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Abstract

For an open-address hash function h and a set A of n keys, let C,(A) be the expected retrieval
cost when the keys are arranged to minimize the expected retrieval cost in a full table. It is shown
that, asymptotically for large n, when h satisfies a certain doubly dispersive property, as is the
case for uniform hashing or double hashing, C(A) = O(1) with probability 1— o(1) for a random
A.
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1 Introduction

Hashing techniques are commonly employed in information storage and retrieval (see e.g. Knuth
[Kn]). In Gonnet and Munro [GM] and Rivest [R], the question of optimally arranging a set of keys
in a static hash table was studied. In particular, it was shown in Rivest [R] that, asymptotically
for large n, when uniform hashing is used, one can, with probability 1 — o(1), arrange n keys in a
full table such that the worst-case retrieval cost is O(logn). A similar result for double hashing
was later proved in Yao [Y]. For the optimal static hash table that minimizes the ezpected retrieval
cost, it was suggested in Gonnet and Munro [GM] that an O(1) expected retrieval cost can be
achieved even for full tables, when either uniform hashing or double hashing is used. In this paper

we will give a proof of this conjecture.

Let A = (ai;) € A,, where A,, is the set of all n X n matrices of real numbers. For any
permutation o of (1,2, ..., n), let C(A,0) = %le,—sﬂ a; s(;)- Define the cost of A as C(A) =
min, C(A,0).

We are interested in the typical value of C(A), when A is randomly generated according to
certain distributions. Let ¥, be the set of all permutations of (1,2, ..., n). For any o € £, let
b(o) = (b1,b2, ..., by) be an n-tuple of integers defined by b,(;y = i for 1 < i < n. (Informally,
any o specifies the hash sequence (o(1),0(2), ..., o(n)) for a key K, with o(¢) being the i-th
location to be probed when K is being retrieved; thus, b; is the cost for retrieving K if K is
stored in location j in the table.) A hash function h (for table size n) is specified by a probability
distribution pp, over X,,; let H,, be the family of all hash functions for a table of size n. Generate
a random A = (a;;) € A, by picking independently, for each 1 < i < n, a random permutation
p(i) € X, distributed according to pp, and let (ai1,ai2, ..., @in) = b(p(i)); let g5 denotes the
probability distribution on A,, corresponding to such a random A.

For any hash function h, let Ag(%,7,k,£) denote the set o € X, such that o(:) = k and
o(j) = & let Ap(4,4,k,€) = Y ,eaPr(0), where A = Ay(i,j,k,£). We say that h is doubly
dispersive if Ap(i,5,k,€) =1/n(n—1)forall 1 <i# j<nand 1 <k # £ < n. For example, the
uniform hashing function ho and the double hashing function hy (only for prime integers n) are
both doubly-dispersive, where hg is the uniform distribution over X, and hy(o) = 1/n(n — 1) if
o(1),0(2),...,0(n) forms an arithmetic progression, i.e. o; = 01 +(j — 1)(02—01) (mod n) for
1 <j < n,and hy(e) = 0 otherwise. Qur main result is the next theorem.

Theorem 1 There exist positive constants ¢1,c2,c3 such that the following is true: if A is a
random matrix distributed according to g;, where h € H,, is doubly-dispersive, then C(A4) < ¢
with probability > 1 — s

nes

Corollary There exists a positive constant ¢4 such that, if A is a random matrix distributed
according to g, where h € H,, is doubly-dispersive, then E(C(A)) < ¢4.

2



Thus, if A is generated by either uniform hashing function or double hashing function, then
C(A) = O(1) with probability 1 — o(1) as n — co.

We now demonstrate that Theorem 1 gives the O(1) expected retrieval time about hash
functions. Given a random set of keys K = {K;, K3, ..., K,} with p(‘) being the hash sequence
for key K;, any permutation o € X,, defines an arrangement R, of the keys in a table of size n,
i.e. K; in location o(i) for 1 < i < n. Let A = (a;;) with (@i, aiz, ..., Gin) = b(p(")), then the
cost of retrieving Kj; is a;,(;); if we assume that all keys are equally likely to be retrieved, the
expected retrieval cost for K under R, is %Elsisn @; (i), Which is C(A,0). Thus, C(A) is the
optimal expected retrieval cost for K. Theorem 1 states that, if we use any doubly-dispersive
hash function h, then a random set K of n keys can almost always be arranged in a full hash
table such that the expected retrieval cost is O(1).

