ALGORITHMS FOR FINDING A MAXIMUM BIPARTITE SUBGRAPH
FOR SPECIAL CLASSES OF GRAPHS

Susan S. Yeh
Andrea S. LaPaugh

CS-TR-149-88

April 1988

Algorithms for Finding a Maximum Bipartite Subgraph
for Special Classes of Graphs

Susan S. Yeh
Andrea S. LaPaugh

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

In this paper we present efficient polynomial algorithms for finding a
maximum bipartite subgraph for special classes of graphs. In general this
problem is NP-complete, and it remains NP-complete even when the graph
is restricted to be planar. However, putting further restrictions on the
graph makes this problem tractable. We have developed algorithms for
finding a maximum bipartite subgraph for proper circular-arc, circular-are,
permutation, and split graphs. In numerous occasions, we used one tech-
nique, namely dynamic programming, for the development of the algo-
rithms. Furthermore, the algorithms we designed, with slight
modifications, can be adapted to solve the maximum bipartite subgraph

problem which includes a nontrivial subset of vertices.

Algorithms for Finding a Maximum Bipartite Subgraph
for Special Classes of Graphs

Susan S. Yeh
Andrea S. LaPaugh

Department of Computer Science
Princeton University
Princeton, NJ 08544

I. Introduction

In this paper we are interested in finding a maximum induced bipartite subgraph of
a graph, that is, 2 independent sets that cover maximum number of vertices. (For the
rest of the paper, when we say subgraph we mean induced subgraph.) In general this
problem is NP-complete as shown by Lewis and Yannakakis[1980]. Furthermore, even
when restricted to planar graphs, the maximum bipartite subgraph problem remains NP-
complete [Lewis and Yannakakis, 1980]. This makes one wonder if additional restrictions
on graphs affect the complexity of this problem. In particular, it is interesting to identify
special classes of graphs for which finding a maximum bipartite subgraph is solvable in
polynomial time. The focus of this paper is in showing efficient polynomial algorithms for
this problem on proper circular-are, circular-arc, permutation, and split graphs. More
specifically, we present O(n6%) algorithm for finding a maximum bipartite subgraph for
circular-arc graphs, when the graphs are given in the form of a family of intervals, where
8 is the minimum number of arcs covering any point on the circle. For proper circular-
arc graphs, we give an O(n?) algorithm that solves the same problem. Using dynamic
programming, we show how to find a maximum bipartite subgraph for permutation
graphs in time O(ne,), where ¢, is the number of edges in the complement of a permuta-
tion graph after transitive reduction. For split graphs, we use matrix multiplication and

obtain an O(n237) algorithm for the maximum bipartite subgraph problem.

In this paper we will also consider finding a maximum bipartite subgraph which
includes a nontrivial subset (size > 0) of vertices. We shall call this the maximum bipar-
tite subgraph with a chosen subset problem, with the understanding that the size of the
chosen subset is greater than 0. If we allow the size of the chosen subset to be 0, then

the maximum bipartite subgraph problem is a special case of the maximum bipartite

subgraph with a chosen subset problem. This means the second problem is as hard as the
first, if not harder. However, if we only consider the cases where the size of the chosen
subset is greater than 0, then, as we will show, in most cases the complexity of the algo-
rithms for finding a maximum bipartite subgraph remain the same, and in one case —
circular-arc graphs, the complexity of the algorithm is reduced from 0(n8?) to O(nlogn +

nA), where A is the maximum number of arcs covering any point on the circle.

Finding a maximum bipartite subgraph falls in the general frame work of finding a
maximum k-colorable subgraph of a graph. Two well-known problems: maximum
independent set and the chromatic number, are also special cases of this problem.
Interestingly, the maximum independent set problem, though shown to be NP-complete
for general graphs and planar graphs, is polynomial solvable for a wide range of other
well-known classes of graphs, including perfect (which properly contain chordal, compara-
bility, permutation, and interval), circle, circular-arc, series-parallel, and k-outerplanar
graphs; see Johnson[1985] for references. The chromatic number problem, however, is
NP-complete for a larger number of classes of graphs, including planar, circular-are, and
circle graphs, but is polynomial for perfect, series-parallel, and k-outerplanar graphs; see
Johnson[1985] for references. The existence of polynomial algorithms for the maximum
independent set and the chromatic number problems on various classes of graphs may
lead one to believe the maximum bipartite subgraph problem is solvable in polynomial
time for these classes of graphs as well. In fact, the complexity of the maximum k-
colorable subgraph problem on special classes of graphs has been investigated by a
number of researchers, including Frank[1980] who has presented a polynomial algorithm
for this problem on comparability graphs and their complements, and Yannakakis and
Gavril(1987] who have shown for chordal graphs this problem is polynomially solvable
when k is fixed, but NP-hard when k is not fixed. One implication of these results is that
the maximum bipartite subgraph problem is polynomial solvable for comparability and

chordal graphs.

Table 1 summarizes the current status of polynomial algorithms and NP-complete
results for the maximum bipartite subgraph problem and the maximum bipartite sub-
graph with a chosen subset problem on various classes of graphs. We have analyzed the
running time of algorithms presented by Frank for comparability graphs and by Yan-
nakakis and Gavril for chordal graphs [Yannakakis, 1987], and included our findings in
the table.

Running Time
Transformation
Graph Class Discoverer
Max. Bipartite with Subset Time"
1. Interval O(nlogn) O(nlogn) Yannakakis and Gavril[1987] O(n + e
2. Proper Circular-Arc | Q(n?) O(nlogn + nA)* | Yeh and LaPaugh 0(n?)
3. Circular-Arc O(n8%)# O(nlogn + nA) | Yeh and LaPaugh® O(n?)
4. Permutation O(ne,)t# Olne,) Yeh and LaPaugh** O(de + n?)H#
5. Comparability Olne) open Frank[1980] Oflde)
6. Split 0(n 2378 O(n 2376 Yeh and LaPaugh NA
7. Chordal Olne) O(ne) Yannakakis and Gavril(1987] | O(n + e)
8. Series-Parallel Oln + ¢)" open Takamizawa et al[1982] NA
9. Planar NP-complete NP-complete Lewis and Yannakakis[1980] NA
10. Circle NP-complete NP-complete Sarrafzadeh and Lee[1987] NA
11. General NP-complete NP-complete Lewis and Yannakakis[1980] NA

t Transformation time corresponds to the time needed to transform a graph G = (V, E) to the proper represen-
tation required by the algorithm.

Tt Takamizawa, Nishizeki, and Saito[1982] have claimed this result in their paper but a proof was not given.

* An independent study of this problem on circular-arc graphs has been done by Manber and Narasimhan[1987]
where they obtained an O(n?) time algorithm.

** Recently Sarrafzadeh and Lee[1987] have developed an O(n?logn) algorithm for this problem on permutation
graphs. Their algorithm will be the preferred algorithm when the complement of the permutation graph
after transitive reduction is dense.

¥ A is the maximum number of arcs covering any point on the circle, A = d < n.
ff 0 is the minimum number of arcs covering any point on the circle, § = Ve.
t#f e, is the number of edges in the complement of a permutation graph after transitive reduction.

d is the maximum degree of a vertex.

