SUPPORTING PROBABILISTIC DATA
IN A RELATIONAL SYSTEM

Hector Garcia-Molina
Daryl Porter

CS-TR-147-88

February 1988



Supporting Probabilistic Data in a Relational System

Hector Garcia-Molina
Daryl Porter

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

ABSTRACT

It is often desirable to represent in a database entities whose properties
cannot be deterministically classified. We develop a new data model that
includes probabilities or confidences associated with the values of the attri-
butes. Thus we can think of the attributes as random variables with probabil-
ity distributions dependent on the entity the tuple purportedly describes. This
new model offers a richer descriptive language allowing the database to more
accurately reflect the uncertain real world. It also offers a new interpretation
of information incompleteness. We study three sets of issues: the proper
model for probabilistic data, the semantics of probabilistic data, and the
choice of operators and language necessary to manipulate such data.

February 14, 1988



Supporting Probabilistic Data in a Relational System

Hector Garcia-Molina
Daryl Porter

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

I. Probabilistic Model

Entities with stochastic attributes abound in real database applications. For example,
Toyota might have demographic information indicating that customers living in a certain
region are likely to purchase a Corolla with probability 0.7 or a Celica with probability 0.3. An
oil company might have a database of potential Oil Sites with probabilistic projections as to
the Type and Quantity of oil at each site. Military applications generate many enticing proba-
bilistic scenarios: Entities such as Military Bases where information about hardware at the
camp is uncertain or an entity set like Spies whose Location attribute is the product of guess-
work. In a traditional database application, Employees, the qualitative attributes Work Qual-
ity, or Enthusiasm could be introduced. The stock market features Companies with many
attributes that are notoriously non-deterministic. Finally, Medical Records describing, say, a
patient’s Susceptibility to Heart Attack or the Causes of a Disease could be stochastic in nature.

In this paper we develop the Probabilistic Data Model (PDM), an extension of the infor-
mation incompleteness model of Lipski in [Imi3, Lip, Lip2], that includes probabilities (or
confidences) associated with the values of attributes. The PDM will offer a relational scheme
well suited for representing the kinds of applications discussed above.

The PDM features relations whose key is deterministic in nature. That is, the relation
describes a set of real entities such as EMPLOYEES where the key might be <NAME,
ADDRESS>. The rest of the attributes describe properties of these entities and can be deter-
ministic in nature (i.e., the DEPARTMENT they work for) or stochastic (i.e., the QUALITY
of work they do assessed through a vote by ten people). These dependent attributes are neces-
sarily conditional on the value of the key, but they may be independent of each other, jointly
distributed, or a mixture of both.



-2.

EXAMPLE 1.1 Probabilistic Relation COMPANY

Key Independent Interdependent Independent
Deterministic Stochastic Stochastic
EMPLOYEE DEPARTMENT QUALITY BONUS SALES
Jon Smith Toy 0.4 [ Great YES | 0.3 $30,000
0.5 [ Good YES|] 0.5 $35,000
0.1[Fair NO]
Fred Jones Houseware 1.0 [ Good YES] 0.5 $20,000
0.5 $25,000

The relation in this example describes two entities, "Jon Smith" and "Fred Jones." Attribute
DEPARTMENT is deterministic. e.g., it is certain that Jon Smith works in the Toy depart-
ment. In this example, QUALITY and BONUS are probabilistic and jointly distributed. For
instance,

P[ QUALITY = "Great" AND BONUS = "YES" | EMPLOYEE = "Jon Smith"] = 0.4

This seems especially sensible if, as the example implies, QUALITY functionally determines
BONUS. The last attribute, SALES, describes the expected sales by the employee. It is pro-
babilistic but independent of the other non-key attributes. For instance,

P[ SALES = "$35,000" | EMPLOYEE = "Jon Smith"] = 0.5.

Note that in Example 1.1 the SALES probabilities for Jon Smith do not add up to 1.0.
This is an important feature of our model: we allow for missing probability. In our model we
assume that the missing probability is distributed over the remaining domain values, but we
make no assumptions as to how it is distributed. In our sales example, the missing 0.2 proba-
bility is distributed over all possible sales values except 30,000 and 35,000. All of the 0.2 could
correspond to some value, say 10,000, or it could be uniformly distributed, or any other possi-
bility.

Other interpretations of missing probability are possible but not considered here. For
example, in some cases the missing probability may be distributed over all values, including
those explicitly listed. (For instance, suppose that 10 people are polled to estimate Jon
Smith’s sales for the upcoming year. For simplicity, only two values are being considered:
last year’s sales of $30,000, or last year’s sales plus inflation $35,000. Three people have
estimated sales of 30,000; five of 35,000. Two people have not been reached and give rise to
the 0.2 missing probability.) Under this interpretation, we estimate the Jon Smith’s sales will
be 30,000 with probability somewhere between 0.3 and 0.5. This uncertainty in the probabili-
ties is one complication we wish to avoid, at least in this paper.

In other situations, we may wish to assume that the missing probability is uniformly dis-
tributed [Mey] over the remaining values. Since in this case the distribution is known, we
represent it with the shorthand notation U[::] to be presented in Section V. In the example,
0.2 Ul[::] would be included as a third entry for the SALES distribution for tuple Jon Smith.
The probabilities now add up to one and there is no missing probability.



«Xa

We believe that missing probability is a powerful concept. It makes it easier to input
data into a probabilistic relation, i.e., it is not necessary to have all information before some
tuple can be entered. It also makes it possible to eliminate uninteresting information when
displaying relations. For example, a user may only be interested in seeing values that have a
probability greater than 0.5; the rest can be ignored. Finally, as we will see later on, missing
probability arises naturally during relational operations, even when the base relations have no
missing probability.