As observed in Gonnet and Munro [GM] and Rivest [R], the optimal key arrangements prob-
lem is directed related to the classical minimum assignment problem. When viewed from this
perspective, Theorem 1 is about the probable behavior of the optimum cost of certain random
assignment problems. There are several well known results in the literature on this topic. In
Lazarus [L], it was proved that, for a random n X n matrix A = (a;;) with each a;; being an inde-
pendent uniform random variable over [0,1], E(C(A)) > 1+ 1/e 4+ O(1/n); Walkup [W] showed
that, for all n, E(C(A)) < 3. In Karp [Kal], with the same probability distribution, it was shown
that with probability 1 — o(1), 1 < C(A) < 3 for a random n X n matrix A; more recently, Karp
[Ka2] showed that, for all n, E(C(A)) < 2. In our result, some dependency relation among the
entries has been introduced into the model.

2 Main Line of Arguments

In this section we first state without proof two propositions, and then employ them to prove
Theorem 1. The proof of the two propositions will be left to Sections 3 and 4. In Section 5, a
proof of the corollary to Theorem 1 will be given. We remark that results from [Y] will be needed

in the proof of Lemma 7 and in Section 5.

Let N < n be any positive integer. Generate a random N X n matrix D = (d;;) by picking
independently, for each 1 < ¢ < N, a random p(“ € X, distributed according to pp and let
(Biis digy <oy tin) = b(p(':)); let g, v be the probability distribution for such a random D. Clearly,
Gh,n 18 just gp.

For any § C {1,2, ..., n} with 0 < |S| £ N, let Ag denote the set of all injective functions

w:8 — {1,2, ..., N}. For any N X n matrix D = (d;;) and w € Ag, define (D, S,w) =
1 :
E Z du(j),i- Let a(D,§) = mingeay oD, S,w).
JES



Let A,z be any fixed numbers with 0 < A < 1 and 0 < g < 10742, Let ¢5 = 1/(1 — e~*4)
and € = e""VH/3; clearly, 0 < € < 1. Suppose [An| < N < n. Take a random D distributed
according to g n, and let Z; denote the event that a(D,S) < n for all § C {1,2, ..., n} with
S| < pn.

Proposition I Pr{Z;} > 1 — e5e™ for all n > 1/p.
Proof. See Section 3. O

Let A = (a;;) € A, for which no row contains repeated entries. For any integers 1 < i, k < n,
let I;(i, A) denote the set of all integers j, 1 < j < n, for which a;; are among the k smallest
elements in the i-th row of A. That is, {a;; | j € Ix(¢, A)} consists of the k smallest elements of
i1, @i2,. .., Gin. Let Jx(A) = {(4,7)]1 <1< n, j € Ix(3,A)}. Forany T C {1,2, ..., n}, define
Vi(A,T) as the set {i|3 j € T with (¢,7) € Jix(A)}. Thus, Ji(A) is the set of locations in A that
contain all the smallest k elements in every row, and Vi (A, T) is the set of every row with at least

one of its k smallest elements occurring in some column of T'.

Let 0 < v < 1/10 be any fixed number, and k = [y~°] where ¢ = (32¢)'°. Take a random
A € A, distributed according to g5. Let Zj; denote the event that |Vi(A,T)| > 2|T| for all
T C{1,2, ..., n} with yn < |T| < 2yn. Let Zjsr denote the event that |Vy(A,T)| > |T| for all
T C{1,2, ..., n} with |T| > 2yn. Let ¢ = 2(n2)/10,

Proposition II There exists a constant N., such that Pr{Z; A Zj;;} > 1 — 2/71," for all » > N,.
Proof. See Section 4. O

We proceed to prove Theorem 1. Let v = 107% and k = [y~°]. Let A € A, be any matrix
for which no row contains repeated entries, and § C {1,2,..., n} with |§]| < yn. We will say
that S is a virtuous column set for A if the following is true: For all T C {1,2, ..., n} — § with
|T| € yn, we have |Vi(A,T)| > 2|T.

Take a random A € A,, distributed according to ¢,. Let Zjy be the event that there exists a
virtuous column set §.

