the algorithm runs in
O(nlogn) time. This asymptotic behavior
can be obtained for the path shown in Fig- ®
ure 8b, if the splitting vertices are chosen Figure 8: Paths
wisely. :
with worst- and

The best case of this naive algorithm
is like a standard divide-and-conquer ap-
proach: at each step the algorithm splits
the current path roughly in half. In general, however, it is diffi-
cult to guarantee an even division, since all vertices on the convex
hull might be extremely close to the two ends of the path. Thus,
to avoid quadratic behavior, we must instead split each path us-
ing less than linear time. Other researchers have solved similar
problems by making the splitting cost depend only on the size of
the smaller fragment [7, 9]. If the running time #(n) obeys the
recurrence

best-case splitting
behavior

t(n) = max (t(k) + t(n - k)) + O(min(k,n — k)),
0<k<n

then ¢(n) = O(nlogn). Our method uses a similar idea: the
splitting cost is O(logn) plus a term that is linear in the size of
one of the two fragments. The fragment is not necessarily the
smaller of the two, but we can bound its size so as to ensure
an O(nlogn) running time overall. The details of this argument
appear in Section 4.5.

We present our algorithm in several steps. We first make a
few definitions, then give an overview of our approach. We fol-
low the informal overview with a pseudo-code description of the
algorithm. Section 4.3 gives more detail on one of the pseudo-
code operations, and Section 4.4 describes the data structure
used by the algorithm. Section 4.5 concludes the presentation of
the algorithm by analyzing its running time.

4.1 Definitions

As shown in Section 3, we can find a boolean formula for P by
splitting the polygon at its leftmost and rightmost vertices to get
two paths, then working on the two paths separately. We denote
by m the current path, either upper or lower. If u and v are
vertices of 7, we use the notation 7(u,v) to refer to the subpath
of © between u and v, inclusive. The convex hull of a set of
points A is denoted by h(A); we use h(u,v) as shorthand for
h(m(u,v)). A path 7(u,v) has |7(u,v)| edges; similarly, |h(u,?)|
is the number of edges on h(u,v).

We can use the path 7(u,v) to specify a bi-infinite chain by
extending its first and last edges. Let e, be the edge of n(u,v)
incident to u, and let &, be the ray obtained by extending e,
beyond u. Let e, and &, be defined similarly. Then 7(u,v)
specifies the bi-infinite polygonal chain obtained by replacing e,
by &, and e, by &,. In general, for arbitrary u and v, this bi-
infinite chain need not be simple. Our algorithm, however, will
guarantee the simplicity of each bi-infinite chain it considers. We
assume in what follows that &, and &, are not parallel, but only

slight modifications to the algorithm are needed if this is not
true.

4.2 The algorithm

This section presents the algorithm that recursively splits a
polygonal chain. We first outline the algorithm and then present
it in a pseudo-code format. Subsequent sections give the details
of the operations sketched in this section.

We now outline the algorithm. Given a polygonal path m(u,v)
with at least two edges, we partition it at a vertex z to get two
pieces 7(u, z) and 7(z, v) with roughly the same number of edges.
Note that z is not necessarily a vertex of h(wu,v); this partitioning
is merely preparatory to splitting =(u,v) at a hull vertex. In
O(|r(u,v)|) time we compute the convex hulls of w(u,z) and
7(z,v) in such a way that for any vertex z of m(u,v), we can
easily find h(z,z). Our data structure lets us account for the
cost of finding A(z, z) as part of the cost of building h(u,z) and
h(z,v). The details of this accounting appear in Section 4.5.

The next step of the algorithm locates a vertex z of the convex
hull of the bi-infinite chain 7(u,v)U&, Ug,. We will split 7(u,v)
at z. The vertex z can be on the path m(u,z) or on the path
m(z,v). Without loss of generality let us assume that z is a
vertex of w(u,z); note that z cannot be u. We recursively split
n(u,2), partitioning it at its midpoint, building convex hulls,
and so on. However, and this is the key observation, we do
not have to do as much work for 7(z,v) if z # z. We already
have the hull h(z,v), and we can easily find h(z,z) from our
data structure for h(u,z). Thus we can recursively split =(z,v)
without recomputing convex hulls. Intuitively speaking, we do a
full recursion (including convex hull computation) only on pieces
whose length is less than half the length of the piece for which
we last computed convex hulls.

