Runtime Tags Aren’t Necessary

Andrew W. Appel*

Princeton University
CS-TR-142-88
March 1988

Abstract

Many modern programming environments use tag bits at runtime to
distinguish objects of different types. This is particularly common in sys-
tems with garbage collection, since the garbage collector must be able to
distinguish pointers from non-pointers, and to learn the length of records
pointed to.

The use of tag bits leads to inefficiency. They take up memory (though
generally not too much); but more important, tag bits must be stripped off
of data before arithmetic operations are performed, and re-attached to the
data when it is stored into memory. This takes either extra instructions
at runtime, or special tag-handling hardware, or both.

This paper shows how the use of tag bits, record descriptor words,
explicit type parameters, and the like can be avoided in languages (like
ML) with static polymorphic typechecking. Though a form of tag will still
be required for user-defined variant records, all other type information can
be encoded once—in the program— rather than replicated many times in
the data. This can lead to savings both in space and time.

*Supported in part by NSF Grant DCR-8603453 and by a Digital Equipment Corp. Faculty
Incentive Grant



1 Determining types at runtime

In any system with automatic garbage collection, the garbage collector must be
able to determine some information about the types of objects at runtime. A
pointer must be traversed by the collector; but an integer or other “leaf” does
not require any further processing. The garbage collector will need to know the
size of each record, and which of the fields are pointers.

These problems have been solved in two different ways. In the earliest LISP
systems, one area of memory was reserved for cons cells, and another area was
reserved for integers. Thus, a machine word containing the address of a cons
cell is distinguishable from a word containing the address of an integer by the
numerical value of the address. All cons cells are the same size, so the size of a
cell is always known. Encoding types by address ranges has been generalized in
the BIBOP (Big Bag of Pages) scheme, in which a table maps address ranges
to types.

Pure address-range schemes have the disadvantage that integers now require
two words for their storage: one word for the pointer into the “integer area,”
and one word within that area for the integer itself. Not only does this take
extra space, but now an extra fetch is required whenever arithmetic is to be
performed on the integer. This scheme was reasonable in early implementations
where pointers were half the size of integers, but it is less attractive now.

Another approach is to reserve one or more bits in each word of memory as a
“tag,” indicating the type of the word. For example, there might be one bit that
distinguishes pointers from integers. Using a “tag bit” has two disadvantages:

1. The representable range of addresses and integers is restricted.

2. Addresses and integers now require special handling at runtime to remove
tag bits before operations are performed on them, and to apply tag bits
before they are stored into memory.

Tag-bits can be handled by special hardware; but special hardware is more
expensive and tends to be available in slower realizations than general-purpose
machines with larger markets.

Ungar [10] has a good survey of tagging schemes.

2 Statically-typed languages

Many programming languages have static (compile-time) type checking. In such
languages, tags are not necessary for normal execution of the program. However,
in some implementations of statically-typed languages with garbage collection
[8] a descriptor is attached to the beginning of each record for use by the garbage
collector. The descriptor specifies the length of the record, and identifies which
fields are pointers and which are not.



It 1s not necessary to put a descriptor on each record in an Algol-like
statically-typed language. Instead, a digested version of the user’s type defi-
nitions, along with a static summary of the type of each variable and procedure
parameter, can be provided to the garbage collector[4]. Because this informa-
tion can be formed (by the compiler) from the program, regardless of the data
the program manipulates, it is of a fixed (small) size and requires no runtime
overhead for its manipulation.

When the garbage collector is invoked, it searches the stack for references into
the heap. From the return-address information on the stack, it can determine
which procedure is associated with each stack frame. From the saved type
information, the garbage collector can determine the type and value of each
local variable on the stack, as well as the types and values of global variables.

The garbage collector then traverses the heap, starting from the roots it
finds in global variables and on the stack. As it makes its traversal, it keeps
track of the type of each pointer. When following a pointer in the collection
algorithm, the collector also makes the appropriate traversal of the type infor-
mation associated with each pointer. For example, when examining the third
field of the record pointed to by P, the collector will examine the (static) type
information of P to determine the type of the third field pointed to.