Table 1. Polynomial algorithms and NP-complete results for the maximum bipartite sub-
graph problem and the maximum bipartite subgraph with a chosen subset problem. Algorithms for
graphs 1, 2, 3, 4, 6 are presented in this paper.

The remaining portion of this paper is devoted to presentation of the algorithms.
We start with some preliminaries in section II. In section III we describe a greedy algo-
rithm for interval graphs; in section IV we introduce the notion of placing intervals on
tracks and present algorithms for track assignment problems. The discussions of sections

IIT and IV will be used to develop the algorithms for proper circular-arc and circular-arc

graphs. We present algorithms for proper-circular-are, circular-are, permutation, and split
graphs in sections V, VI, VII, and VIIL, respectively. In section IX we close with some

concluding remarks and suggestions for future research.

II. Preliminaries

In this paper G = (V, E) will denote a simple, finite, and undirected graph with n
vertices and e edges. When we consider a subgraph G, (A C V) of G, we mean the
induced subgraph of G, that is, G4 consists of the set of vertices A, and two vertices are
adjacent in G, if and only if they are adjacent in G. A graph G = (V, E) is called an
intersection graph for a family F of sets if each set in F is represented by a vertex and
two vertices are adjacent if and only if their corresponding sets intersect. The intersec-
tion graph of a family of intervals on a real line is called an interval graph. The intersec-
tion graph of a family of arcs on a circle is called a circular-arc graph. A proper
circular-arc graph is a circular-are graph such that no arc is contained within another.
The intersection representation for interval, proper circular-arc, and circular-arc graphs
can be constructed in time O(n +e) [Booth and Lueker, 1976], O(n2) [Tucker, 1971], and
O(n?) [Tucker, 1980], respectively.

A graph G = (V, E) is called perfect if for every subgraph G, of G (A C V), the
chromatic number of G, equals its maximum clique size. Perfect graphs properly contain
comparability, permutation, chordal, split, and interval graphs. Comparability graphs,
also known as transitively orientable and partially orderable graphs, are undirected graphs
G = (V, E) that can, by appropriate orientation of their edges, be turned into transitive
directed graphs (directed graphs such that if (ab) and (b,c) are arcs, then so is (a,c)). Per-
mutation graphs are comparability graphs whose complements are also comparability
graphs (an alternate characterization of permutation graphs is given in section VII). An
undirected graph G is called chordal if every cycle of length greater than 3 has a chord,
iLe, an edge joining two nonconsecutive vertices on the cycle. Chordal graphs are also
known as triangulated, perfect elimination, rigid-circuit, and monotone transitive graphs.
Split graphs are chordal graphs whose complements are also chordal graphs (an alternate
characterization of split graphs is given in section VIII). Comparability and chordal

graphs are incomparable, ie., neither is properly contained within another.

III. Interval Graphs

Assume an interval graph [is given as a set of intervals, I={f},fs, - - * ,f.}, on the
real line. Each interval is in the form of (left_endpoint, right_endpoint), and is
represented by a vertex. Without loss of generality we can assume the 2n endpoints of
the intervals are distinct.” The algorithm for finding a maximum bipartite subgraph for

interval graphs goes as follows:

Input. An interval graph I given as a set of intervals, I ={fi.f2, " "}
Output. A maximum bipartite subgraph of I.
1. Sort the 2n endpoints in ascending order.

2. Number the n intervals (vertices) according to their right_endpoints in ascending order.
Let B, B = {1, 2, ..., n}, be the collection of n intervals.

3. While 8 is nonempty do

4. Pick an interval with the smallest right_endpoint from B and add it to a set called
S (originally empty).

B. Delete all intervals from B which overlap two intervals already in S.
end while
6. Return S.

Algorithm 1. Maximum bipartite subgraph algorithm for interval graphs.

This is a greedy algorithm; at each step we are picking an interval that is as good
as, if not better than, any other interval that overlaps it. We will need the following
definition for the proof of the correctness of Algorithm 1:

Let G,=(V,, E;) C G and G, =(V,, E;) C G. G, disagrees with G, at vertex v, if

Ug is the smallest numbered vertex in V, but not in V. Similarly if an interval

graph [is given in the form of a family of intervals, and I,CI, I,CI, then we say I,

disagrees with I, at interval f, if £, is the smallest numbered interval in I, but not

in I,

Theorem 1 [Yannakakis and Gavril]. Algorithm 1 finds a maximum bipartite subgraph
of an interval graph I given in the form of a family of intervals.

Proof. Assume S is not a maximum bipartite subgraph of I.

t If the endpoints are not distinct, then we can make them distinct by placing one endpoint just to the left or
right of the other, depending on whether we consider intervals to be overlapping if they only overlap at one end-
point. It is important that we do not change the “overlap relationship” among the intervals during this process.

Step 5 of the algorithm ensures that S is an bipartite subgraph of I. Let Iy be a
maximum bipartite subgraph of / with which S disagrees the latest, i.e., S disagrees with
Iz at the highest numbered interval among all maximum bipartite subgraphs of I.
Without loss of generality let’s say S disagrees with Iy at interval f,, and I disagrees
with S at interval f,. By Step 4 of the algorithm, we know the right_endpoint of interval
fs is less than that of interval f,. So f, < f, by the way intervals are numbered (Step 2).
Knowing Iy is bipartite, the number of intervals in Iz numbered larger than f, and over-
lapping f, is at most 1, and let’s call it fe, if it exists. Thus f, and f, are the only two
possible intervals numbered larger than f; in Iy that can overlap f,. Now we have two
cases to consider: 1. f, € 8; 2. f. € S. In the first case, we can substitute fo for f, in I
without violating the bipartiteness of I, because all intervals that overlap f, in Iz are
also in 8. In the second case, we observe that at most one of f», f overlaps intervals num-
bered less than f, in Iz. Hence we can substitute f; for f, or f, whichever has a smaller
left_endpoint in Iz without violating the bipartiteness of I. In either case, S disagrees
with this new maximum bipartite subgraph at an interval numbered larger than f,. Con-

tradiction.

-3
The most time consuming part of Algorithm 1 is sorting (Step 1) which takes
O(nlogn) time. We determine which intervals to delete (Step 5) by keeping track of the
interval with the second largest right_endpoint that overlaps another interval in S, and
deleting all intervals in B that overlap this right_endpoint. The total amount of time

spent in Step 5 is O(n). Hence the whole algorithm runs in time O(nlogn).

We will discuss the maximum bipartite subgraph with a chosen subset problem for

interval graphs in section IV.

IV. Placing Intervals on Tracks

The maximum bipartite subgraph problem is also known as the maximum 2-
colorable subgraph problem. The vertices in each color induce an independent set. In the
case of interval graphs, the vertices in each color are non-overlapping intervals. If we
place these non-overlapping intervals on a “track”, then the maximum bipartite subgraph

problem for interval graphs can be viewed as a 2-frack assignment problem:"

T In this paper we shall always sort the 2n endpoints; hence without loss of generality we can assume the left and
right endpoints of intervals take on values between 0 and 2n—1.