The key to our algorithm’s efficiency is avoiding the recom-
putation of convex hulls. The naive algorithm builds O(n) hulls
whose average size can be as much as n/2; our algorithm also
builds O(n) hulls, but their average size is only O(logn). Our al-
gorithm locates n splitting vertices in O(log n) time apiece, which
contributes another O(nlogn) term to the running time. These
two terms dominate the time cost of the algorithm, as Section 4.5
shows.

We present the algorithm more formally in the pseudo-code
below. The pseudo-code uses a data structure called the path
hull, PH(z,v), to represent the convex hull of the path = (z,v).
This structure stores the vertices of h(z,v) in a linear array.
The path hull PH(z,v) is used to produce PH(z,z) efficiently,
for any splitting vertex z in m(z,v). The algorithm consists of
two mutually recursive subroutines, f() and p(), whose names
stand for full and partial. The routine f(u,v) partitions m(u,v)
at x to get two equal parts, builds a path hull structure for
each, and calls p(u, z,v). The subroutine p(u, z,v) uses PH(z,u)
and PH(z,v) to find the splitting vertex z; Section 4.3 gives the
details of this operation. The routine then splits 7(u,v) at z and
recurses on each fragment; it ensures that the required path hulls
have been built whenever p() is called. We start the algorithm
by invoking f() on the entire path 7.

flu,v) /* Precondition: u # v */

begin
1. if m(u,v) is a single edge then return;
else
begin
2. Let z be the middle vertex of w(u,v);
3. Build PH(z,u) and PH(z,v);
4, p(u,z,v);
end
end

plu,z,v) /* z is a vertex of m(u,v), not equal to u
or v. Path hulls PH(z,v) and PH(z,u)
have been computed. */

begin
5. Find a vertex z of A(m(u,v) U &, UE,), the convex
hull of the bi-infinite chain specified by 7(u, v);
6. if z = z then begin f(u,z); f(z,v); end

else
begin
7. Build PH(z,z) from PH(z,u) or PH(z,v), as
appropriate;
if z is a vertex of m(u,z) then
8. begin f(u,z); p(z,z,v); end
else
9. begin p(u,z,2); f(z,v); end
end
end

The chain-splitting algorithm

4.3 Finding a splitting vertex

This section shows how to use the path hull data structure to
find the splitting vertex 2. Our method exploits the fact that
PH(z,v) represents h(z,v) as a linear array of convex hull ver-
tices: we perform binary search on the array to find the splitting
vertex.

Given a path 7(u, v), we want to find a vertex of the convex hull
of the bi-infinite chain that m(u,v) specifies. Each such vertex
belongs to the finite convex hull h(u,v); we solve our problem
by finding a vertex of h(u,v) that is guaranteed to belong to the
infinite hull. The edges of the infinite hull h(7(u,v)Ug,U&,) have
slopes in a range bounded by the slopes of &, and €,. Vertices
of the hull have tangent slopes in the same range. We simply
find a vertex of h(u, v) with a tangent slope in the range. Let d,,
and d, be the direction vectors of the rays &, and &,. Because
€, and &, are not parallel, d, and d, define an angular range of
less than 180 degrees; define d to be the negative of the bisector
of this angular range. An extreme vertex of h(u,v) in direction
d is guaranteed to be a vertex of the infinite hull.? See Figure 9

2To avoid computing square roots, in practice we do not compute the
bisector of the angle defined by d. and d,. Instead, we find the normals to

for an example.

Figure 9: We find an extremal vertex in the direction d

We use binary search on each of the two path hulls PH(u,z)
and PH(z,v) to find an extreme vertex in direction d. We com-
pare the two vertices and pick the more extreme of the two. If
we break ties consistently in the binary searches and in the com-
parison of the two extreme vertices (say, by preferring the left
vertex of tied pairs), the vertex we find is guaranteed to be a
vertex of the infinite hull.

4.4 Implementing path hulls

In this section we describe the path hull data structure used in
the previous two sections. The path hull PH(z,v) represents the
convex hull of #(z,v). It is not symmetric in its arguments: it
implicitly represents h(z,v’) for all vertices v’ in (=, v), but does
not represent h(v’,v) for any v’ not equal to z. The structure
PH(z,v) has three essential properties:

1. PH(z,v) represents h(z,v) by a linear array of vertices. Let
© be the vertex of h(z,v) closest to v on 7(z,v). Then the
array lists the vertices of h(z,v) in clockwise order, starting
and ending with 9.