Lemma 1 Pr{Z;y} > 1—2/n¢ for all sufficiently large n.

Proof. Initially, set S «— @ and W « {1,2, ..., n}. Repeat the following process: as long as
there exists a ' C W with |T'| < yn and |Vi(A,T)| < 2|T|, choose lexicographically the smallest
such T', set S « SUT and W «— W —T; stop when either |S| > vn or no such T’ can be found. Let
54 denote the set S when the process stops. As can be readily verified by induction, SNW =)
and W = {1,2, ..., n} — S at any time. Furthermore, |V%(4,5)| < 2|5]| at any time.

Take a random A € A, distributed according to ¢;. Let Z; denote the event —=Z;; and let Z;
denote the event that |S4| > yn. From the halting condition, it is clear that =Z, implies that §4
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is a virtuous column set. Also, by Proposition II, Pr{Z;} < 2/n¢. If we can prove that Z, implies
Zy, then Pr{~Z;} = 1-Pr{Z3} > 1 -Pr{Z;} > 1-2/n¢; Lemma 1 will thus be proved. We now
show that Z; implies Z;. If Z; is true, then |S4| > yn. Let S4 = 53 UT) where S1,T) are the last
values of S and T before S becomes S4. Then |Si| < yn, |T1| < yn, and hence |S4| < 2yn. Now,
[Vi(A, S4)| < 2|54] as noted previously. Thus, S4 is a witness for =Z;. That is, Z; is true. O

Take a random A = (a;;) € A, distributed according to gs. Let A; be the [N/2] x n matrix
obtained from the top [N/2] rows of A, and A; be the |[N/2] x n matrix obtained from the
bottom |N/2| rows of A. Let Z3 be the event Zyy AZyrAZpy. Let A = 1/2 and p = 1076, Thus,
p# = 7. Define Z4 to be the event Zr in Proposition I, in which D is defined as A;. Similarly,
define Z5 to be the event Zy in Proposition I, in which D is defined as A;. By Propositions I, II
and Lemma 1, Pr{Z3 A Zy A Z5} = 1 - O(l/ner). We will now show that, when Z3z A Z4 A Zs is

true, there exists a set F' C {1,2, ..., n} x {1,2, ..., n} such that
kE+1
> w<((*37)+2)n, 0
(id)eF
and
1{i|3j €T, (i,5) € F}| > |T| forall TC{L,2, ..., n} . (2)

This would imply Theorem 1, since (2) guarantees, by Hall’s Theorem [H] on matching, the
existence of a permutation ¢ € X, such that (i,0(i)) € F for all 1 < ¢ < n, and (1) then
guarantees that for this o, 3= cicn ir(i) < ((Hz'l) + 2)n.

Suppose Z3 A Z4y A Zs is true. Let S C {1,2, ..., n} be a virtuous column set, which must
exist since Z3 is true. Then, by definition, |S| < yn = un. As Z, is true, there exists an injective
function wi: § — {1,2, ..., [n/2]} such that 3 ;. a,, (;); < n. As Zs is true, there exists
an injective function wy:§ — {[n/2] + 1, ..., n — 1,n} such that ;s @ < n. Let
Fo = {(w1(5),7), (w2(4),5) |7 € §}, and F = Fo U Jx(A).

Now Yijyerm @i = Ljes Gun()i + Lies Gu()i < 2 and Tgieny @i = (F3)n.

Clearly, inequality (1) is satisfied. It remains to prove (2).
Lemma 2 For every T' C S, the set Y7, defined by {i|3 j € T, (i,7) € Fo}, satisfies |Y7| = 2|T|.
Proof. Y7 = {w1(j),w2(j)|j € T}. O

Forany T' C {1,2, ..., n},let Y7 = {i|3j € T, (i,4) € F}. We need to prove |Y}| > |T|.

CASE 1. If |T| > 4n, then as Zj; and Zjy; are true, we have |Vi(A,T)| > |T|. This implies
Yz > |T).

CASE 2. If|T| < yn,let Ty =TNnS and T, = TN({1,2, ..., n} — S§). By Lemma 2,
[Y7,| = 2|T1|. Also |Vi(A,T3)| > 2|T,| since S is virtuous. It follows that |[Y7| > |V, UVi(A,T2)| >
max{|Yz, |, [Vi(4,T2)|} > 2 max{|T1| , |T2|} 2 |T3| + |T2| = |T|.