A central premise of our model is that keys are deterministic. This is not the only
choice, but we feel that deterministic keys are very natural and lead to simple relational
operators. Furthermore, it is still possible to represent stochastic entities with our model.
For instance, suppose that we are not certain whether Jon Smith and Fred Jones are employ-
ees in company ACME of Example 1.1. Say the probability that Jon Smith "exists," i.e., works
for ACME, is 0.7. We can add an attribute COMPANY to our relation, and add the value 0.7
ACME for Jon Smith. The 0.3 missing probability is the likelihood that Smith does not exist
at ACME.

Before continuing it will be useful to briefly discuss where the "probabilistic data" for our
relations come from. There are actually many possibilities. One is to have users assign the
probabilities according to their "confidence" or "belief" in the values. Thus a user, after read-
ing recommendation letters for a job candidate, may say that he is 80% confident that this is a
good candidate.

A second option is to compute the probabilities from an underlying sample. For exam-
ple, a conventional deterministic relation may contain the evaluations of Fred Jones made by
100 people. Say 15 people find Jones "Very Good", 85 find him "Good". The relative frequen-
cies can be interpreted as probabilities, leading to the following probabilistic relation:

EXAMPLE 1.2 Relative Frequency Relation

NAME JUDGMENT
Jones 15/100 Very Good
85/100 Good

In Section IV we will present a new operator (Stochastic) that will automatically generate a
probabilistic relation like the one in Example 1.2 out of an underlying deterministic relation
containing samples.

Probabilities can also be assigned to data according to their timeliness. For instance,
suppose that at 9:00am the position of a ship is reported as X. As time progresses, the likeli-
hood that the ship is still at X decreases, so the user may provide a time decreasing function to
generate the probabilities attached to positions. (Note that missing probability is useful once
again.)

Finally, probabilities can also be generated out of conflicting data. Say two relations
report the positions of ships. If one reports a given ship at X and the second one at Y, it may
be desirable to report the ship at X with probability 0.5 and at Y with probability 0.5. In Sec-
tion IV we will present another new operator, Combine, that allows us to perform this type of



iy

operation. Combine takes two probabilistic (or deterministic) relations and merges them into
a single one, computing new probabilities.

Incidentally, in this paper we will focus exclusively on discrete probability distribution
functions, either explicitly enumerated (as in our examples so far), or via known distributions
(e.g., uniform; see Section V.) However, it may be possible to extend our model to continu-
ous probabilities, and this opens the door to other sources of probabilistic data. For example,
we may know that a given radar has a normally distributed error with standard deviation of
one mile. Thus, the position of an airplane will be given by a normal distribution.

In the rest of this paper we will discuss our model and its relational operators in more
detail. In the next section we briefly look at prior work that is related to ours. Section III
explores "conventional" relational operations (e.g., select, join) on probabilistic data, while
Section IV deals with our proposed new operators (e.g., stochastic, combine). In Section V
we study the use of discrete distributions, in particular the uniform one.

II. Related Work

Researchers have devoted much work to extending the traditional complete information
model to more accurately reflect the real world. The following examples summarize the evolu-
tion of the incomplete information models.

EXAMPLE 2.1 Null Value Model

EMPLOYEE SALES
Jon Smith $30,000
Jim Jones mnnmn

Here, Jim Jones has been hired but no SALES estimate is known. NULL values are studied at
length in [Imi, Imi2, Mor, Rei, Rot2, Vas].

EXAMPLE 2.2 Null Value | Attribute Not Applicable Model

EMPLOYEE SALES SPOUSE
Jon Smith $30,000 N/A
Jim Jones 7277777 Susan Jones

The database above represents the bachelor Jon Smith and Jim Jones who is married. The
N/A model is studied in [Mor, Rot2].

EXAMPLE 2.3 Lipski’s Small Subset Model from [Imi3, Lip, Lip2]

EMPLOYEE SALES SPOUSE
Fred Jones {$30K, $35K} N/A
Jon Smith 7777777 Susan Jones

Here, it is expected that Fred Jones will have sales of either $30,000 or $35,000. Note how
more information is present here than with the traditional NULL value in the Jon Smith tuple.



-5-

EXAMPLE 2.4 Tuple Space as Sample Space [Cav] A,B € {0, 1}

A B p(Tuple = .)
0 0 0.35

0 1 0.25

1 0 0.01

1 1 0.39

In the model proposed in [Cav], each probability represents the likelihood that a tuple appears
in a relation. For example, the probability that tuple <0,0> exists is 0.35

Fuzzy relations are discussed briefly in [Gar] and referenced as an area of future
research in [Cav]. Each relation is viewed as a fuzzy set, with tuples that may or may not be in
a relation. A related idea, fuzzy response, is described in [Mor]. Here, the response to a
query is viewed as a fuzzy set, and the tuples are once again given a confidence rating as to
whether they belong in the response or not. Two additional papers that discuss incomplete
information are [Liu, Men].

In [Won], Wong views queries as statistical experiments in which information was
incomplete because, for example, it was old. His method centered around computing the
query response as those tuples which minimized the two types of statistical error. In another
paper [Gho], Ghosh discusses statistical relational tables. Although there are similarities (see
for instance the operator STOCHASTIC we define in Section IV), our main interest in this
paper is on uncertain, not statistical information.

The PDM model we are proposing here was of course inspired by many of the prior
ideas relating to uncertain information. In a way, it can be viewed as a generalization of many
of these concepts. Clearly, conventional relations can be represented by making all attributes
deterministic. Null values can be represented by making all probabilities missing (e.g., a
blank entry for an attribute). (As an alternative, we may specify 1.0 U(::), indicating that all
values are equally likely.) The N/A value could be represented, as is commonly done, by a
distinguished and unique domain value. To model Lipski’s sets, a uniform density function
could be assigned to the members of the set. (For example, the sales of Fred Jones in Exam-
ple 2.3 could be represented as it is in Example 1.1.) The existence of tuples in a relation (as
done in [Cav]) could be simulated as we suggested in Section 1. We believe that the generali-
zation we are proposing here is quite natural and allows representation of a broader set of
applications.