Given 2 tracks numbered from 0 through 2n—1, and n interval of the form (;, r);
li, r; take on values between 0 and 2n—1 inclusive; all 2n values of l; and r; are dis-
tinct.

Pack as many intervals on the 2 tracks as possible without overlapping.

The algorithm that solves the 2-track assignment problem is the same as Algorithm 1,

except in Step 4 we actually place intervals on the tracks: Pick an interval with the smal-

lest right_endpoint from B and place it on the “tighter” fitting track, i.e., the track hav-
ing an interval with the largest right_endpoint, if it fits on both. Ties are broken arbi-

trarily.

Now let’s consider a variation of the 2-track assignment problem - left-end-limited
2-track assignment problem:

Given 2 tracks - track 1 (2) is numbered from p1 (pg) through 2n—1, and n interval

of the form (/;, r,); py, pa, I, r; take on values between 0 and 2n—1 inclusive; all 2n

values of /; and r; are distinct.

Pack as many intervals on the 2 tracks as possible without overlapping.

We solve the left-end-limited 2-track assignment problem by first deleting all those
intervals which can not be placed on the limited tracks, ie., deleting all intervals that
either contain the point min{p,,py}—1 or end before min{p,ps}, and then calling the 2-
track assignment algorithm on the remaining intervals with one modification: after Step 2
and before Step 3, place dummy intervals (0, p1—1) and (0, py—1) on trackl and track2,
respectively. It is clear the complexity of the algorithm for the left-end-limited 2-track

assignment problem is also O(rlogn).

We can define the right-end-limited 2-track assignment problem accordingly. The
right-end-limited 2-track assignment problem is actually the left-end-limited 2-track
assignment problem in reverse. Hence the right-end-limited 2-track assignment problem

can also be solved in time O(nlogn).

Another variation of the 2-track assignment problem is the two-end-limited 2-track
assignment problem:

Given 2 tracks - track 1 (2) is numbered from p, (p2) through ¢, (gy), and n inter-

val of the form (I;, r); py, pa, q1, qs, l;, r; take on values between 0 and 2n-1

inclusive; all 2n values of /; and r; are distinct.

Pack as many intervals on the 2 tracks as possible without overlapping.

The approach we take in solving the two-end-limited 2-track assignment problem is
similar to that of Algorithm 1 with one difference: in Algorithm 2 we look for opportuni-
ties to reduce this problem to a left-end-limited 2-track assignment problem plus a right-

end-limited 2-track assignment problem. The algorithm goes as follows:

Input. 2 tracks numbered from p, (p,) through ¢, (g,); an interval graph I given as a set of
intervals, I = {f,fa, - - - ,f.}

Output. 2-track assignment — a placement of the maximum number of intervals on the 2
tracks without overlapping.

1. Sort the 2n endpoints in ascending order.

2 Number the n intervals according to their right_endpoints in ascending order.
Let 8, B = {1, 2, ..., n}, be the collection of n intervals.

3. Delete all intervals from B that either contain the point min{p ,,p,}—1 or end before
min{p ;,p,}. ‘

4. Delete all intervals from B that either contain the point max{g,,q;}+1 or begin after
max{g |,q5}.

5. Place dummy intervals (0, p1—1) and (0, p;—1) on trackl and track2, respectively.

6. While g is nonempty do
7. Determine f — the interval from B with the smallest right _endpoint.

8. If the right_endpoint of f is greater than min{g ;,g,} (the track with the smaller
right end is filled), then place a dummy interval (min{g ;,q,}+1, 2n—1) on the
track with the smaller right end, if one is not already placed there.

9. If there exists an interval f;, on trackl or track2, such that f; is the left-most
interval which overlaps f, f; is not a dummy interval, and f; does not overlap any
other interval already placed on the tracks, then do
(we have found a cut at a point just to the left of f or f;; see Figure 1 for illustra-
tion.)

10. Add f f;, and all intervals on the same track as f, and to the right of f; (if
they exist) back to list 8.

11. Solve the right-end-limited 2-track assignment problem on trackl and track2
with intervals remaining in B.

12, Exit Algorithm 2.
Now we know no interval satisfies the condition described in Step 9.
13. Place fon the tighter track, if it fits on both.

14. Remove all intervals which overlap two intervals already placed on trackl and
track2 from f.

end while

Algorithm 2. Two-end-limited 2-track assignment algorithm.

Figure 1. An example where a cut is found just to the left of f.

Theorem 2. Algorithm 2 correctly solves the two-end-limited 2-track assignment prob-

lem.

Proof. Algorithm 2, like Algorithm 1, is basically a greedy algorithm. If the condition
described in Step 9 is never true, then we can use similar arguments as those in the proof
of Algorithm 1 to show that there must exist a maximum two-end-limited 2-track assign-

ment T such that T agrees with intervals picked by Algorithm 2.

On the other hand, if the condition described in Step 9 is true at some point, then
using similar arguments as above, we know there exists a maximum two-end-limited 2-
track assignment T, such that T, agrees with intervals picked by Algorithm 2 up to that
point of the algorithm. This means that intervals fand f; of Step 9 are in T,. Since f
and f; do not overlap intervals that begin to their left in T,, there must exist an unit
interval gap (a,,a;,,) just to the left of f or f, that is not covered by any interval in T,.
Knowing T, is a maximum two-end-limited 2-track assignment, we can cut the 2 tracks
at the unit interval (a,,a,+,) and reduce the two-end-limited 2-track assignment problem
to one left-end-limited 2-track assignment problem plus one right-end-limited 2-track

assignment problem.
|
Algorithm 2 not only selects but also places the intervals on tracks subject to the
constraints of the limited tracks. Note in the above proof, the reason the arguments in
the proof of Theorem 1 apply when the condition described in Step 9 is never true is

because, in this case, the bipartite subgraph corresponding to those intervals picked by

10

Algorithm 2 which fit between the overlapping part of the two tracks (between
max{p;,ps} and min{g,,q,}) is connected; hence there is exactly one way to place the
intervals on tracks — basically placing an interval on the tighter track when it fits on
both is the correct strategy. However when the condition described in Step 9 is true at
some point, due to the limited right-end of the tracks, the proper choice for placing inter-
vals f and f, of Step 9 on the tracks to the right of the gap (a;,q,,,) is not apparent.
(Note the strategy for selecting the intervals is still correct.) In this case, cutting the
tracks at (a;,a,4,) and approaching the problem from the right-end will give us the

proper placement of intervals on tracks.

The complexity of Algorithm 2 is still dominated by sorting (Step 1) which is
Of(nlogn). All other steps take linear time. Hence the total running time of Algorithm 2

is O(nlogn).