2. Given PH(z,v), we can transform it into PH(z,v') for any
vertex v’ in n(z,v), destroying PH(z,v) in the process. Let
the vertices of 7(v,z) be numbered v = vy,v2,...,% = z;
we can successively transform PH(z,v) into PH(z,v;) for
each v; in sequence from v; = v to vy = z in total time
proportional to |r(z,v)|.

3. PH(=z,v) can be built from (z,v) in O(|x(z,v)|) time.

We get these properties by adapting Melkman’s algorithm for
finding the convex hull of a polygonal path [14]. We satisfy re-
quirement 2 by “recording” the actions of Melkman’s algorithm
as it constructs h(z,v), then “playing the tape backwards.”

Many linear-time algorithms have been proposed to find the
convex hull of a simple polygon [6, 14, 10, 13, 22]. Some of these
algorithms need to find a vertex on the hull to get started; we
use Melkman's algorithm because it does not have this require-
ment. It constructs the hull of a polygonal path incrementally:
it processes path vertices in order, and at each step it builds the
hull of the vertices seen so far.

The algorithm keeps the vertices of the current convex hull in
a double-ended queue, or deque. The deque lists the hull ver-
tices in clockwise order, with the most recently added hull ver-
tex at both ends of the deque. Let the vertices in the deque be
Vpy Upp1 - - - s Vt—1, V¢, Where v, = v;. The algorithm operates on
the deque with push and pop operations that specify the end of

du and d, that point away from the infinite hull, then add the two to get a
direction d strictly between these normals.

the queue, bottom or top, on which they operate. The algorithm
appears below; it assumes that no three of the points it tests are
collinear, though this restriction is easy to lift.

Get the first three vertices of the path with the func-
tion NeztVertez() and put them into the deque in the
correct order.

while v «— NextVertez() returns a new vertex do
if v is outside the angle Zv;—3vivp4; then

begin
while v is left of 750541 do pop(vs, bottom);
while v is left of 7,_19; do pop(v,top);
push(v,bottom); push(v,top);

end

Melkman’s convex hull algorithm

We now sketch a proof of correctness;
for a full proof see [14]. We first con-
sider the case in which v is discarded.
This happens when v is inside the an-
gle Zv;_1v10p41. (See Figure 10.) We
know that vp41 is connected to v;_; by
a polygonal path, and that v is con-
nected to v, by a polygonal path. The
two paths do not intersect, so v must
lie inside the current hull. When v is Figure 10: Discard v
not discarded, it lies outside the cur- if it lies in the shaded
rent hull, and the algorithm pops hull gector
vertices until it gets to the endpoints of
the tangents from v to the current hull. The algorithm is linear:
if it operates on a path with n vertices, it does at most 2n pushes
and 2n — 3 pops.

We can use the algorithm to build an array representation of
the hull. The algorithm does at most n pushes at either end of
the deque, so we can implement the deque as the middle part of
an array of size 2n. Pushes and pops increment and decrement
the array indices of the ends of the queue; pushes write in a new
element, pops read one out. The resulting deque contains the
vertices of the convex hull in a contiguous chunk of an array.

The algorithm described so far satisfies requirements 1 and 3;
how can we use it to satisfy requirement 2? When the algorithm
builds h(z,v) starting from z and working toward v, at inter-
mediate steps it produces h(z,v') for every vertex v’ in 7(z,v).
We need to be able to reconstruct these intermediate results. To
do this, we add code to the algorithm to create a transcript of
all the operations performed, recording what vertices are pushed
and popped at each step. The structure PH(z,v) stores not
only the deque that represents h(z,v), but also the transcript
of the operations needed to create the deque from scratch. To
reconstruct PH(z,v') from PH(z,v), we read the transcript in
reverse order, performing the inverse of each recorded operation
(pushing what was popped, and vice versa), until the deque rep-
resents h(z,v’). We throw away the part of the transcript we
have just read, so that PH(z,v') stores only the transcript of the
operations needed to create h(z,v’). Because we discard every

step we have read over, we look at each step of the transcript
at most once during the playback. Therefore, reconstructing the
intermediate results takes time proportional to the original cost
of finding PH(z,v). This completes the proof that the path hull
data structure satisfies all three of its requirements.