Our work is also related to the current efforts with non-first normal form relations [Dad,
Rot, Rot2]. As a matter of fact, our probabilistic relations are simply nested relations with
depth two. Each attribute in the top level relation can be a relation that gives the probability
distribution function for the attribute. For example, the relation of Example 1.1 can be
described with the following schema, using the notation of [Rot]:

COMPANY — <EMPLOYEE, DEPARTMENT, QB, SALES >
DEPARTMENT — <P(.), D NAME >



QB — <P(.), QUALITY, BONUS>
SALES — <P(.), C AMOUNT>

If names do not appear on any left hand side then we have an atomic valued attribute. In the
Appendix we describe a simpler schema description tailored more to our probabilistic appli-
cation. Our focus in this paper will be on the probabilistic operators and not on the non-first
normal form issues.

III. Relational Algebra

In this section we look at the conventional relational algebra operators project, select,
join, and cartesian product. On deterministic relations, these operators work exactly as one
would expect. On probabilistic relations, the results are not conventional although similar in
character to the deterministic case. Here we will only study the more interesting case, proba-
bilistic relations.

Our discussion will center on a set of representative examples. We believe this is the
most effective way of explaining our ideas. A more formal description of our proposed syntax
can be found in the Appendix. We have no space to present detailed algorithms for perform-
ing each operator. However, we feel that, given the examples, developing the algorithms is
straightforward.

Our relational operators can manipulate both the top level relation and the second level
attribute relations. To refer to a top level relation we use its name; for an inner relation we
use RA B C where R is the top level name and A, B, C, ... are the jointly distributed attri-
butes. We start by discussing the project operator. For our examples we use the following
relation.

PROJECT EXAMPLE Relation R
KEY AB C
k1 03[albl] | Od4cl
05[a2b1] | 06¢c2
0.2 [a2 b2]
k2 10[a2b2] | 05c2
0.5¢c3

EXAMPLE 3.1.1 Relation Level Project
QUERY: PROJECT onto KEY, B attributes



- s

This amounts to computing the marginal probability distribution. The result is:

KEY B
k1 0.8 bl
0.2b2
k2 1.0b2

EXAMPLE 3.1.2 Relation within Relation Project

QUERY: PROJECT out A portion of A_B attribute group.

SYNTAX:IIz(RA B)

This is a project within the second level relation R.A_B. This leaves the rest of the tuple
intact, affecting only the attribute group named. The result is:

KEY B &
k1 0.8 b1 04cl
02b2 0.6 c2
k2 1.0b2 052
0.5¢3

EXAMPLE 3.1.3 Projecting out the KEY

QUERY: PROJECT onto A, B, C attributes

SYNTAX: HA,B,C(R)

In our two previous examples the relation key was not projected out. In this example, it is. In
our model all tuples must have deterministic keys, so the result will contain a new key: the
name of the relation, R. The one tuple in the result will contain the "expected" distributions
for each attribute group in R. For our example, the result is:

*KEY* A B C

R 0.15[a1bl] | 020cl
025[a2b1] | 0.55¢2
0.60 [a2b2] | 0.25¢3

To illustrate, consider the 0.55 probability associated with attribute value c2. This means that
if we get a random tuple from R, it will have a c2 attribute value (for C) with probability 0.55.
(computed as 0.6*0.5 plus 0.5%0.5). Thus, the resulting relation provides a "probabilistic sum-
mary" of the original relation. There are actually several other types of summaries that may
be computed, but we will discuss these in Section IV when we present the COMBINE opera-
tor.

We now turn our attention to selects. As with projects, a select can operate on the top
level relation or on an inner relation. The select condition can refer to the attribute values,
their probabilities, or both. A condition on a single attribute group A B_C will be of the form

A B_C: value condition, probability condition



-8-

In the value condition, V refers to the value of the attribute, and "*" represents "do not care."
In the probability condition, the probability of the value is P. Conditions on more than one
attributes can be combined with logical ANDs, ORs, etc. in a conventional fashion. (If an
attribute is deterministic, a condition can be written in the standard way, e.g., A: V > 5 can be
written as A > 5.) (A more elegant but "harder to explain in limited space" syntax for select
conditions is defined in [Gar]. Recall that our simpler syntax is summarized in the Appendix.)

For our examples we use the following relation:

SELECT EXAMPLE Relation R
KEY ABC D
k1 03[alblcl] | 04dl
0.5[a2blcl] | 0.6d2
0.2 [a2 b2 c1]
k2 0.7[a2b2¢cl] | 05d2
03[a3b2c2] | 05d3

EXAMPLE 3.2.1 Probability Range Select

QUERY: SELECT all tuples that have a value of d2 for their D attribute with probability
greater than 0.3.

SYNTAX: 0p.v = a1,p > 03(R)

Since this is a select over the top level relation (select over R), the result contains complete R
tuples. In our example, only tuple k1 satisfies the condition and is in the result.

EXAMPLE 3.2.2 Relation Within Relation Select
QUERY: Display only those portions of A B_C with B = b1.
SYNTAX: UA_B_C: V=[% 1’-](R.A_B_C)

The result is:
KEY A B C D
k1 03[al bl cl] | 04d1
0.5[a2 bl c1] | 0.6d2
k2 05d2
0.5d3

Since this is a select over R A B C, all tuples originally in R appear in the result. In the dis-
tributions for the A B C group, the lines that do not satisfy the condition are dropped. Also
note that in the condition V = [*, b1, *] the "*" is used for attributes where there is no condi-
tion.

As the example shows, selects can generate missing probability. In this case, the user is
not interested in probabilities of tuples without a b1 value. We have lost information in the
process. For instance, looking at the result we now have no information for the A B_C group



-9.

of the k2 tuple. However, this loss may be desirable so the user can concentrate of the data
that he is interested in.