Now we will consider the maximum bipartite subgraph with a chosen subset prob-
lem for interval graphs. Without loss of generality we can assume the intervals in the
chosen subset are bipartite. It is easier to view the maximum bipartite subgraph problem
on interval graphs as a 2-track assignment problem when a subset is included. So in
what follows, we shall discuss only the 2-track assignment problem. If two of the inter-
vals in the chosen subset overlap, then we can reduce the original problem to two sub-
problems by cutting the tracks at a point of overlap. Hence without loss of generality we
can assume all the intervals in the chosen subset are non-overlapping. There are 3
varieties of the 2-track assignment problem with a chosen subset: 1). un-limited, 2). left-

end-limited (or right-end-limited), and 3). two-end-limited.

At the first sight, adding a chosen subset to the 2-track assignment seems to
increase the complexity of this problem. However the greedy approach of Algorithm 1
and Algorithm 2 can still be employed to solve the 2-track assignment problem with a

chosen subset; although some care must be taken.

We will use Algorithm 1 (or its variation) to solve the first 2 varieties of the 2-track
assignment problem with a chosen subset, and Algorithm 2 to solve the third variety, and

in both cases we will apply the following modifications:
Delete all the intervals in the chosen subset from B.

Place the intervals in the chosen subset, one at a time, on the tighter fitting track,

in increasing order of their right_endpoint at the appropriate times.

11

By the appropriate times, we mean: 1. an interval £, in the chosen subset is placed on the
track right after the first interval that overlaps and ends before f; is placed on the track,
if such an interval exists, and 2. all intervals that end after fi, for some f; in the chosen
subset, are placed on the tracks after f;. These modifications can be done with some sim-
ple book keeping. Note Step 5 of Algorithm 1, and similarly Step 14 of Algorithm 2, is
carried out even when an interval in the chosen subset is placed on the track. This is
done to ensure that the 2-track assignment is always valid, i.e.,, the corresponding sub-

graph is always bipartite.

The correctness of the above approach is validated by proofs of Theorem 1 and 2,
because any maximum 2-track assignment must include all the intervals in the chosen
subset; hence substitution, the method used in showing the correctness of Algorithm 1, is

applied only to those intervals not in the chosen subset, and remains valid.

V. Proper Circular-Arc Graphs

In the following we will assume that a proper circular-arc graph C is given in the
form of a family of ares, C= {cq,cy, - - - ,Ca}, o0 a circle, where each arc is denoted by
two endpoints — left and right, in clockwise direction. Again without loss of generality
we can assume the 2n endpoints of the arcs are distinct. As pointed out in the prelim-
inaries, if a graph G is given in the form of vertices and edges, then we can use Tucker’s

algorithm to construct a circular-arc representation of G in O(n?) time.

We will consider the following two possibilities when finding a maximum bipartite

subgraph for a proper circular-arc graph C:
1. C has a maximum bipartite subgraph that is also an interval graph.

2. Not case 1, that is, the union of arcs of every maximum bipartite subgraphs of

C covers the circle.

If case 1 is true, then we can reduce this problem on a proper circular-arc graph to 2n
problems on interval graphs by cutting the circle at each of the 2n endpoints, apply Algo-
rithm 1, and take the maximum bipartite subgraph we find. Recall in a proper circular-
arc graph no arc is properly contained within another. Thus any arc in a bipartite sub-
graph overlaps at most two other arcs in the subgraph. Now if case 2 is true, then any
maximum bipartite subgraph of C must be an even cycle (in the degenerate case, it con-

sists of 2 arcs or vertices), since each arc in the maximum bipartite subgraph must

12

\

overlap exactly one arc to the right and one arc to the left of it. The maximum indepen-
dent set of an even cycle consists of half of the arcs in the cycle. Note the other half is
also a maximum independent set of the even cycle. As we shall show in the proof of
Theorem 3, if all maximum bipartite subgraphs of C are even cycles, then there exists a
maximum bipartite subgraph S of C such that S consists of the union of maximum
independent set of interval graphs C, and C,, for some a, b, 1=a,b=2n, where C, is the

set of arcs in C except all those that contain interval (a;i, aj+1) as defined in Step 2 of

Algorithm 3.

The following algorithm describes the details of the above approach.

Input. A proper circular-arc graph C given as a set of arcs, C = {c,,eq, ' * ,c,}.

Output. A maximum bipartite subgraph of C.

1. Sort the 2n endpoints in clockwise direction and output them in a list a,
a={a;,ay, - - * ,a3,}, where Qap 4+ = @y,

2. Fori = 1 to 2n, determine C,.

C; is defined as the set of arcs in C except all those that contain interval (a;, a;,,).
Note C; is an interval graph.

3. For i = 1 to 2n obtain a maximum bipartite subgraph of C; by running Algorithm 1.
4, Fori = 1 to 2n obtain a maximum independent set M; of C; by the following steps:

5. Reindex the endpoints in C; so a;,, becomes a,, a;,9 becomes a,, ... , q
becomes agy,.

6. Number the n; intervals in C; according to their right _endpoints in ascend-
ing index order. Let 8;, B8; = {1, 2, ..., n;), be the collection of n; intervals.
7. While 8, is nonempty do

8. Pick an interval with the smallest right_endpoint from B, and add it
to a set called M; (originally empty).

9. Delete all intervals from 8; which overlap any interval already in M,
end while

10. Let first; (last;) denote the first (last) arc placed in set M,
11 For each set M;, find a set M, if one exists, such that |M,| = [M;| and M, + M, is an

even cycle. Let M; denote the set containing such an even cycle.
j

12, Return the maximum bipartite subgraph produced in Steps 3 and 11.

Algorithm 3. Maximum bipartite subgraph algorithm for proper circular-arc graphs.

T This maximum independent set algorithm is presented by Gupta, Lee, and Leung{1982].

13

Theorem 3. Algorithm 3 finds a maximum bipartite subgraph of a proper circular-arc

graph C.

Proof. If C has a maximum bipartite subgraph that is also an interval graph, then Algo-
rithm 3 finds it at Step 3.

Now assume all maximum bipartite subgraphs of C are even cycles. Let B be one of
them. B consists of two independent sets, say X and Y, of equal size. Without loss of
generality let (a;, a;,,) be an unit interval on the circle such that exactly one arc in B
covers it. Without loss of generality let Y be the set that contains the arc, say y;, cover-
ing interval (a;, a; ;). We shall label the arcs in Y, Y = {yi,y2, - - "}, according to
their right_endpoints in clockwise direction. Similarly we shall label the arcs in X, X =
{x1,xs9, - - - ,x,}, according to their right_endpoints in clockwise direction such that x,
overlaps y; and y,. In general, x; overlaps yi and y; ;. Note X is an independent set of
interval graph C;, and M, (obtained through Steps 4-10) is a maximum independent set of
Ci. Let’s label the arcs in M,, M; = {m;;,mi3, - -+ ,my}, according to the order the ares
are placed in M;. Observe m;; never ends after x; ends (i.e, the right_endpoint of m;; <
the right_endpoint of x;) due to the way m; is picked (Step 8). Since C is a proper
circular-arc graph, m;; never begins after x; begins (ie., the left_endpoint of m;; = the
left_endpoint of x;). So m;; either equals or proceeds x; in clockwise direction. Figure 2

illustrates the relationship among the arcs in sets X, Y, and M,.