4.5 Analyzing the running time

In this section we analyze the running time of the chain-splitting
algorithm. The analysis uses a “credit” scheme, in which each
call to f() or p() is given some number of credits to pay for the
time used in its body and its recursive calls. We give O(nlogn)
credits to the first call to f(), then show that all calls have enough
credits to pay for their own work and that of their recursive calls.

We begin the analysis by proving that f() and p() are called
O(n) times: Every call to p(u,z,v) splits 7(u,v) into two non-
trivial subpaths, and every call to f(u,v) for which m(u,v) has
more than one edge passes 7(u,v) on to p(). The initial path =
can only be split O(n) times, so the recursion must have O(n)
calls altogether.

How much work is done by a call to f(u,v), exclusive of re-
cursive calls? We assume that the vertices of m are stored in an
array. Therefore line 2 of f() takes only constant time. Line 3
is the only step of f() that takes non-constant time; as shown in
Section 4.4, line 3 takes O(|m(u,v)|) time. We define the value of
a credit by saying that a call f(u,v) needs |7(u,v)| credits—one
credit per edge of 7 (u,v)—to pay for the work it does, exclusive
of its call to p(). The constant-time steps in f() take O(n) time
altogether and hence are dominated by the rest of the running
time.

A call to p(u,z,v) does accountable work in lines 5 and 7.
The cost of line 5 is dominated by two binary searches, which
take O(logn) time. Line 5 therefore takes O(nlogn) time over
the whole course of the algorithm. Section 4.4 shows that the
cost of building PH(z,z) at line 7 can be accounted as part of
the construction cost of the path hull from which PH(z,z) is
derived. Thus we can ignore the work done at line 7 of p(); its
cost is dominated by that of line 3 of f().

To complete our analysis of the running time, we must bound
the cost of all executions of line 3 of f(). In a single call to
f(u,v), line 3 uses |r(u,v)| credits. The sum of all credits used
by line 3 is proportional to the time spent executing that line.
We give n[log, n] credits to the first call to f(), then show that
this is enough to pay for all executions of line 3. We use the
following two invariants in the proof:

1. A call to f(u,v) is given at least m[logy m] credits, where
m = |x(u,v)|, to pay for itself and its recursive calls.

2. A call to p(u,z,v) is given at least (I + r)[log, max(l,r)]
credits, where [= |r(u,z)| and r = |7(=z,v)|, to pay for its
recursive calls.

Lemma 4.1 If a call to f() or p() is given credits in accordance
with invariants 1 and 2, it can pay for all executions of line 3 it
does ezplicitly or in its recursive calls.

Proof: Let m, [, and r be as defined above. The proof
is by induction on m. A call to f(u,v) with m = 1 gets
no credits and needs none, since it does not reach line 3.
There are no calls to p() with m = 1.

A call to f(u,v) with m > 1 gets at least m[log, m]
credits and spends m of them executing line 3. It
has m[logy(m/2)] to pass on to its call to p(u,z,v).
The larger of I and r is [m/2], and [logy(m/2)] =
[logg [m/2]], so the call to p(u,z,v) gets at least
m[logy(m/2)] = (I + 7)[log, max(l,r)] credits, as re-
quired by invariant 2.

A call to p(u, z,v) splits 7(u, v) into two paths m(u, z)
and 7(z,v) with a and b edges, respectively. The call to
p(u,z,v) divides its credits between its recursive calls
evenly according to subpath size. If z = z, then the
two calls to f() get at least I[log, max(l,r)] > I[log, (]
and r[logy max(l,r)] > r[log, r] credits, satisfying in-
variant 1. If z # =, then without loss of generality
assume that z belongs to w(u,2) and line 8 is exe-
cuted; the other case is symmetric. The call to f(u,z)
gets at least a[log, max(l,r)] > a[log, a], as required.
The call to p(z,z,v) gets at least b[log, max(l,r)] >
b[log, max(b — r,7)], as required by invariant 2. This
completes the proof. I

Altogether the calls to f() and p() take O(nlogn) time, plus
the time spent building path hulls at line 3. The preceding lemma
shows that all the executions of line 3 take only O(nlogn) time,
and hence the entire algorithm runs in O(nlogn) time.