Variant records pose a slight problem. In many languages (like Pascal and
ML), variant records have a user-accessible field that determines the type of the
record. Consider the Pascal record

TYPE vehicle = RECORD
CASE kind : (car, truck)
OF car : (passengers : integer);
truck: (weight : integer)
END

This record requires the kind field to distinguish whether it is a car or a truck.

The garbage collector must examine the variant field to determine which
variant has been instantiated; it will then use this value to find the appropriate
type in the static type information. The variant tag must be present in the
data structure, however. In Pascal (for example) there is a version of variant
records without an explicitly named tag field, but the compiler must insert and
initialize such a field at runtime.

The variant field associated with variant records are not strictly comparable
with tags as described in section 1. Most records are not variant, and thus
won’t need a variant field. Furthermore, they serve as user data as well as type
information. For these reasons, we will represent them explicitly and still claim
to have no “tag” storage.



3 Garbage collection cost vs. execution cost

The previous section (and reference [4]) show describe a runtime system for
Pascal that has no tags except for variant records and represents integers in
their natural (tagless) representation; call this system A. Let us compare its cost
to a (hypothetical) Pascal system, B, that uses tags to tell the garbage collector
about the types of objects; and to a conventional Pascal system (C) without
garbage collection that uses the dispose command to do explicit deallocation.

We will assume that there is a performance penalty in system B of b% for
manipulating tags bits at run-time and for creating the record tag words. We
will also assume that program C eventually disposes of each cell, with a cost of
¢ instructions per cell.! Finally, we suppose that system A’s garbage collector
is a times as slow as system B’s, since it has to interpret the type map as well
as traverse the heap.

No matter what the values of a, b, and ¢, it turns out that system A will be
faster in the limit of large memory size. Let L be the number of live records
in the heap; this is independent of the program and of the compiler. Let M be
the size of memory, and k be the time to copy and scan one record. Then the
cost-per-cell-freed of copying garbage collection is

cost of copying kL
cells freed - 417

which approaches zero? as M increases[1]. If we multiply this cost by the con-
stant a, it still approaches zero. On the other hand, the costs b and ¢ of ma-
nipulating tags and doing explicit deallocations do not disappear. So it appears
that tagless garbage collection is a good thing.

4 Polymorphic type checking

Tagless type checking serves Pascal very well. However, the strict type system of
Pascal (and similar languages) constrains the style of programming. To do list
processing in Pascal, for example, it is necessary to re-implement the same set
of procedures (cons, head, tail, map, append, etc.) for each data type of
which it is desired to have lists. In contrast, the language LISP has just one set
of list primitives which are applicable to lists of any type. This simplifies and
clarifies programs, and permits a more abstract programming style.

Languages like ML[6] have a static type system that allows functions (like
cons) to be polymorphic[7]. That is, the language is type-checked at compile
time, but the cons function can be used to build lists of any type of object.

1 We will ignore the very significant, but harder to measure, programming overhead of using
a system without automatic garbage collection.
2The cost approaches zero even faster if a generational garbage collector [5][9] is used.



For example, the simplest polymorphic function is the identity function,
(Az.z), which has the type Vo.(ar — «). The function-composition function
(A(f,9).Az.f(gz)) has the type Va¥BVy.((B —7) x (@ = B)) — (a — 7)).

Consider the cons function that attaches an integer to the beginning of a
list of integers, or a string to the beginning of a list of strings. In general,
cons takes an argument of type o and an argument of type alist, and returns
a result of type alist, for any type a. Formally, we write the type of cons as
Va.(a x alist — alist).

The empty list, nil, is also polymorphic; it is simultaneously an empty list of
integers, and empty list of strings, etc. Its type is Va.alist. Then the following
expressions have the noted types:

cons(5,nil) int list

cons("s",nil) string list
cons(8,cons(5,nil)) int list To make &
cons(cons(5,nil),cons(6,nil),nil) (int lList) list

cons(nil,nil) Vo (alist)list
cons("s",cons(5,nil)) illegal

containing objects of different types, one would use a union type (like a variant
record in Pascal).