Now we claim the union of two independent sets M; and Y is also a maximum
bipartite subgraph of C. First we note that the union of M, and Y is a bipartite subgraph
of C. Second we observe that the size of M; is no less than size of X. Thus the only way
M; + Y is not a maximum bipartite subgraph of C is when the two sets have arc(s) in
common. Without loss of generality let m;; be the first arc in M; that is in Y, ie., m;j =
Y, for some k. In this case we know m, proceeds xj in clockwise direction. Since x;
overlaps y; and y;,, and mij = Yk, the index j must be equal to or greater than k, ie.,
J=k. Now let’s consider the set Z = {m,,, Mig, ' \Mip_1, Xp, Th41, ', %} Z is
an independent set; |Z| = |X|; Z is disjoint from Y. Thus Z + Y is a maximum bipartite
subgraph of C. Note my _; does not overlap y., because mi; = y, and j=k. Then Z +
Y is an interval graph, since the gap between y,_, and y, is not completely covered by

any of the arcs in Z. This is a contradiction because we assumed C does not have any

maximum bipartite subgraph that is an interval graph. Therefore M, + Y must be a

14

V7

Figure 2. Arcsinsets X, Y, and M;.

maximum bipartite subgraph of C.

Using similar arguments as above we can show that if (aj, @j+1) is an unit interval
on the circle such that none of the arcs in Y covers it (this implies there exists an arc in
M, that covers it), then M, + M ;j is also a maximum bipartite subgraph of C. Therefore
we just proved that if all maximum bipartite subgraph of C are even cycles, then there
exists a maximum bipartite subgraph M;; of C such that M;; consists of the union of M,
and M;, for some i, j, 1<i,j<2n. Algorithm 3 finds M; + M; = M;; at Step 11.

n

Before analyzing the running time of Algorithm 3, we need to specify how to per-

form Step 11. First we prove the following:

Lemma 4. Given two independent sets M, and M ; (as defined in Step 4 of Algorithm 3) of

the same size, if either

1. last; overlaps last j» and first, overlaps last ; and first;, or

15

2. last; overlaps last;, and first; overlaps last; and first;,
then M; + M, forms an even cycle.

Proof. Without loss of generality let's assume case 1 is true, ie, 1. M; and M; are two
independent sets, 2. |M,| = |M |, 3. last; overlaps last;, and 4. first; overlaps last; and
first;. To prove M, + M ; forms an even cycle, it suffices to show that I. M; is disjoint
from M;, and II. arcs in M, and M i cover the whole circle.

I. M; is disjoint from M i

Suppose not. Let ¢ be the first arc that is placed in both M; and M;. According to the
maximum independent set algorithm (Steps 5-9) all the arcs placed in sets M, and M F
after ¢ are the same, with the possible exception of the last arc that is placed in M £
Thus last; is also placed in M ;- Since first; overlaps last;, last; is not the same as last;.
The above two statements imply last; does not overlap last;. Contradiction.

II. Arcs in M; and M ; cover the whole circle.

Suppose not. Without loss of generality let (a;, a;+;) be an interval on the circle not
covered by arcs in either set. The maximum independent set algorithm (Steps 5-9) would
have placed the same arcs in both sets M; and M ; after the point a; ., with the possible
exception of the last arc that is placed in M ;. Using similar arguments as above, we
again reach a contradiction.

Now we are justified to restate Step 11 of Algorithm 3 as: For each set M,, find a set
M;, if one exists, such that |M,| = |M |, and either last, overlaps last;, and first; overlaps

last; and first;, or last; overlaps last;, and first; overlaps last; and first,.

After the initial sort (Step 1) which takes O(nlogn) time, Steps 3, 4-10, and 11 all
can be carried out in time O(n?). Therefore we can find a maximum bipartite subgraph

of a proper circular-arc graph in O(n?) time.

The complexity of the maximum bipartite subgraph with a chosen subset problem for
proper circular-arc graphs is the same as that for circular-arc graphs, i.e., O(nlogn + nA),
where A is the maximum number of arcs covering any point on the circle. We will dis-
cuss the algorithm for finding a maximum bipartite subgraph with a chosen subset for

circular-arc graphs in section VL.

16

VI. Circular-Arc Graphs

Assume a circular-arc graph is given in the form of a family of ares C=
{c1,¢9, - - ,c,} on a circle, where each arc is denoted by two endpoints — left and right,
in clockwise direction. Again without loss of generality we can assume the 2n endpoints

of the arcs are distinct.

The approach we take in finding a maximum bipartite subgraph of a circular-arc
graph is as follows: For any unit interval (q;, a;+q) on the circle, exactly one of the fol-

lowing three cases is true of any maximum bipartite subgraph Cjz of C:
1. None of the arcs in Cg covers the interval (a;, a;).
2. Exactly one arc in Cp covers the interval (q,, a; +1).
3. Exactly two arcs in Cg cover the interval (a;, a,).

In the first case, Cp is an interval graph. To obtain Cp we can cut the circle at the inter-
val (a;, @;4,), and find a maximum bipartite subgraph on the corresponding interval
graph. The second and third cases can be handled by considering all possible combina-
tions of arcs covering interval (a;, a; ,q), cutting the circle at the interval (a;, a,.,), and
solving the corresponding two-end-limited 2-track assignment problem (the exact details
are given in Algorithm 4). Not knowing which of the three cases holds for any particular
interval (a;, a;+;), we shall solve them all and take the maximum bipartite subgraph we
find. An unit interval (a;, a;,;) best suited for the above approach is one with the least

number of arcs covering it in C. All these steps are described in Algorithm 4.

Input. A circular-arc graph C given as a set of ares, C = {¢;,0q, * * * ,6,}.

Output. A maximum bipartite subgraph of C.

1, Sort the 2n endpoints in clockwise direction and output them in a list a,
a={a,,a,, " - ,ay,}), where ay, ,; = a,.

2. Fori = 1 to 2n, determine D,.
D, is defined as the set of arcs covering the interval (a;, a;+1).

3. Determine k such that |D,| = min{]D,|, 1<i<2n).

4, Obtain a maximum bipartite subgraph of the interval graph C—D, by running Algo-
rithm 1.

5. For each arc ¢; = (ay, a,;) in D, do
(c; is the only arc covering the interval (ax, a;+1) in the bipartite subgraph.)

6. Solve the corresponding two-end-limited 2-track assignment problem of C (Algo-
rithm 2) by mapping endpoint a,,; to 0, ay,o to 1, ... , a; to 2n—1, and

17

numbering trackl, track2 from 0 to 2n—1, |ri—k| to [2n—k+1,, respectively.
7. Let G; be the set of arcs placed on trackl and track? in Step 6 plus arc ¢;.

8. For each pair of arcs ¢; = (aj, a,) and ¢; = (ay;, a,;) in D; do

(both arcs ¢; and ¢; cover the interval (@4, @ +,) in the bipartite subgraph.)

9. Solve the corresponding two-end-limited 2-track assignment problem of C (Algo-
rithm 2) by mapping endpoint a, ., to 0, @p+a to 1, ..., a; to 2n—1, and number-
ing trackl, track2 from |r,—k| to [2n—k+1,], r;—Kk| to [2n—k+1,], respectively.