4.6 Implementation

The algorithm described in this section has been implemented.
The implementation is more general than the algorithm we have
so far described: it correctly handles the cases of collinear ver-
tices on convex hulls and parallel rays on bi-infinite chains. These
improvements are not difficult. Handling collinear vertices re-
quires two changes: the program detects and merges consecu-
tive collinear polygon edges, reporting them to the user, and the
while loop tests in Melkman’s algorithm are changed from “v is
left of” to “v is on or to the left of the line supporting.” When a
chain has parallel infinite rays, the direction d (see Section 4.3) is
perpendicular to the rays, and the program needs a special case
to avoid selecting u or v as the splitting vertex. Asinput the pro-
gram takes a list of polygon vertices in order (either clockwise or
counterclockwise), specified as z-y coordinate pairs. As output
the program produces a list of the splitting vertices in the order
they are computed, as well as a correctly parenthesized boolean
formula for the input polygon.

When the program is applied to the polygon shown in Fig-
ure 11, it produces the following (slightly abbreviated) output:

main: Calling f() on 8..17

p: splitting at vertex 16, 15, 9, 10, 13, 11,
12, 14

main: Calling f£() on 17..25, 0..8

p: splitting at vertex 18, 19, 20, 0, 26, 24,
21, 22, 23, 7,1, 6, 5, 2, 3, 4

Boolean formula is:
(8 * 9 % (10 * (11 + 12) + 13 * 14) + 15) * 16 *

17 * 18 * 19 * (20 * (21 + 22 * 23) + 24 + 25 +
(0O+ (1 +2+3%4)*5x%x6) %7

Figure 11: Sample program input, displayed as a polygon

In this formula, the number i refers to the edge joining vertex i
to vertex (i + 1) mod n; here n is 26.

5 Formulz for polyhedra

We have shown that the interior of a simple polygon can be
represented by a Peterson-style formula: a monotone boolean
formula that uses each literal once. We would like to find such
a formula for a polyhedron P in space. Here, the literals are
half-spaces bounded by the planes supporting the faces.

In this section we will prove that not all polyhedra have a
Peterson-style formula. Figure 12 illustrates a simplicial poly-
hedron (each face is a triangle) with eight vertices and twelve
faces. Six of the faces are labeled; the six unlabeled faces lie on
the convex hull of P. The edge between C' and C’ is a convex
angle. The half-spaces defined by faces A and B intersect the
faces A’ and B’. Similarly, the half-spaces A’ and B’ intersect
faces A and B. After we establish a couple of lemmas, we will
prove that P has no Peterson-style formula by assuming that it
has one and deriving a contradiction.

We begin by observing that any collection of planes divides
space into several convex regions. (In the mathematical liter-
ature, this division is usually called an arrangement [4].) If a
polyhedron P has a CSG representation in terms of half-spaces,
then we can specify a subset of the planes bounding these half-
spaces and derive a representation for the portion of P inside any
convex region determined by the subset.

More precisely, let f be a boolean formula on the half-spaces
of P; we can think of f as an expression tree. If the tree for f has
nodes a and b, then we will denote the least common ancestor
of @ and b in f by lcag(a,b). Let Hy,Hy,...,H, be a subset
of the half-spaces of P. Each point in space can be assigned a
string @ € {0,1}" such that the i-th character of & is 1 if and
only if the point is in half-space H;. All the points assigned the
string o are said to be in the region R,. We use f|, to denote the
formula obtained by setting each H; = a; in f and simplifying
the result by using algebraic rules: al = la = a, a0 = 0a = 0,
a+l=14+a=1,and a+0 =0+ a = a The expression tree
for f|q inherits several important properties from the expression

tree for f:

Figure 12: Two views of a simplicial polyhedron with no
Peterson-style formula

Lemma 5.1 Let f be a formula that uses the half-spaces
Hy,Hy,...,H, (and perhaps others) and let a be a string in
{0,1}*. Then the derived formula f|, has the following three
properties:

1. if f is monotone or Peterson-style, then so is f|a,

2. if the ezpression tree for f|, has nodes a, b, and c, with
¢ =lcag (a,b), then c = lcag(a,b) in the tree for f, and

3. if the ezpression tree for f|, contains a node a at depth k,
then the tree for f contains the node a at depth > k.

Proof: All three properties are maintained by the rules
that form the expression tree for f|, by simplifying the
expression tree for f. ||

The next lemma shows the interaction between the region R,
and boolean formula f|,.