In ML (as in Lisp), the same piece of machine code implements the cons
function for integers and the cons function for strings. All objects, whether in-
tegers or pointers, take exactly one word to represent, and the cons function just
combines the two one-word arguments into a record. In general, a polymorphie
function needs only one implementation. -

Other operations (like plus) are overloaded not polymorphic; their imple-
mentation depends on the type of the operand. In ML (but not in Lisp), the
compiler determines the argument type at compile-time, and no tag-checking is
required at run-time.

No runtime operations except garbage collection depend on the tags in an
ML system. If garbage collection could be done without tags, then the tags
could be eliminated entirely.

5 Polymorphic garbage collection without tags

Section 3 describes an algorithm for garbage collection of statically-typed, non-
polymorphic languages without tags. We would like to extend this scheme to
polymorphic languages.

When the garbage collector is invoked, it examines the previously executing
function-call frame to see what function was interrupted. This can be deter-
mined from the program counter in that frame. As in described in section 3,
the machine code for each function can be annotated with a description of the
types of the variables in the frame.

The problem is that some of the variables may be polymorphic. Suppose it



is the cons function that runs out of memory; its two arguments have type o
and alist, respectively. From this we know that the second argument is either
nil (perhaps represented by 0) or a two-element record; but we don’t know
much about the first argument, and we don’t know what type of object is in the
record.

The answer turns out to be easy, in principle. We know that cons was called
from some other function, and perhaps that function knows what type a is. We
can find the calling function by examining the return address in cons’s call
frame. For example:

£ v a5 3

1

fun cons(a,b)

fun £(j : int) = g(cons("abc",nil), cons(j+4, nil))

The function f calls cons twice; in the first call @ is bound to the type string, and
in the second call a is int. If this information is recorded in a data structure
attached to the machine code for f, then the garbage collector can find the
binding for o by looking at the return address of the cons function. (It can
distinguish one call from another because the return addresses will differ.)

What if the calling function were also polymorphic? Here is an example of
such a function:

fun repeat(d,i) = if i=0 then nil else cons(d, repeat(d, i-1))

The repeat function has type V3.(8 x int) — (Blist). The compiler can unify 8
with the « used in this call to cons; that is, it can statically determine that the
type of the first argument to cons is the same as the type of the first argument
to repeat. But how is the garbage collector to know what £ is?

Well, repeat must have been called from somewhere. By induction, the
garbage collector can keep unwinding the runtime stack until it finds the bind-
ings of all variables. The induction is well-founded (the unwinding terminates)
because the top-level expression, which makes the first function call, does not
have a polymorphic type.

"This will determine the types of all variables in function-call frames. These
variables serve as the roots of the reachable graph of data.

The collector can do a depth-first traversal of this graph, keeping track of
the type of each record. When the exact type of a given record is known, then
it is easy to derive the types of the records it points to. Thus, a depth-first
copying collector can be implemented.

6 Breadth-first copying

Most copying garbage collectors use breadth-first traversal, mostly because it
is simpler to implement. Some specialized algorithms [2] require a “random-
access” breadth-first traversal. Tagless collection is more naturally depth-first,
but it is possible to do a breadth-first traversal.



A breadth-first copying collector copies cells from a “from-space” to a “to-
space.” As each cell is copied, the first word of the cell in from-space is overwrit-
ten with a pointer to the copy in to-space. The queue needed for breadth-first
search is actually the to-space itself; it is scanned for more pointers to cells that
need copying.

The modification to the standard copying algorithm is that a type tag will
be added to each cell as it is copied. The collector starts with a set of “roots”—
e.g. the contents of procedure-call frames. Any cells reachable from these roots
are to be copied, and as explained in the previous section, the collector knows
the exact type of each root. Whenever a cell is copied, a pointer to its type is
stored with the copy in the to-space. When a cell in to-space is scanned to see if
its fields point into from-space, the type-pointer can be used to learn the types
of the fields.

The type-pointer need not be kept in the to-space itself; a separate queue
of type-pointers will suffice. This has the advantage that after collection the
queue may be thrown away.