EXAMPLE 3.2.3 Lipski Upper Bound Select

QUERY: SELECT all tuples such that we can’t rule out that A = a3.
SYNTAX: 04 B ¢:v = [a3,4*], P > 0(R)

The result is the k2 tuple.

EXAMPLE 3.2.4 Lipski Lower Bound Select
QUERY: Find all KEY values such that it is certain that C = c1.

SYNTAX: llggy(oc: v = c1, p = 1.0(IIkey,c(R)))
The intermediate and final results are:

1. PROJECT 2. SELECT all tuples 3. PROJECT
onto KEY, C with P[C=c1|KEY=7]=1.0 onto KEY
KEY c KEY C KEY
k1 1.0cl k1 1.0 cl k1
k2 0.7cl
03c2

All of our select examples have used a relation with no missing probability. If there is
missing probability, the select operator works in the same fashion (only considering the exist-
ing probabilities); however, we have to be careful in interpreting the results. Consider once
again example 3.2.3, "Select all tuples where we cannot rule out that A = a3." Suppose that
we change R so that tuple k1 now has some missing probability for A B _C (e.g., delete the 0.3
[al,bl,c1] entry). The select operation of example 3.2.3 would not select tuple k1, even though
it is now conceivable that the value [a3,*,*] does exist with some probability greater than 0.

If we wish to force the select to consider missing probability, we use MP instead of P in

the query, i.e.,
04 B C:V = [a3,**], MP > o(R)
This would select both tuples in the modified R.

In general, we would expect users to ignore missing probability in their selects (P) where
the number of values in the domain is very large and the probability of a nonappearing value
is "insignificant." If the domain is small and the amount of missing probability is significant,
users may prefer to consider the missing probability (MP).

Next we consider natural joins. We restrict our attention to the case where join is most
natural, i.e., when the join attribute is the key of one relation, a foreign key of the other rela-
tion, and the condition is equality. To motivate the need for this type of join, consider the fol-
lowing example.



-10 -

EXAMPLE 3.3.1 Natural Join

Consider the following two relations:

SHIPS DESCR
NAME TYPE TYPE MAX-SPEED
Maria 0.6 Frigate Frigate 0.7 20-knots
0.3 30-knots
0.4 Tugboat
Tugboat 1.0 15-knots

We are 40% sure the Maria is a Tugboat. We know that Tugboats have a maximum speed of
15 knots, so it makes sense to say that we are 40% sure the Maria’s maximum speed is 15
knots. Similarly, we are 60% sure she is a Frigate, and Frigates have a maximum speed of 20
knots with probability 0.7, so it is reasonable to expect the Maria to have a maximum speed of
20 knots with probability 0.6 times 0.7. This motivates the natural join operator we now illus-
trate.

QUERY: JOIN relations SHIPS and DESCR over the common attribute TYPE (TYPE must
be the key of one of the relations.)
SYNTAX: SHIPS > < DESCR

The resulting relation is:

NAME TYPE MAX-SPEED
Maria 0.6*0.7 [Frigate 20-knots]
0.6*0.3 [Frigate 30-knots]
0.4*1.0 [Tugboat 15-knots]

The resulting probabilities are obtained by multiplying the corresponding probabilities in
SHIPS and DESCR. This operation can be justified as follows. To simplify our expressions,
we use the attribute initials, i.e., N will be NAME, T will be TYPE, and M will be MAX-
SPEED.

e  The T attribute of SHIPS gives P[T | N].
e  The M attribute of DESCR gives P[M | T].
e  In the resulting relation, the T M attribute is computed as P[T | N]-P[M | T].

e  This product can be rewritten as:

P[T |N]PM |T]
=P[T |N]P[M |T,N] (assuming N and M independent)
= (P[T,N]/PIN])(P[T.M,N]/P[T.N]) (Bayes Rule)
= P[T,M,N]/P[N] (cancelling P [T,N ] term)



-11-

= P[T,M | N] |

Thus our natural join operation computes what we expected, the probability that T and M
jointly take the values given in SHIPS > < DESCR. The operation is valid as long as N and
M are independent. This is implicit in the example relations.

Although not illustrated by our example, join also works if the relations have more than
two attributes. For example, if the DESCR relation had an additional probabilistic attribute
LENGTH, the result of the join would contain a second group TYPE_LENGTH.

EXAMPLE 3.3.2 Natural Join that generates missing probability
Suppose that the DESCR relation given earlier does not contain a tuple for Tugboat. The
result of the join in this case would be:

NAME TYPE MAX-SPEED
Maria 0.6*0.7 [Frigate 20-knots]
0.6*0.3 [Frigate 30-knots]

The resulting relation has 0.4 missing probability. The interpretation is quite natural. With
probability 0.4 the TYPE MAX-SPEED attribute takes on a value [Tugboat, ?], where "?" is
some speed value. The distribution of this probability over all possible [Tugboat, ?] values is
unknown and is not represented in the resulting join.

The last operator we present is Cartesian Product. It combines two relations represent-
ing independent entities into a single relation giving their joint probability distribution. We
again use an example to illustrate.

EXAMPLE 3.4.1 Cartesian Product
QUERY: Cartesian product of R1 and R2 (displayed below).
SYNTAX: R1 X R2

Relation R1 Relation R2
KEY A B C KEY’ DE F
ki 0.3 [al b1] 04 cl K1 0.4 [d2 el] 1.02
0.7 [a1 b2] 0.6c2 0.6 [d1 €3]
k2 0.5 [a2 b2] 1.0cl K2 1.0 [d2 e]] 0.2 f1
0.5 [a1 b3] 0.813

The result is as follows. (Attributes KEY and KEY’ are the key of the result relation.)