Lemma 5.2 If a polyhedron P has a formula f that uses half-
spaces Hy,Ha,...,H, (and others) then, for any string a €
{0,1}"*, the portion of P inside the region Ry is described by
the formula f|4.

Proof: The above statement simply says that formulae
f and f|y agree inside the region R,. This follows from
the definition of f|, and the fact that the simplification
rules do not change the value of the formula. |

Two corollaries of Lemma 5.2 give us constraints on the for-
mula of a polyhedron based on its edges and faces. In these
corollaries and the discussion that follows, we will add an argu-
ment to a formula f|, to emphasize which half-spaces are not
fixed by the string o.

Corollary 5.3 Let P be a polyhedron with Peterson-style for-
mula f. If faces A and B of P meet at an edge, the operator in
f that is the least common ancestor of A and B, lcag(A, B), is
an “and” if and only if A and B meet in a convez angle.

Proof: Let Hy,H,,...,H, be the half-spaces of P ex-
cept for the two defined by A and B. Choose a point
on the edge formed by faces A and B, and let o be
its string. The two-variable formula f|,(AB) must de-
scribe the edge, so by Lemma 5.1(2), lcas(A, B) is an
“and” if and only if A and B meet in a convex angle.

Corollary 5.4 Let P be a polyhedron with Peterson-style for-
mula f using half-spaces Hy,Hs,...,H, and A and B. If the
half-space defined by face B intersects face A at some point with
string a then f|,(AB) = A.

Proof: The two-variable formula f|.(AB) must de-
scribe the face A both inside and outside the half-space
of B, so B cannot appear in the formula. |

Now we are ready to look at the polyhedron P in Figure 12.
Suppose P has a Peterson-style formula f. Then it has a for-
mula f|i11111(ABC A’ B'C") that describes the region inside the
unlabeled faces. We will look at the constraints on this formula
and derive a contradiction.

Consider the three faces A, B, and C. By Corollary 5.3 we
know that lca(B,C) = “or” and lca(4,B) = “and”™ Corol-
lary 5.4 applied to faces A and C implies that the formula de-
scribing these three faces is

flay(ABC) = A(B +C), (1)

where the string o appropriately fixes all the half-spaces except
A, B, and C. Similarly, the formula describing A’, B’, and C" is
flaa(A'B'C") = A'(B' + C"). (2)

Now consider the region inside all unlabeled half-spaces and
outside C' and C’. The portion of P within this region can be
described by a Karnaugh map [11]:

AB
00 01|11 10
oo 0 O 1 O
AB" 01| 0 0] 1 0
1 L L % 1
010 0] 1 0

The ‘7’ appears because four planes cut space into only fifteen
regions; since we want a monotone formula, Lemma 5.1(1) forces
us to make it a ‘1’. Examining all Peterson-style formulz on A,
B, A', and B’ reveals that the only formula with the above map

is
flas(ABA'B') = (AB) + (4'B'), (3)

In order to combine the formule 1, 2, and 3 into a single
formula on six variables, we must determine which operators
are repeated in the three formulee. We knew from formule
1 and 2 that the operators lcas(A, B) and lcag(A’, B') were both
“and”s—now we know that they are distinct “and”s because
lcas(lcas(A, B),lcag(A’, B')) = “or” in formula 3. The “or”s of

the first two formula are distinct because they are descendents
of distinct “and”s. Finally, by Lemma 5.1(3), the “or” of for-
mula 3 is different from the other “or”s because it is not nested
as deeply as the “and”s.

Thus, all five operators of the formula on the six labeled half-
spaces appear in the formulee 1, 2, and 3. Using the nesting depth
of the operators, we know that the formula looks like (O(O +
0))+ (O(O + O)). Filling in the half-space names gives the
formula for the portion of P inside the unlabeled faces:

Flinin(ABCA'B'CY) = (A(B +C)) + (4(B' + C")).

Notice, however, that in this formula the lca of C' and C” is
an “or”. Thus lca;(C,C") = “or”. But this contradicts Corol-
lary 5.3, so the above formula cannot represent the portion of
P inside the convex hull of P. This contradiction proves that P
has no Peterson-style formula.

There are two natural questions that we will leave open. First,
can the interior of a polyhedron with n faces be represented by
a formula using O(n) literals? The trivial upper bound on the
size of a formula is O(n®). In fact, the interiors of any set of cells
formed by a collection of n planes can be described by a formula
that represents each convex cell as the “and” of its bounding
planes and “or”s the cell representations together. The size of
the formula is at worst the total number of sides of the cells
formed by n planes, which is known to be O(n?) [4].