This completes the proof of (2), and hence, Theorem 1.

3 Proof of Proposition I

The following simple inequality will be proved in the Appendix:

8 1
z>—(1+2lnz) forall z>— . 3
> (1+2In2) - 3
Let » = e~*2. We consider an infinite sequence ' of independent identically distributed

random variables Y1,Y3,Ys, ... with Pr{Y; = k} = #¥=1(1 — r) for integers k > 1.

Lemma 3 For all n > 1/p,

e~ MWE nf4

PriVi+ Yo+ .. +Yn 2 Vlin} S T—5

where m = |un|.

Proof. Let Y(™) = >1<i<m Yi. Consider the generating function gm(z) = 3451 Pr{Y(™) =
k}z*. A standard calculation gives

Gul#) = (E Pri)i= k}mk)m

k>1
= (,;1 i § B 'r)mk)m

= (1=-r)"2™(1-rz)™™ .

It follows that, for & > m,

PriY(W =k} = (1- r>’“( i )rk-m

k—m

m(m+1)...(k-1) pk=m
(k —m)!

(1—r)m k(k—l)
= T

r m—1
km

m!

= (1-mm

< (81/2 . 1)m T‘k

< Tk(ﬂ)"‘
- m

—  (=kIn(1/r)=m-mln(k/m)) (4)



For k > \/ji n, we have k/m > 1/,/i, and thus by (3),

4 k
}—kln-l-—m—mlnﬁz—m)\(i—-—(1+ln—)) >0 .
m m

2 r m 4
From (4) and (5), we have, for all k£ > /i n,

A

Pr{Y(™ =k} < e-(im/n)/2

Y
Thus,

Pr{Y(m) >/pn} < Z g
k>[\/in]
e—)\ﬁnfil

< 1—e-M4~

This proves the lemma. O

()

We now turn to the proof of Proposition I. Let D = (d;;) be an N X n matrix of real num-

bers. For any § C {1,2,...,n} with [§| = m = |un], define an injective function wgp: S —
{1,2,...,N} to be described below. Write § = {j1,72,...,Jm}, Where j; < j2 < ... < jm. The

following procedure clearly defines an injective function wg p:

Procedure ASSIGN (D, wgsp);
begin W < D;
fort =1to mdo
begin
find in column j; of W a smallest entry d;;,
(in case of ties, pick the smallest qualified 1);
set wg p(Ji) < ¢
set to oo all entries in row i of W;
end
end ASSIGN.

Take a random D distributed according to g4 n, and let a,(S) = Pr{a(D, S,wp,s) > /fin}.

We will prove that for any S with |S| = m,

& < e~ MVEn/4
an( )— 1.__6—)\/—4— ’

(6)

To prove (6), we analyze procedure ASSIGN in the next two lemmas. Fix S. For a random

D, let I; denote the random variable corresponding to the value i assigned to wg p (ji), and let
X be the random variable for dij,, 1 < ¢ < m. Thus, a(D, S,wp,s) = Fi<j<m Xi- For each
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0 < £ < m,let M; be the set of all Z = (zy,22,...,2;) where z; are positive integers satisfying
Yi<ice Ti < (/i n; let Ly be the set of all i = (iy,43,...,14) where i; € {1,2,..., N} are distinct
integers. For any & = (z1,22,...,2¢) € My, ¥ = (i1,92,...,%2) € Ly, and integer & > 1, let
8e(%,%,k) = Pr{Xpp1 2 k| Xs =z, s =4: for 1<t <L} .

Lemma 4 6,(%,1,k) < e~ M*k-1)/2,

Proof. For each 1 < s < N, let B, be the set of (ay,a2,...,a,) € £, such that, forall 1 <t < ¥,
the following is true: aj;, > z¢ if s < 4, aj, = @4 if s = 4, and a;, > z¢ if s > ;. We further
partition each By into By3 U Bs2 U...U By, where B, i consists of those (ay,as,...,a,) € B;
with aj,,, = k. Tt is easily verified that an N x n matrix D = (d;;) satisfies X; = ¢, I; = i,
for 1 <t < £if and only if d, € B, for all 1 < s < N, where d, = (ds;1,ds2,...,dsy); also D
satisfies Xy = 2y, I; = 4 for 1 < ¢ < £ and X4y > k if and only if cf,-, € B;, for 1 <t < {and