-12-

KEY | KEY AB C D E F

k1 KU | 03[albl] | O4cl | O4[d2el] | 10f2
0.7[a1b2)] | 06c2 | 0.6[d1e3]

k1 K2 | 03[albl] | O4cl | 10[d2el] | 02f1
0.7[a1b2] | 0.6c2 0.8 3

k2 KU | 05[a2b2] | 10cl | 04[d2el] | 10f2
0.5 [a1 b3] 0.6 [d1 €3]

%) K2 | 05[2b2] | 10c1 | L0[d2el] | 02f1
0.5 [al b3] 0.8 f3

We emphasize that the cartesian product is only valid if the entities are independent. For
example, P[A,B|KEY] must be equal to P[A,B|KEY, KEY’]. The operation would not be
valid with the relations of Example 3.3.1 (SHIPS, DESCR) where the attributes are depen-
dent.

Our model also includes other relational operators like UNION, INTERSECT, and
MINUS. They work just like their deterministic counterparts. In particular, tuples would
only match for an intersection or a minus if they had identical values and distributions. In a
Union, tuples with the same key but different distributions would be kept as two tuples (violat-
ing the key constraint). This is discussed further in the next section.

IV. New Operators

We have just finished exploring the implications of the PDM on the traditional relational
algebra operators. In this section we present new operators that have no counterpart in con-
ventional systems. The four operators are COMBINE, STOCHASTIC, DISCRETE, and
GROUP.

The COMBINE operator is invoked in conjunction with another operator to eliminate
tuples with duplicate key values. For example, suppose that two independent observers keep
track of the distance of objects to a given site. Each observer generates a probabilistic rela-
tion for his data. If two such relations are available, it may be desirable to perform a union to
combine the information. Say each relation contains distance data for an object k1. The
resulting union relation will contain two k1 tuples (among others). This is illustrated on the
left hand side table below. (For example, the first observer says the object is 2 miles away
with probability 0.2. Both agree that the object is 3 miles away with probability 0.3.)



- 13-

Original R After COMBINE
K D K D
k1 0.2 2 | Average k1 0.12
033 033
02 4

k1 033
0.4 4 Sum k1 0.06 5
017 6
012 7
Merge k1 022
033
04 4

Since the distance information we have for k1 differs, the tuples are not quite duplicates
so the standard union operator leaves both tuples. However, the key constraint has been
violated so this is not a legal relation in our model. The solution is to combine or merge the
two distributions into a single one. This is what COMBINE does. A COMBINE can be
explicitly invoked with the command that requires it (union in our example), or an automatic
COMBINE strategy can be defined when a relation is created.

The strategy for combining probability distributions must be given by the user since it
depends on the application semantics. However, we can identify at least three common
"library" strategies that may be provided by the system. Each of these is illustrated above on
the right hand side. (The right hand side shows three possible resulting tuples, not a relation
with three tuples.)

(a) Average. The probabilities for each value are added and normalized by the number of
repeated tuples. This option makes sense in our example. The resulting tuple for k1
would contain the expected distribution if an observer were picked at random. (We may
also have a weighted average where each observer is given a weight, but we do not dis-
cuss this option here.)

(b) Sum. Here we treat each attribute as an independent random variable and we compute
the distribution of the sum of the random variables [May]. This may make sense if we
are dealing with, say, deposited money. If with probability 0.2 one customer deposited 2
dollars, and with probability 0.3 the second customer deposited 3 dollars, we can expect
2+3 dollars with probability 0.2*0.3 = 0.06. The rest of the values are computed in a
similar fashion. (If the attribute values are not numeric, i.e., cannot be added, a map-
ping function must be provided. See the DISCRETE operator later on in this section.)

(c) Merge. The distributions are assumed to be selections from the same underlying distri-
bution. Thus, the distributions are simply merged. (An error occurs if the same value
appears with differing probabilities in two tuples. An error also occurs if probability of
the resulting relation is grater than 1.) The Merge option can be used to reconstruct



-14 -

distributions that have been partially lost due to selects or other operations. Later on we
will present an example to illustrate this.

In section III we discussed the problem of projecting out the key of a relation. Although
we did not mention it there, we implicitly used an averaging combine to obtain the summary
distribution. In other words, unless the default combine strategy is Average, the command for
Example 3.1.3 should be:

Iy p.c(R); COMBINE Average (A_B), Average (C)
(Note that we allow different combine options for each group.) The other combine options
now give us the flexibility of computing our summary in different ways. For example, if attri-
bute C of Example 3.1.3 represents the amount of usable grain (not spoiled) in a storage silo,
then the summary will give, with the Sum option, the (distribution of the) total amount of
usable grain in all silos.

STOCHASTIC is an operator that takes as input a deterministic relation and a proba-
bilistic schema and returns a probabilistic relation based on that schema. The probabilistic
schema describes what attributes comprise the KEY, and which of the dependent attributes
are jointly distributed or independent. The probabilities for the new relation are given by the
relative frequencies of the values in the original relation. Hence, one deterministic relation
can generate many different probabilistic relations. EXAMPLE 4.3 demonstrates STOCHAS-
TIC.

EXAMPLE 4.1 STOCHASTIC
Relation R STOCHASTIC(R;<KEY; A B; C>)
KEY OBSERVER A B C KEY AB C
k1 1 al bl cl ki1 0.6 [al b1] 0.4cl
k1 2 al bl cl 0.4 [a2 b2] 04 c2
k1 3 al bl c2 0.2c3
k1 4 a2 b2 c2
k1 %) a2 b2 3 k2 0.8 [a3 b3] 1.0 c3
0.2 [al b3]
k2 1 a3 b3 c3
k2 2 a3 b3 c3
k2 3 a3 b3 c3
k2 4 a3 b3 c3
k2 5 al b3 c3

For example, attributes A and B can be the QUALITY and BONUS for employees as sug-
gested five managers (the observers). Since 3 out of 5 suggest a quality of al and a bonus of
bl for employee k1, the resulting relation states that the value [al, bl] occurs with probability
0.6 for k1.