10. Let G;; be the set of arcs placed on trackl and track? in Step 9 plus ares ¢; and L
11. Return the maximum bipartite subgraph produced in Steps 4, 7, and 10.

Algorithm 4. Maximum bipartite subgraph algorithm for circular-arc graphs,

Let’s define 8 to be the minimum number of ares covering any particular interval
(a;, @; +1) on the circle; § = |D;| in Algorithm 4. We shall parametrize the running time
of Algorithm 4 in terms of §. After the 2n endpoints are sorted (Step 1), the second for
loop (Steps 5-7) takes O(n8) time, since each call to Algorithm 2 takes linear time. The
third for loop (Steps 8-10) takes O(n8?) time, since there are 8 number of pairs of arcs in
Dy, to consider. Thus the total running time of Algorithm 4 is O(n8%). Note & is upper
bounded by the minimum degree of vertices in C. Clearly 8% is upper bounded by e —
the number of edges in circular-are graph C. &% is also upper bounded by the number of

edges in a minimum maximal clique of C.

Circular-arc graphs is one class of graphs where the complexity of finding a max-
imum bipartite subgraph is reduced, from O(n82) to O(nlogn + nA), when a chosen sub-
set is included (the size of the chosen subset is greater than 0), where A is the maximum
number of arcs covering any point on the circle. The reason is that if an arc is included
in the bipartite subgraph, then we can narrow the searching space for optimal solutions.
First, we observe that if there exists two overlapping arcs in the chosen subset, then we
can cut the circle at a point of overlap and reduce the original problem on a circular-are
graph to a two-end-limited 2-track assignment problem with the chosen subset (the chosen
subset will not include the two overlapping arcs). The complexity of the algorithm in this
case is O(nlogn). Second, we note that given that an arc (a;, a;) is included in the bipar-
tite subgraph, then in any maximum bipartite subgraph the unit interval (q,, a;+1) 18
covered with exactly one arc or exactly two arcs on the circle. We have dealt with this
situation previously in circular-arc graphs, but now we know arc (a;, a;) is in the bipar-

tite subgraph. Thus we only have to consider all possible arcs (other than (a;, a;))

18

covering or not covering the unit interval (a;, @;+1), and solve the corresponding two-end-
limited 2-track assignment problem with a chosen subset. The number of arcs we need to
consider is at most A. Note A < d =n, where d is the maximum degree of vertices in C.
Hence the complexity of finding a maximum bipartite subgraph with a chosen subset for

circular-arc graphs and for proper circular-arc graphs is O(nlogn + nA).

VIL. Permutation Graphs

Suppose IT = [7y, my, - -+ , 7,] is a permutation of n numbers. Let #,”! denote
the position in the sequence where the number i can be found. A permutation graph
G(II] is an undirected graph on n vertices such that vertex i is adjacent to vertex j if the
larger of {i, j} appears to the left of the smaller in I1. More formally, the graph G[IT] =
(V, E) is defined as follows:

and
J€E <= (i — j)=,”' — o7 < 0.
An undirected graph G is a permutation graph if there exists a permutation IT such that

G is isomorphic to G[IT].

As mentioned in the preliminaries, permutation graphs are also characterized as
comparability graphs whose complements are also comparability graphs. Permutation
graphs are a proper subclass of comparability (or transitively orientable) graphs which are
a proper subclass of perfect graphs. To obtain a transitive orientation (_})[I'I] of a permuta-
tion graph G[IT], we simply orient each edge toward the larger vertex. Note after orien-
tation, the resulting directed graph must be acyclic. A transitively reduced graph a:[l'l} of
a[ﬂ] is a directed graph which consists of vertices in (_}"[I'I}, and an arc (a,c) is in é’t[m if
and only if (a,c) is in @[I'I] and there exists no vertex b such that (a,b) and (b,c) are in
E;’[m. Note Z}:[H] is a subgraph (not induced) of E})[I'I]. An interesting property of permu-
tation graphs is that the complement of a permutation graph is another permutation

graph. If we let 1" be the reverse of permutation [1, then it is clear G[I1] = G[IT"].

Given a permutation graph G, a suitable permutation IT can be constructed in time
O(de + n?) [Golumbic, 1980], where d is the maximum degree of a vertex. The transi-
tively reduced graph a[ﬂ} can be constructed from IT in O(n?) time. In the following, we

will assume a permutation graph G is given as G[IT].

19

Two elementary properties of permutation graphs GIII] are: 1. the increasing subse-
quences of [T and the independent sets of G[II] are in one-to-one correspondence, and 2.
the decreasing subsequences of [T and the cliques of G[II] are in one-to-one correspon-
dence. Thus a maximum bipartite subgraph of G[IT] corresponds to a longest subsequence

I1; of IT such that I1, is composed of two increasing subsequences of II.

In developing an algorithm for finding a maximum bipartite subgraph of G[IT], we
will be working with the complement of the permutation graph, ie., G[II"]. More
specifically, we will be dealing with the transitive directed graph 6[1"1'"], which is obtained
from G[IT"] by orienting each edge toward the larger vertex. Now if (#,”, #,") is a
directed edge in GIIT'], then =, > 7, and b < a. Note directed paths in GITI"] and
cliques of G[II"] are in one-to-one correspondence; equivalently directed paths in a)[l'I']
and independent sets of of G[II] are in one-to-one correspondence. Our strategy for
finding a maximum bipartite subgraph of G[II] is to look for 2 directed paths in 6[1'[’]
containing the maximum number of vertices. Note the 2 directed paths need not be dis-
joint. To find 2 such directed paths in @)[II’], we first compute, for each pair of vertices u
and v, a best-pair-of-paths from u and v in (_?)[H’], 1=u,us=n. A best-pair-of-paths from
vertices u and v in E[H’”] is defined as 2 directed paths starting from vertices u and v and
containing the maximum number of vertices in 6[1'[’]. A best-pair-of-paths which con-
tains the maximum number of vertices among all best-pair-of-paths in 6[1"[’] corresponds

to a maximum bipartite subgraph of G[IT].

An interesting observation we make is that all best-pair-of-paths in “G+{H"] use only
edges in the transitively reduced graph é’s[nr} of (_})[H’]. For if there exists a directed path
from u to v in E}’[nr], then there exists a directed path from u to v traversing only transi-
tively reduced edges that is as long as any other directed path from u to v in 6[“’]. Thus

we only have to deal with the transitively reduced graph (_?:[H’] when computing a max-

imum bipartite subgraph of G[IT].

We now present a simple algorithm, based on dynamic programming, for finding a

maximum bipartite subgraph of a permutation graph. It goes as follows:

Input. A permutation graph G[II].
Output. A maximum bipartite subgraph of G[IT].

20

1. Let II", the reverse of II, be indexed as: II" = (7, w3, - -+ ,75].

2. Construct the transitively reduced graph (_?)t[l'["] of 6[1'[’].
The edges in E,{H’] are always oriented toward the larger vertex.