ds € Ug<pr<n By for all s # 4y,1s,...,%. For a random D distributed according to g y, all rows

d, are independently generated, and thus,

ﬁf(iaia k) = H PI‘{{L € Uk<k'<n Bs,k’lgs € Bs}
s?ﬁil 2 l"‘!it
= H (1 - PI{JB € Uick<k Bs‘kr|t§s € Bs})
8iy 2 ,emsit
< H (1 —Pr{d, € Ui<ki<k Bs,k’})
SF11 1200010
= I (1 ~ Y Pr{d, e Bs,kf}) . (7)
11412 yeunytp 1“_(_k"<k
Now,
PI‘{J,, € Bs,k'} > Pr{ds,jeﬂ = kl}
- ¥ X P =8 A i =)} ®
1<t<e 1<z<ze
z#k!
Since h is a doubly-dispersive hash function, we have, for &’ # z,
1
Pf{(ds,jm =k A(dsj = z)} = (9)

Let v € {1,2,...,n} — {je4+1}, then we have

Pr{dyjp, =K'} = 3 Pr{(ds,,-m o ) K g = k)}
1<k<n
yel

n—1
n(n—1)
Ly (10)

n



As & € My, it follows from (8), (9) and (10) that

5 1 .
Pr{d, € B} 2 = z’n,:(l';tjtl)t
LB
> - .
B el (11)

From (7) and (11) we obtain

0e(%,i,k) < (1_(}6"1)(%_%))N—£

n
< e G-DE-EW-y (12)

As N —£€ > dn — pn — 1 > 32n, we obtain from (12) 6¢(%,7,k) < e~ **~1/2, This proves Lemma
4. 0O

Now consider both the sequence of random variables X7, X3,. .., X;;, under discussion and the
infinite sequence Y of random variables Y1,Y5,Y53,... defined at the beginning of this section. It
is clear that, for all i,k > 1, Pr{Y; > k} = r*¥~1 = ¢~ **-1)/2_ Tt follows from Lemma 4 that, for
any 0 <€ <m, k>1,and & = (z1,22,...,%¢) € My,

PI{XH_I > k‘ng = Ty, 1 <t< f} < Pr{}"g+1 > k} . (13)

Lemma 5 For any integer s < un,

Pr{ Z ngs}gPr{ Z Y}Zs} .

1<é<m 1<€<m

Proof. We will prove the following more general statement: for any integers 7,t,s, where0 < ¢t < 5

P S X+ R Yizsp<p| T X+ 2 vz} (14)

1<i<t t<i<j 1<i<t-1 t<i<j

and s < un,

We prove (14) by induction on j > 1.

If j = 1, then (14) follows from (13). Now, let jo > 1, and assume that we have proved (14)
for all j < jo; we need to prove it for j = jo. It ¢ < jo, then using the induction hypothesis, we
have

Pr{Xi+4+...+ Xi+ Y1 +...+ Y > s}
= > Pr{Yypi+...+ Y =k} -Pr{X1 +...+ Xy > s — k}
k>1
S Pr{Yepr+...+ Y, =k} Pr{Xs+...+ X;-1 + Y, > s - k}
k>1
= Pr{Xi+...+ Xim1+ Vi +...+ Y, > s}

IA
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Thus the inequality (14) is true for j = jo in this case.

If t = jo, then
Pr{X;+...+ Xj, > s}

Do P{Xi+...+ Xjo1 =k} -Pr{Xj, 25—k | X1 +...+ Xjo_1 = k} (15)
k>1

Now, let M}, denote the set of (21,22,...,2;-1) with all integers z; > 0 and 215‘3(3'0—1 @y =k,
Using (13), we have

Pr{X;, 2s—k| > X¢=k}

1<i< o0
= Z PT{A15t<j0(Xt = :ct) | Z Xt = k} . PI‘{XjO 2 s—Fk | AlSt(jo(Xt = (Et)}
(@1 y0eyjg —1 ) EM 1<t<j0
< > Pr{Aicicip(Xe =2¢)| D>, Xy =k} Pr{Yj, > s —k}
(Il,...,mjo_l)EMk 1<t<jo
= Pr{Y;, >s—k} . (16)

From (15) and (16) we obtain
Pr{Xi+...4+ Xjo 28} <Pr{X1+...4+ Xjo-1+Y;, > s} .