Operator DISCRETE goes the opposite direction as STOCHASTIC. DISCRETE takes
as input a probabilistic relation and yields a deterministic relation as output. This operator is
similar in spirit to [Gel], where the "expected value" result to a query is discussed. Here,



- 15

however, we compute an expected value relation. When the attribute values are not numeric
(or are not atomic values), a mapping must be given to translate the values into numbers.

EXAMPLE 4.2 DISCRETE

Suppose we have a relation R for students and their grades in a course, as shown below on the
left. The grades are entered in a typical A+, A, A-, B+,... fashion To compute each student’s
expected grade, we need to assign numeric values to the grades. Let F be the function that
translates the grades as follows: A+ = 4.3, A = 4.0, A- = 3.7, B+ = 3.3, ... With F, the
expected grades can be computed by DISCRETE as shown on the right.

Relation R DISCRETE(R; GRADE, F)
NAME GRADE NAME GRADE
John 0.7A John 3.6
02B
0.1C Tom 3.2
Tom 0.5 A-
0.5 B-

Expected value computations:
For John: 0.7(4.0) + 0.2(3.0) + 0.1(2.0) = 3.6
For Tom: 0.5(3.7) + 0.5(2.7) = 3.2

There are other options for making relations discrete (e.g., choose the most likely grade) but
we do not discuss them here due to space limitations.

Our last operator is GROUP. It fuses together two or more attribute groups in a rela-
tion into a single group. In doing this, it computes the joint probability distribution for the
new group.

EXAMPLE 43 GROUP

Relation R GROUP(R; TYPE COUNTRY)
NAME TYPE COUNTRY NAME TYPE COUNTRY
Maria .6 Frigate .7 USA Maria .6*.7 [Frigate USA]
4 Tugboat 3 CAN .6*.3 [Frigate CAN]
4*7 [Tugboat USA]
4*.3 [Tugboat CAN]

To see why this operator is useful, let us assume that we wish to perform a join of relation R
above with a DESCRIPTIONS relation that gives the speed of each ship, as in Example 3.3.1.
However, suppose that the speed of a ship is determined by both its type and its country (e.g.,



s T

Canadian Frigates may be faster than USA Frigates). Before we can join R with DESCRIP-
TIONS, we must GROUP together TYPE and COUNTRY as in the example. Then the
group TYPE _COUNTRY is a foreign key of the DESCRIPTIONS relation and the join can
be performed.

Notice that we have not defined an inverse to the GROUP operation. We expect that in
most cases attributes within a group will not be independent, so breaking up the group will not
be valid. However, if the attributes are independent, the inverse GROUP operation can be
performed with projects and a cross product. In the above example, if we let S = GROUP(R;
TYPE, COUNTRY), then R could be reconstructed as (using initials for the attributes):

My,r,c (Tly, 7(S) >< Ty, (5) )
EXAMPLE 4.4 A More Substantial Example

In closing this section we present an example that shows how several of our operators can be
used together. In Example 3.3.1 we showed the natural join of two relations, SHIPS(N,T) > <
DESCR(T,M). (N was the NAME, T the TYPE of ship, and M the MAXIMUM-SPEED.)
We now show how the natural join can be performed via a cross product, in a manner analo-
gous to doing a conventional join with a cross product (followed by select and project). The
steps are as follows:

(1) T1+ SHIPS X DESCR

(2) T2« osyps.t:v = pEscrT(T'1)
(3) T3+ GROUP(T2, SHIPS.T, M)

(4) T4« Iy, supsr m(T3); COMBINE Merge (SHIPS.T_M)

Unfortunately we do not have space to show all the intermediate results, but here is a brief
description. The first step performs a cross product that, strictly speaking, is not valid
because the two relations are not independent. However, the next step deletes the invalid
probabilities, leaving us with correct but partial distributions. These distributions are merged
in the last step. (In relations T2 and T3 there are two attributes with name T. To distinguish
them, we use the notation R.T, where R is the original relation where T appeared.)

Note that we are not advocating cross products between dependent relations here. We are
only illustrating that our commands (without the natural join) are powerful enough to perform
a join. If a user needs to do a join, he should of course use the operator that is provided.

V. The Uniform Distribution

Our model permits the use of some well known probability distribution functions as an
alternative to explicitly enumerating the probabilities. Here we focus exclusively on the uni-
form distribution; however, the same principle can be used for other distributions such as the
binomial or geometric.

A uniform distribution is specified with the notation
n Ul range ].
The value n is the total probability that is to be uniformly distributed over all values in the
range. The range can be specified as a list of values (e.g., v1, v2, v3), or if the values in the
domain have a sequence, as a starting and ending value (e.g., 12..17). No value in a range



i Bf=

should appear with an explicit probability or in another range within the same distribution.
We also define the range notation :: to represent all possible domain values that do not
appear elsewhere in the distribution.

EXAMPLE 5.1 Use of the :: Notation
Let the domain of attribute A be {al, a2, a3, a4, a5, a6}. Then

KEY A KEY A
k 0.3al is k 0.30 a1
0.5a2 0.50 a2
02U[:x] | equivalent 0.05 a3
0.05 a4
10.:: 0.05 a5
0.05 a6

EXAMPLE 5.2 Ranges with Attribute Groups
Let the domain of attribute A be {al, a2} and of B {b1, b2, b3}.

KEY A B KEY AB
k 0.3 Ulal,a2 b1] is k 0.15 [al b1]
0.5 U[al =] 0.15 [a2 bl]
02U[: ] equivalent 0.25[al b2]
0.25 [al b3]
o SN 0.10 [a2 b2]
0.10 [a2 b3]

Note that the order of the ranges in the left hand side distribution is important. For example,
switching the 0.5 Ulal :] and the 0.2 U[:: ::] entries would create an error, ie., 0.2 U[:: =]
would assign probabilities to all remaining values, and 0.5 U[al ::] could not reassign them.