3. Fori = 1ton, do
4, For j = 1 to i, compute a best-pair-of-paths from vertices 7{ and 7] in 6,{[1’].

5. Return a best-pair-of-paths from =] and #} in 6,[11’], for some #} and w}, 1<w. #)<n,
which contains the maximum number of vertices among all best-pair-of-paths computed
in Step 4.

Algorithm 5. Maximum bipartite subgraph algorithm for permutation graphs.

Algorithm 5 correctly solves the maximum bipartite subgraph problem because the
best-pair-of-paths computed in Step 5 corresponds to a longest subsequence IT; of IT such
that IT; is composed of two increasing subsequences of IT which corresponds to a max-

imum bipartite subgraph of G{IT].

The dynamic programming part of Algorithm 5 comes into play in Step 4, and it

proceeds as follows:

1. A best-pair-of-paths from ! and m; (j < i) = a best of {best-pair-of-paths from =} and

7}, where 7] is a vertex pointed to by =} plus the vertex .

2. A best-pair-of-paths from #! and #], = a best of {best-pair-of-paths from =} and =/,

where 7} is a vertex pointed to by =/}

Basically a best-pair-of-paths from =/ and m; must go through some vertex, say =},
pointed to by =]. See Figure 3 for illustration. Note 7 may also be pointed to by =!.
Due to dynamic programming, a best-pair-of-paths from #} and w7, k, j < i, has been
determined earlier, and that information is readily available. If there exists more that
one best-pair-of-paths from #] and #’, then we can freely choose one. The amount of
work needed to compute a best-pair-of-paths from @; and 7], for some j < i, is bounded
by the outdegree of vertex =/ in the transitively reduced graph 6‘[1'[’]. Thus the total

running time of Algorithm 5 is O(}nd,) = O(ne,), where d, is the outdegree of vertex v
v

and e, is the number of edges in (_'}:[I'I’ 1.

Due to the nature of dynamic programming, we can easily adapt Algorithm 5, with
some simple modifications, to solve the maximum bipartite subgraph with a chosen subset

problem for permutation graphs. Let S be the chosen set, S = {w}, w}, -, wl},

21

Figure 3. A best-pair-of-paths from n', and n’j through .

a <b< - <5 Because all directed paths L e R T a,[H’] have the
property that m, <7, < - <m, and v,>vy> - >y, a best-pair-of-paths from =/
and 7}, j < i, must include all those vertices = of S such that & < i, if they exist. For
if a vertex w} of S, A < i, is not included in a best-pair-of-paths from =/ and £, J %
then all best-pair-of-paths that build on top of best-pair-of-paths from =] and 7 will not
include the vertex =} either. To find a maximum bipartite subgraph which includes S,
we need to modify Step 4 of Algorithm 5 as follows: For j = 1 to i, compute a best-pair-
of-paths from vertices | and 7 jin C_}Z[H’] which includes all those vertices =} of S with
h = i. This modified Step 4 can be computed by considering only those vertices =} which
are pointed to by = such that a best-pair-of-paths from 7 and 7} plus the vertex =’
include all those vertices #} of S with h =< i, if such a best-pair-of-paths exists. Of
course the best-pair-of-paths determined in Step 5 of Algorithm 5 must include the whole
set S. The complexity of this modified algorithm is still O(ne,), where e, is the number of

-—p
edges in G,[I1"].

VIII. Split Graphs

A graph G = (V, E) is called a split graph if V can be partitioned into two subsets I
and C such that [is an independent set and C induces a complete graph. Split graphs are

also characterized as chordal graphs whose complements are also chordal graphs. Split

22

graphs are a proper subclass of chordal graphs. It is clear that the complement of a split

graph is also a split graph.

In this section we present a simple algorithm for finding a maximum bipartite sub-
graph of a split graph. First we make the following observation: If we partition the vertex
set V of a split graph into two subsets I and C such that I is an independent set and C
induces a complete graph (for example, if we use a maximum independent set algorithm
to find I), then any maximum bipartite subgraph of G contains at least one and at most
two vertices from C. Thus our task becomes: Find a bipartite subgraph of size |I| + 2, if
it exists. Otherwise the set I plus any vertex in C is a maximum bipartite subgraph of

G. The algorithm for finding a maximum bipartite subgraph of G goes as follows:

Input. A split graph G = (V,E).
Output. A maximum bipartite subgraph of G.

1. Find a maximum independent set of G using Gavril’s[1972] algorithm,

Let [, denote the maximum independent set, and C denote the set of vertices which
induces a complete graph, I, + C = V.

2, Determine M which is defined to be the adjacency matrix with (M Jupy = 1 if and only if
(u,v)EE, u€l,,, and vEC.

3. Calculate M* which is the boolean multiplication of M with itself
4. If there exist v;, v; € C such that (Mg).,mj = 0, then

5. LetB = Iy + v + v,
Otherwise

6. Let B = I, + v, for any v in C.
T Return B.

Algorithm 6. Maximum bipartite subgraph algorithm for split graphs.

To see Algorithm 6 correctly finds a maximum bipartite subgraph of a split graph G,
we note that two vertices v;, v; in C form a bipartite subgraph with [/, only if there
exists no vertex u in [, such that u is adjacent to both v; and v}, in other words, only if
the length of the shortest path between v, and v; in the subgraph (actually a bipartite
subgraph) determined by the adjacency matrix M (Step 2) is more than two, or
(M?),,,; = 0.

Gavril's maximum independent set algorithm on chordal graphs takes O(n + e) time

when it is combined with a perfect vertex elimination scheme of the same time bound (an

23

O(n + e) algorithm of Rose, Tarjan, and Lueker(1976] will do). Thus the running time of
Algorithm 6 is dominated by matrix multiplication (Step 3), in other words, the complex-
ity of Algorithm 6 is equivalent to that of matrix multiplication. Presently the most
efficient, asymptotically speaking, matrix multiplication algorithm runs in time O(n?237%)
[Coppersmith and Winograd, 1987]. (To be more precise, an nxn matrix may be multi-
plied using O(n*37) arithmetical operations; 2.376.. is the matrix exponent. For a more
practical matrix multiplication algorithm — O(n287) gee Strassen[1969]). Therefore we

can find a maximum bipartite subgraph for a split graph in time O(n23%76),

Adding the constraint that a maximum bipartite subgraph must include a chosen
subset of vertices may simplify the problem when we are dealing with split graphs. For
we know a bipartite subgraph can include at most two vertices from C, and even knowing
one vertex in C must be included in the bipartite subgraph will narrow down our choices,
The complexity of finding a maximum bipartite subgraph with a chosen subset for split
graphs, however, remains the same as the complexity of matrix multiplication, since the
chosen subset may contain only vertices that are in I, and in which case we will have to

use Algorithm 6.