This completes the inductive proof of (14). We have proved Lemma 5. O

From Lemma 3 and Lemma 5 we obtain, for m = |un],

e—MWHEn/4
Pr{ 3 Xe2VEn}<T——5 - (17)

1<t<m

This immediately gives (6), as (D, S,wp,s) = Zi1<tcm Xi-

We will now use (6) to complete the proof of Proposition 1. Take a random D distributed
according to gn n. Let v denote the probability that there exists an § C {1,2,...,n} such that
|S| = m and (D, S) > \/fin. We infer from (6) that, for each S with || =m

e—MWhn/4
Pr{a(D,S) > /un} < — (18)

It follows that

=
IA

Z Pr{a(D,8) > \/un}

5,|8|=m
i n e——}\\/ﬁn/ti
= \mj1—-eM4

(ﬂ)m e—)\\/;_znlél

= \m/ 1-e?
m nj/m e—}\\/ﬂnf‘l
— m(1+n(n/ ))m_ (19)
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Using (3) with z = (n/m)'/2, it is elementary to check that
A
——@E+m(1+1n£) <9 .
8 m

Thus, we have from (19)

e~ MWHEn/8
1 — e A4

= Ceet.

This implies Proposition I, since it is clear that Pr{-Z;} < v.

4 Proof of Proposition II

We will prove

1\n/2
Pr{-Z;1} < n(a) ; (20)
and " I
n n
Pr{-Z1} < ST 375 (21)

from which Proposition II follows immediately. The techniques used in this section involve adap-

tions of the methods employed in [Y].

For any 1 < m < n, let 7;,, be the family of all T C {1,2,...,n} with |T| = m. Let T € T,,.
Take a random A € A,, distributed according to ¢;. Define random variables Zr;, 1 < i < n, such
that Z7; = 1if I(i,A)NT # 0, and Z7; = 0 otherwise. Then 3 ,<;<, Zr, takes on the value
|Vi(A,T)|. Let By = Pr{Z71 = 0}. Clearly, one has then fr = Pr{Z—T; =0}foral1<i<n.

Lemma 6 Suppose 2 <m < nand T € 7,,,. Then Br < 4n/(mk).

Proof. Take a random permutation o = (¢(1),0(2),...,0(n)) € X, distributed according to
Pr. Then fBr is equal to the probability that {o(1),0(2),...,0(k)} NT = (. Define random
variables I;, 1 < j < m, such that F; = 1if j € {0(1),0(2),...,0(k)} and F; = 0 otherwise; let
F =3 er Fj. We have

Br =Pr{F =0} . (22)

Now, as h is doubly dispersive, we have for all 1 <i < j < n,

E(F;F;) = Pr{(o(s)=1) A (o(t) =j) for some 1< s#t<k}
= ) Pr{(a(s)=4) A (a(t) = )}

1<s£t<k
_ kk-1)
n(n—1) "’ (23)
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and, letting £ be an arbitrary element of {1,2,...,n} — {i}, we have

E(F)

Il

Pr{(a(s):i) A (o(t)=1¢) forsome 1 <s<k,1<t<n, t;és}

= Y > Pr{(a(s)=i) A (o(t) = )}

1<s<k 1<i<n

t#£s
_ k-1
~ n(n-=1)
_ % (24)
From (23) and (24), we obtain
E(F) = Y E(F)
JET
-z, (25)
and, noting that 17;.2 = Fj,
Va(F) = ¥ E(F}) - T(E®) +2 ¥ (B(RE) - E(F)EE))
JET jeT i<j
i,J€T
_ 2
= 5 B() - Do) +2(7) (228 - £)
j€T JET
k k m—1
= S -30-3=9)
< 3:{3 (26)
Chebycheff’s Inequality then gives
Pr{F =0} < Prf|F- f:{f > % m?k}
(mk/n)
= (mk/2n)?
4n
= - (27)

Lemma 6 follows from (22) and (27) immediately. O

We remark that Lemma 6 is valid for all 1 < k < n. We now prove (20). Let k£ = [y~].
Let T € T,,. As Z7;, 1 < i < n, are independent random variables, we obtain, with the help of