The semantics of all of our relational operators are unchanged by the inclusion of the uni-
form distribution. In other words, the result of a relational operator should be identical
regardless of whether a distribution is explicitly enumerated or given via the uniform distribu-
tion.

However, in an actual implementation there are two issues to consider. First, it may be
unnecessary to translate the uniform distributions to explicit probabilities for performing com-
putations. A good system should be able to perform the computations directly with the uni-
form distributions. Second, it is probably convenient to represent uniform distributions in a
result with the uniform notation "U", as opposed to listing all probabilities explicitly. The next
two examples illustrate these points.



- 18 -

EXAMPLE 5.3 PROJECT onto KEY, A, B with Uniform Distribution.

Consider the operation Iggy 4 g(R) where R is the relation:

KEY ABC
k 0.2 [alblcl]
0.3 [a2b2c2]

0.5 U[: = =]

and the domains are:
Domain of A is { al, a2, a3, a4 }
Domain of B is { b1, b2, b3 }
Domain of Cis { c1,¢c2 }

STEP 1: There are 4*3*2 = 24 possible A B_C values, two of which are explicitly listed: [al,
b1, c1] and [a2, b2, ¢2]. This means that the remaining 24 - 2 values each occur with probabil-
ity 0.5/22 = 0.023.

STEP 2: When the project is done, two of the uniformly distributed values, [al, b1, c2] and
[a2, b2, c1], will become identical to the explicitly enumerated values. Thus,

P(A_B = [a1,b1] | KEY=k) = 0.200 + 0.023 = 0.223
P(A_B = [a2,b2] | KEY =k) = 0.300 + 0.023 = 0.323

STEP 3: Determine what’s left over to be uniformly distributed:
1-(0.223 + 0323) = 1-0.546 = 0.454

The resulting relation is:
KEY A B
k 0.223 [al bl]
0.323 [a2b2]
0.454 U[:: ]

EXAMPLE 5.3 Natural Join with Uniform Distribution
Let the domains be:

Domain of A is { al, a2, a3 }

Domain of B is { b1, b2, b3, b4 }



-19-

Relation P Relation Q Relation P >< Q
K A A B K A B
k 0.8 al al 0.6 bl k 0.48 [al1bl]
0.2U[:] 04 b2 032 [alb2]
0.10 U[a2 :]
a2 1.0 U[:]

The 0.2 U[::] in P assigns 0.1 probability to a2 and a3. The a3 value is not joined since there is
no a3 in Q; thus, the result has 0.1 missing probability. The a2 value can be joined, yielding
the 0.10 U[a2 :] entry in P > < Q. Note that since the A value is known (= a2), the :: nota-
tion is only used for the B component.

VI. Conclusions

We have presented a probabilistic relational data model where tuples have deterministic
keys and both probabilistic and deterministic attribute groups. The probability distribution
function for a probabilistic group can be enumerated explicitly or given via a pre-defined dis-
tribution like the uniform one.

We believe that the major strengths of our model are its generality and naturalness. As
we argued in Section I, our model encompasses most existing incomplete information models.
The model leads to, in a very natural way, to some powerful new operators like Join, Com-
bine, and Stochastic. As far as we can tell, these operators have no counterpart in other exist-
ing models.

Another important strength, in our opinion, is the concept of missing probability. Not
only does this concept make it easier to input probabilistic data, but it also gives us more flexi-
bility in computing selects, joins, and other operations.

In this paper we have relied heavily on examples for presenting our ideas. Given the
number of ideas and issues to be discussed, we felt this was the most effective approach, both
in terms of the readers time and the space available. But this of course means that we have
not presented as many details as we would have liked to. The missing details range from the
algorithms for computing probabilities under each operator, to an analysis of the complexity
of such algorithms, to additional options available for each operator, to even additional opera-
tors and commands. Just to pick one example, we did not even present commands for input-
ting, updating, and deleting data in relations. However, it is our belief that from the basic
ideas illustrated here, it is possible to derive most of the missing details relatively easily.
(Some of the missing details can be found in [Gar].)

We also believe that our model and language raise some interesting and challenging
future research issues. One is the use of continuous attributes and probability density func-
tions. How are these attributes represented and manipulated? A second issue is user defined
distributions. In a given application, a particular probability distribution function may arise
frequently, so it may be useful to refer to it by name (as we did for the uniform distribution).



«20-

How would these distributions be defined and invoked?

A third issue is attribute dependencies. In discussing the Cross Product operator, we
stated that it was only valid for independent entities. How can a user tell if two entities are
independent? It may be desirable to have the user enter the elementary dependencies and
then have the system enforce them, analogous to how a conventional system enforces func-
tional dependencies. (Attributes A and B are dependent if P[A and B] is not equal to P[A]
times P[B].) However, note that dependencies are not transitive (A,B dependant and B,C
dependant, does not imply that A,C are dependant), so it hard for the system to infer addi-
tional dependencies. However, if the system is given conventional functional dependencies, it
may use these to infer probabilistic dependencies. (If A — B, then A,B are dependant.)

It also possible to define a new type of dependency, a probabilistic functional depen-
dency, PFD, A P— B. If A P— B, then a given value of attribute A determines the probability
distribution of the possible B values. In our ships and descriptions example (3.3.1),
NAME P— TYPE and TYPE P— MAX-SPEED. A PFD is weaker than a functional or mul-
tivalued dependency, but still 4 7— B implies that A and B are dependent random variables.
Since PFD are transitive, they can be useful in a probabilistic database system. For example,
NAME P— TYPE and TYPE P— MAX-SPEED implies NAME P— MAX-SPEED, so we
know that NAME and MAX-SPEED are dependent attributes.