In algorithm 6 we have reduced the problem: find a bipartite subgraph of size |I| +
2, if it exists, to the problem: determine if there exists two vertices in C such that the
shortest path between those two vertices is more than 2, and we solved the latter by
matrix multiplication. Now we observe that the second problem falls in the framework of
a more general question: is the diameter of a bipartite graph larger than 2? The diame-
ter of a graph is defined as the length of any longest shortest path between 2 vertices in
the graph. The complexity of this problem is the same as that of matrix multiplication.
An open problem is whether we can improve the running time of this algorithm, or
whether we can use a more combinatorial approach and achieve a time bound better than
O(ne) (i.e., without using matrix multiplication). Interestingly, the complexity of deter-
mining whether the diameter of a bipartite graph is greater than k, for any fixed k, is the
same as that of matrix multiplication; however, when k is not fixed, the complexity
becomes O(ne) using breadth first search or O(n*(loglogn/logn)''®) using an algorithm of

Fredman[1976].

24

IX. Concluding Remarks and Suggestions for Future Research

In this paper we have used the dynamic programming technique in numerous occa-
sions to solve the maximum bipartite subgraph problem, including interval graphs, 2-
track assignment problems, circular-arc graphs, and permutation graphs (the greedy
approach of Algorithms 1 and 2 can be considered as dynamic programming). In fact,
dynamic programming is also employed to solve the same problem for chordal graphs, by
Yannakakis and Gavril(1987]. We believe the approaches of Bern, Lawler, and
Wong{1987] and Baker[1983], both of which use dynamic programming, can be applied to
solve the maximum bipartite subgraph problem for outerplanar and k-outerplanar graphs,
respectively; although we have not checked the details. Dynamic programming has pro-
ven itself to be a powerful technique. However, it is not powerful enough (at least it has
not been shown to be) to solve the maximum bipartite subgraph problem for all classes of
graphs when such polynomial time algorithms exist, as demonstrated by Frank[1980] for
comparability graphs. Another interesting observation we make is that the decomposition
approach in dynamic programming in each class of graphs is different. Usually we have
put the graph in proper representation before the decomposition approach becomes
apparent. One such example is permutation graphs; in Algorithm 5 the permutation
graph is built as a transitively reduced transitive directed graph to be operated on by
dynamic programming. Another example is chordal graphs; in the algorithm of Yan-
nakakis and Gavril[1987], a chordal graph is first represented as an intersection graph of

a family of subtrees in a tree before the algorithm proceeds.

Due to the nature of dynamic programming, we can easily adapt the algorithms
based on dynamic programming for finding a maximum bipartite subgraph, with some
simple modifications, to solve the maximum bipartite subgraph with a chosen subset prob-
lem, as we have done for interval graphs, 2-track assignment problems, circular-arc
graphs, and permutation graphs. In the same spirit, the algorithm of Yannakakis and
Gavril[1987] for chordal graphs can also be modified to solve the maximum bipartite sub-
graph with a chosen subset problem by considering only those subgraphs (cliques) such
that if a vertex is in the chosen subset, then that vertex is colored in the subgraph, ie.,

included in the maximum bipartite subgraph.

In this paper we have presented efficient algorithms for finding a maximum bipartite

subgraph for various classes of graphs: however, the complexity of this problem for some

25

important classes of graphs still remain open, including perfect graphs. For perfect
graphs, both independent set and chromatic number problems are known to be polynomial
time solvable via the ellipsoid method (see Grotschel, Lovasz, and Schrijver[1981]). These
results may or may not provide a clue to the complexity of the maximum bipartite sub-
graph problem for perfect graphs. In any event, determining its complexity can be
interesting and challenging, and is left for future research. In addition, the complexity of
the maximum bipartite subgraph with a chosen subset problem for comparability graphs

and series-parallel graphs are open, and deserve further studies.

In this paper we have restricted our attention to those classes of graphs which have
polynomial algorithms for the maximum bipartite subgraph problem. Another possible
direction of study is in the development of approximation algorithms or heuristics for this
problem, meaning algorithms which produce a bipartite subgraph of a certain size, possi-
bly parameterized by the chromatic number, for all graphs. This is another interesting

and challenging problem left for future studies.

Acknowledgements

We thank Mihalis Yannakakis for helpful discussion on the runtime of the max-
imum bipartite subgraph algorithm for chordal graphs. We thank Rachel Manber for

numerous discussions and for pointing to us the relevant references.
References

Baker, B. S. [1983]
Approximation algorithms for NP-complete problems on planar graphs, Proc. 24th
Annual Symposium on Foundations of Computer Science, pp.265-273.

Bern, M. W, E. L. Lawler, and A. L. Wong [1987]
Linear-time computation of optimal subgraphs of decomposable graphs J. of Algo-
rithms 8, pp.216-235.

Booth, K. S. and G. S. Lueker [1976]
Testing for the consecutive ones property, interval graphs, and graph planarity using
PQ-tree algorithms, J. Comput. System Sci. 13, Pp.335-379.

Coppersmith, D. and S. Winograd [1987]

Matrix multiplication via arithmetic progressions, Proc. 19th Annual ACM Sympo-
sium on Theory of Computing, pp.1-6.

26

Frank, A. [1980]
On chain and antichain families of a partially ordered set, J. Combin. Theory Ser. B
29, pp.176-184.
Fredman, M. L. [1976]
New bounds on the complexity of the shortest path problem, SIAM J. Comput. 5,
pp-83-89.
Gavril, F. [1972]
Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph, SIAM J. Comput. 1, pp.180-187.
Golumbic, M. [1980]
Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York.
Grotschel, M., L. Lovasz, and A. Schrijver [1981]
The ellipsoid method and its consequences in combinatorial optimization, Combina-
torica 1, pp.169-197.
Gupta, U. I, D. T. Lee, and Y.-T. Leung [1982]
Efficient algorithms for interval graphs and circular-arc graphs, Networks 12,
Pp.459-467.
Johnson, D. [1985]
The NP-completeness column: an ongoing guide, J. Algorithms 6, pp.434-451.
Lewis, J. M. and M. Yannakakis [1980]
The node-deletion problem for hereditary properties is NP-Complete, J. of Comp.
System Science 20, pp.219-230.
Manber, R. and G. Narasimhan [1987]
Algorithms for the maximum induced bipartite subgraph problem on interval and
circular-arc graphs, U. of Wisconsin - Madison CS Technical Report #696, April,
1987.
Rose, D. J, R. E. Tarjan, and G. S. Lueker [1976]
Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5, pp.266-283.
Sarrafzadeh, M. and D. T. Lee [1987)]
A new approach to topological via minimization, Northwestern University, Center
for Integrated Microelectronic Systems Technical Report CIMS-87-01, November,
1987.
Strassen, V. [1969]
Gaussian elimination is not optimal, Numerische Mathematik 13, pp.354-356.
Takamizawa, K., T. Nishizeki, and N. Saito [1982]
Linear-time computability of combinatorial problems on series-parallel graphs,
JACM vol 29, no 3, pp.623-641.
Tucker, A. [1971]
Matrix characterization of circular-arc graphs, Pacific J. Math. 39, pp.535-545.

27

Tucker, A. [1980]
An efficient test for circular-arc graphs, SIAM J. Comput. 9, pp-1-24.
Yannakakis, M. [1987]
Personal communication.
Yannakakis, M. and F. Gavril [1987]
The maximum k-colorable subgraph problem for chordal graphs, IPL 24, pp.133-137.