Lemma 6,

Pr{|Vi(4,T) |< 2AT|} =

Pr{ Z Lt < Zm}

1<i<n
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It follows that

Pr{-Z1} < > S Pr{[Vi(4,T)| < 2|T|}
n<m<2yn T€T,
4 n—2m
S "yns%%m (:L) (2”:”) (T_nz;;)
m 2m 4 R=2rh
< X it Gyt (k)
2m s 4 n—2m
< T e
n\ ntm rdey\ n—2m
< WS;SM (E) (k)
1 de\n—2m
: “rnS%%m e (?)
< e
< o

This proves (20).

We now turn to the proof of (21). Define ny = 2yn, ny = (1

IA

n n—2m
n—2m T

< (am)

1
 (32¢)®

(28)

)n+1, ngznuﬁlnn,

and ng = n. For 1 <1 < 3, let 760 = Un; <m<niga T. Take a random A € A, distributed
according to gi, let G; be the event that there exists a T € 7() with |Vi(A4,T)| < |T]. As
~Zrr = GV Ga V G3, we need only prove the following equations:

Pr{G;}
PI‘{Gz}

Pr{G3}

n

S 2_n ’
1

< =,

& Inn

= /5

Similar to (28), we have from Lemma 6 that, for T € 7,

Pr{{Vi(A4,T)| < T} =

Pr{ E Zr; < m}

1<i<n

n n—m+41
n-m4+1)T

13

(29)
(30)

(31)



RN
Thus,

Pr{G,} < Z Z Pr{|Vi(A,T)| < T}

ni<m<nz T€Tn

< T (Am)e

< T )iy
< 5 (e (km)“‘j

- = O"E >

< T O

& %: 7_ (3:;)71

< T ¥

< ; :

This proves (29).

To prepare for the proof of (30), we take a random A € A, distributed according to gy,
and let D; be the event that there exists s integers 1 < i3 < i3 < ... < iy < n such that
[u@ga Iy(iz, A)| < s.

Lemma 7 For 1 < s < n/(32¢)%, Pr{D,} < 1/2°.

Proof. This result was derived for double hashing in [Y, equation (12)]; the proof extends
straightforwardly to any hash function h that is doubly dispersive. O

Lemma 8 Let 2 < m < n, 1 <t < n. If there exists T' € 7,,, with |V;(A,T)| < |T|, then there
exist n — m + 1 integers 1 < 43 < i3 < ... < ip—m41 < n such that |U15g5n_m+1 It(ie,A)l <
n—m-+ 1.

Proof. Suppose |Vi(A4,T)| < |T|. Let W = {1,2,...,n} — Vi(A,T). Then |W| > n —m. Let
{i1,92,+ . in—ms1} © W with 4 < 42 < ... < in—ms1. Then (leg,gsn_,wr1 It(ig,A)) nT = 0.

Hence, |U15L’Sn—m+1 It(zfaA)| ER~ |T| =n—-m. 0O
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We now prove (30). Using Lemmas 7 and 8, we obtain

Pr{G.} Z

nz <m<na

b $

g <m<ng

2

nz<m<na

%

n—na+1<s<n—nz+1

2

1
1+1%]nn$s<(—35:)'§ﬂ

<

IA

IA

PI‘{ Dn—m+1 }

IA

Pr{D,}

PH{ D}

IA

IA

This proves (30).

Pr{3 T € T, with |[Vik(A,T)| < |T[}

Pr{3 T € T, with [Va(4,T)| < |T|}

We now turn to the proof of (31). Let ng < m < n, and T € 7,,. Take a random o =

(¢(1),0(2),...,0(n)) € L, distributed according to pj. Then,
Br

<

Pr{{(1),0(2} NT = 0}
Pr{{o(1),0(2)} € {1,2,...,

0.0, €T
i#]

Since h is doubly dispersive, we have then

Pr{{o(1),0(2),...0(k)} N T = 0}

n}—T}

> Pr{(c(1) =) A (0(2) = N}

(n—m)(n—m-1)

<
br < n(n — 1)
n—1m\2
< (=) - (33)
Thus, writing s = n — m, we obtain
Pr{{Vi(4, D) < |T]} = Pr{ Y Zr;<m}
1<i<n
n
< n—m+1
s (n -m+ 1) Ar
n 8\ 2(s+1)
(.s + 1) (n) : (34)