VII. References

[Cav]  Cavallo, R. & Pittarelli, M. The Theory of Probabilistic Databases, Proceedings of
the 13th Conference on Very Large Databases, 1987.

[Dad] Dadam, P., Kuespert, K. et al, 4 DBMS Prototype to Support Non-First Normal Form
Relations: An Integrated View on Flat Tables & Hierarchies, SIGMOD Proceedings,
1986.

[Dat]  Date, C. An Introduction to Database Systems Vol. 1, Addison-Wesley, 4th Edition,
1986.

[Gar]  Garcia-Molina, H. & Porter, D. Some Thoughts on Probabilistic Databases, Prince-
ton Technical Report CS-TR-090-87, April 1986.

[Gel] Gelenbe, E. & Hebrail, G. A Probability Model of Uncertainty in Databases,
Proceedings of the International Conference on Data Engineering, Feb. 1986

[Gho]  Ghosh, S. Statistical Relational Tables for Statistical Database Management, IEEE
Transactions on Software Engineering, Dec. 1986.

[Imi]  Imielinski, T. Query Processing in Deductive Databases with Incomplete Information,
Rutgers Technical Report DCS-TR-177, Mar. 1986.

[fmi2] Imielinski, T. Automated Deduction in Databases with Incomplete Information,
Rutgers Technical Report DCS-TR-181, Mar. 1986.

[Imi3] Imielinski, T. & Lipski, W. Incomplete Information in Relational Databases, Journal
of the ACM, Vol. 31, No. 4, Oct. 1984.

[Lip]  Lipski, W. On Semantic Issues Connected with Incomplete Information Databases,
ACM Transactions on Database Systems, Vol. 4, No. 3, Sep. 1979.



[Lip2]

[Liu]

[Men]

[Mey]

[Mor]

[Rei]

[Rot]

[Rot2]

[Vas]

[Won]

o5 .

Lipski, W. On the Logic of Incomplete Information, Proceedings of the 6th Interna-
tional Symposium of Mathematical Foundations of CS, Sep. 1977.

Liu, Ken-Chih & Sunderraman, R. On Representing Indefinite & Maybe Information
in Relational Databases, Proceedings of the 4th International Conference on Data
Engineering, Feb. 1988.

Mendelson, H. & Saharia, A. Incomplete Information Costs & Database Design,
ACM Transactions on Database Systems, Vol. 11, June 1986.

Meyer, P. Introductory Probability & Statistical Applications, Addison-Wesley, 2nd
Edition, 1970.

Morrissey, J. & van Rijsbergen, C. A4 Formal Treatment of Missing & Imprecise
Information, Proceedings of SIGIR, 1987.

Reiter, R. A Sound & Sometimes Complete Query Evaluation Algorithm for Rela-
tional Databases with Null Values, Journal of the ACM, Vol. 33, No. 2, Apr. 1986.

Roth, M. & Korth, H. & Silberschatz, A. Extended Algebra & Calculus for Non-1NF
Relational Databases, University of Texas at Austin Technical Report TR-84-36,
Jan. 1985.

Roth, M. & Korth, H. & Silberschatz, A. Null Values in Non-INF Relational Data-
bases, University of Texas at Austin Technical Report TR-85-32, Dec. 1985.

Vassilou, Y. Functional Dependencies & Incomplete Information, Proceedings of the
6th International Conference on Very Large Databases, Montreal, Oct. 1980.

Wong, E. A Statistical Approach to Incomplete Information in Database Systems,
ACM Transactions on Database Systems, Vol. 7, No. 3, Sep. 1982.



APPENDIX

In this appendix, we present a syntactic summary of the Data Definition Language (DDL) and the
Data Manipulation Language (DML) of our probabilistic database managment systern defined. The
semantics of the languages are explained in the main body of the paper. The summary format is a pair
of simplified Context Free Grammars, one for the DDL and one for the DML. Bold strings are termi-
nals. All others are variables. The first production left hand side is the special start symbol.

1. Data Definition Language

Reln-Schema — Base-Reln Schema

Schema — < Key > | < Key: Groups : Option-Part >

Key — AKey | A

Groups — Group ; Groups | Group

Group — A Group | A

Base-Reln — "the possible base relation names; syntax not given here"
A— "the possible attribute names; syntax not given here"

(Option-Part represents the default Combine strategy for the relation. It
is defined below.)

2. Data Manipulation Language

Relation — Base-Reln | Reln-Expression | ( Relation )

Base-Reln — "the possible base relation names; syntax not given here"
Reln-Expression — Reln-Part ; Option-Part | Reln-Part

Reln-Part — Project-Expression | Select-Expression | Binary-Expression

Stochastic-Expression | Discrete-Expression | Group-Expression

Option-Part — Combine Option
Option — Simple-Option | Simple-Option , Option
Simple-Option — Average ( US-Group ) | Summary ( US-Group) |

Merge ( US-Group )

Project-Expression — Iy (Relation ) | Iy ( Relation . US-Group )

Q— AlAQ

US-Group — A |A_ US-Group

A— "the possible attribute names; syntax not given here"

Select-Expression — Oprea ( Relation ) | Opreq ( Relation . US-Group )

Pred — US-Group: Rest | US-Group Operator [ Vector |

Rest — V Operator [ Vector |, Prob Operator Prob-val | V Operator [ Vector |
| Prob Operator Prob-val

Operator — <|>|L|=2|#] =

Vector — Val | Val, Vector

Val — * | Attrib-Val

Prob — P | MP

Prob-Val — "the possible probability values; syntax not given here"



Attrib-Val —

Binary-Expression —
Binary —

Stochastic-Expression —

Discrete-Expression —

Function —

Group-Expression —

"the possible attribute values; syntax not given here"

Relation Binary Relation

><|X|lulnl-
Stochastic ( Relation ; Schema )

Discrete ( Relation ; Group , Function )

J

"the possible mapping functions; syntax not given here'

Group ( Relation ; Group)