Second, can we characterize polyhedra that can be represented
by Peterson-style formulae? Peterson [19] showed that the rep-
resentation of polygons gives such formule for extrusions and
pyramids. We would like to extend this class.

References

[1] J. Boyse and J. Gilchrist. GMSolid: interactive modeling
for design and analysis of solids. IEEE Computer Graphics
and Applications, 2:86-97, 1982.

[2] C. Brown. PADL-2: a technical summary. IEEE Computer
Graphics and Applications, 2:69-84, 1982.

[3] B. M. Chazelle. Computational Geometry and Converity.
Technical Report CMU-CS-80-150, Carnegie-Mellon Uni-
versity, Department of Computer Science, Pittsburgh, PA,
1980.

(4] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Volume 10 of EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1987.

[5] W. Franklin. Polygon properties calculated from the vertex
neighborhoods. In Proceedings of the §rd ACM Symposium
on Computational Geometry, pages 110-118, ACM, June
1987.

[6] R. L. Graham and F. F. Yao. Finding the convex hull of a

simple polygon. Journal of Algorithms, 4:324-331, 1983.

L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tar-
jan. Linear time algorithms for visibility and shortest path
problems inside triangulated simple polygons. Algorithmica,
2:209-233, 1987.

[7

—_—

[8] L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic frame-
work for computational geometry. In Proceedings of the 24th

Annual IEEE Symposium on Foundations of Computer Sei-
ence, pages 100-111, IEEE, 1983.

[9] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tar-
jan. Sorting Jordan sequences in linear time. In Proceed-
ings of the ACM Symposium on Computational Geometry,
pages 196-203, ACM, 1985.

[10] D. T. Lee. On finding the convex hull of a simple polygon.
Internat. J. Comput. Inform. Sci., 12:87-98, 1983.

[11] M. M. Mano. Digital Logic and Computer Design. Prentice-
Hall, 1979.

[12] M. Mantylad. An Introduction to Solid Modeling. Computer
Science Press, 1987.

[13] D. McCallum and D. Avis. A linear algorithm for finding
the convex hull of a simple polygon. Information Processing
Letters, 9:201-206, 1979.

[14] A. Melkman. On-line construction of the convex hull of a
simple polyline. Information Processing Letters, 25:11-12,
1987.

[15] M. Mortenson. Geometric Modeling. John Wiley & Sons,
1985.

[16] R. Newell. Solid modelling and parametric design in the
Medusa system. In Computer Graphics '82, Proceedings of
the Online Coriference, pages 223-235, 1982.

[17] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford
University Press, 1987.

[18] T. Pavlidis. Analysis of set patterns. Pattern Recognition,
1:165-178, 1968.

[19] D. Peterson. Halfspace Representation of Eztrusions, Solids
of Revolution, and Pyramids. SANDIA Report SAND84-
0572, Sandia National Laboratories, 1984.

[20] F. P. Preparata and M. I. Shamos. Computational Geome-
try. Springer Verlag, New York, 1985.

[21] A. Requicha. Representations for rigid solids: theory, meth-
ods, and systems. ACM Computing Surveys, 12:437-464,
1980.

[22] A. A.Schiffer and C. J. Van Wyk. Convex hulls of piecewise-
smooth Jordan curves. Journal of Algorithms, 8:66-94, 1987.

[23] W. Tiller. Rational B-splines for curve and surface repre-
sentation. IEEE Computer Graphics and Applications, 3,
1983.

[24] S. B. Tor and A. E. Middleditch. Convex decomposition of
simple polygons. ACM Transactions on Graphics, 3(4):244-
265, 1984.

[25] H. Voelcker, A. Requicha, E. Hartquist, W. Fisher, J. Met-
zger, R. Tilove, N. Birrell, W. Hunt, G. Armstrong, T.
Check, R. Moote, and J. McSweeney. The PADL-1.0/2 sys-
tem for defining and displaying solid objects. ACM Comput.
Gr., 12(3):257-263, 1978.

[26] J. R. Woodwark and A. F. Wallis. Graphical input to
a Boolean solid modeller. In CAD 82, pages 681-688,

Brighton, U.K., 1982.