15



Clearly, (34) is also valid for m = n and T = {1,2,...,n}. It follows that

Pr{iGs) < X Y Pr{[Vi(a,1)| <71}

na<m<n T€Tm

Z Z (3 : 1) (%)2(s+1)

053<1lolnn TeTh—s

- 5 ()@

053(3-1-61113
2
n n (3)2(s+1)
s+1\n

(ne)2s n g2st2
3 s+1 n2s+2

IA

g A NI g
R

IA

This proves (31).

We have completed the proof of Proposition II.

5 Derivation of Corollary

In Section 4, we proved two equalities (23) and (24) which we summarize below. Let k be any
integer satisfying 1 < k < n. Take a random permutation ¢ = (¢(1),0(2),...,0(n)) € I,
distributed according to py, where h € H, is doubly dispersive. Define random variables Fj, 1 <
J < n,such that F; = 1if j € {o(1),0(2),...,0(k)} and F; = 0 otherwise. Then, forall1 < i < n,

k

E(E): Ea (35)
and, for all 1 <1 # j < n,
oy FEk-1)

In [Y], it was proved that, for the double hashing function h, if we take a random A =
(aij) € A, distributed according to g, then with probability 1 — %, there exists a ¢ € X,
satisfying max; a; ,(;) < A1lnn, where ¢g and Ay are positive constants. Clearly, when such o

16



exists, C(A) < A;Inn. The proof in [Y] in fact holds for any hash function h satisfying the two
equalities (35) and (36), and hence for any doubly-dispersive function h.

Let ¢4 = c1 + ¢ + c2A; max,>1(Inn/n®). The above discussion and Theorem 1 immediately
give

E(C(A)) £ Pr{C(A)Lcal}er+Pr{Mlnn > C(A) > i} ilnn + Pr{C(4) > MInn}n

C2 Ce
1+ —Mlnn+—n
nes n®

IA A

C4.

This proves the corollary to Theorem 1.

6 Remarks

One motivation for this work is to investigate how good double hashing is, as a substitute for
uniform hashing. Guibas and Szemerédi [GS] showed that double hashing has a performance that
is virtually indistinguishable from uniform hashing, when hashing is used in the standard way to
maintain a dynamic hash table, at least up to a certain load factor. In Yao [Y], it was shown that
double hashing has asymptotically , up to a multiplicative constant, the same worst case retrieval
time as uniform hashing, when hashing is employed to build a static dictionary. In the present
paper, we have proved that this is also the case , when the average retrieval time of the static
dictionary is adopted as the performance measure. From an application viewpoint, our result
is not conclusive, since the constants involved in Theorem 1 and its corollary are very large. A
challenging open problem is to derive tight bounds on E(C(A)) for uniform hashing and double
hashing, so that their performance can be compared satisfactorily. For example, can one prove
that E(C(A)) < 10 for double hashing? Simulation results in Gonnet and Munro [GM] indicate
that E(C(A)) is close to the value 3. For uniform hashing, it is possible to prove reasonable upper
bounds on E(C(A)) using ideas from Walkup [W], but an accurate determination of E(C(A)),
say within 20%, seems to be an interesting but difficult open problem.

Appendix: Proof of an Inequality

In this Appendix, we will prove Inequality (3) in Section 3 of this paper. Let A, u be constants
such that 0 < u < 10742* < X < 1. We will prove that, for all z > 1//5,

2> ;(1 +2Inz) . (A1)
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Let f(z) ==z — ;(1 + 2Inz). To prove (A1), it suffices to show that

100
f(v) >0, (A2)
and for all = > %,
fl(z)>0. (A3)
) 16 .
Now, f'(z) = 1 - 2’ and (A3) clearly holds. To prove (A2), observe that the function
10
f(%) = ff\-g()\), where g() is defined as % —2-8In % g(A) satisfies g(1) > 0 and, for all
25 8 8 25
< ¥ e — —_ = — — — s <
0<A< 11,0(,;(,\) 3+ A(I 8/\) < 0. Tt follows that g(A) > 0 for all 0 < A < 1, and
hence f(v) > 0. This completes the proof of (Al).
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