7 Generational garbage collection

For languages that rarely alter previously-allocated cells, generational garbage
collection[5][9] is most efficient. In this scheme, memory is grouped into several
regions containing cells of various ages. Cells in newer regions may point to cells
in older regions, but not vice versa. Garbage collection can be done mostly on
the new (most volatile) regions, and more rarely on the older regions.

The only way that an older region can point to a newer region is if a cell in
the older region is altered, which by assumption is rare. When this happens, the
older cell must be considered a root for garbage collection of the newer region,
and the address of the older cell is put onto a list of such roots to be processed
by the collector.

The tagless garbage collector will need to know the type of the older cell
(and, in particular, of the newer cell it points to). The older cell must have
been copied during a previous collection, however, and the garbage collector
knew its type at that time. We could arrange that each copied cell keeps its
type-pointer (as described in the last section).

Keeping the type-pointers of all copied cells becomes expensive, however—it
will take as much space® as an implementation with explicit descriptors every-
where. In ML, however, the compiler can identify the cells that may be stored
into; such cells are marked by the programmer as ref variables. The garbage
collector can attach type-pointer to ref cells when it copies them, and omit the
type-pointer from other cells.

®But not as much time, because most cells become garbage and never get copied.



8 Estimating the performance

Though we have not implemented this algorithm, we can estimate its perfor-
mance relative to ordinary (tagged) garbage collection. We will make some
arbitrary guesses about the cost of various operations, and calculate the result-
ing impact on time and space of an executing program.

We will use the Standard ML of New Jersey compiler[3] for comparison.
This compiler uses a low-order tag bit on each word to distinguish pointers
from integers, and uses a one-word descriptor on each record to communicate
its type to the garbage collector. The tag bits and descriptor words are used
only by the garbage collector. ¢

We ran a large benchmark in this system (the compiler compiling itself;
500 seconds of execution on a VAX 8550, or approximately 2.7 -10° instructions
assuming 5 MIPS). We used a generational garbage collector; the cost of garbage
collection decreases as one increases the memory limit, but our typical overhead
in large memories is one or two percent.

The benchmark allocated 31.4 million records of average size 2.9 words. This
means that the space cost of the descriptors is about 26%. On the average, a
record is allocated every 88 instructions; so the overhead of the store instructions
to create the descriptors is about 1.1%. ‘

It is harder to estimate the cost of the tag bits. Some compilers reserve
the low-order bit of each word to distinguish integers from pointers. On byte-
addressable machines, pointers don’t really need this bit anyway; and integers
can be shifted left from their natural representation. Integer addition can then
be done with the ordinary machine add instruction, and no shifting or correction
will be necessary (since 2z + 2y = 2(z + y)). We prefer that pointers have
their “natural” machine representation, and we use a low-order tag of one for
integers. This requires a one-instruction correction to one of the arguments of
an add or subtract, and three extra instructions to correct a multiply. Addition
or subtraction of a constant, however, can be corrected at compile-time, and
comparison operations require no correction. On the whole we will arbitrarily
assume that tagged arithmetic takes 30% longer than untagged arithmetic.

Ungar[10] measured the dynamic frequency of tagged arithmetic instructions
in Smalltalk and found them to be approximately 9% of all instructions. Thus,
there is an estimated 3% time overhead from tag bits.

The space overhead from tagging is, presumably, 1 bit for every integer
stored. When a small integer is represented, that bit isn’t needed anyway.
And when a full 32-bit integer is represented, then it just won’t fit. 32-bit
integers are often needed in multi-precision arithmetic packages, to represent
machine instructions, etc. The tag bit, therefore, is more of an unquantifiable
inconvenience than a measurable cost.

In total, the overhead of descriptors and tag bits is about 25% in space and

*and by the polymorphic equality feature, which is dispensible.



4% in time. By using BIBOP schemes, we can reduce the space overhead but
not the time, as allocating a record then becomes more complicated.

In contrast, let us estimate the overhead of tagless garbage collection. The
garbage collector must do an extra traversal of the stack to determine the in-
stantiations of polymorphic types; but this is trivial in comparison with the
amount of data to be copied. Copying might become slower by a factor of two
or three, since the type system must be traversed at the same time. There is no
other time cost; so the overhead would increase by an amount equal to perhaps
twice the current cost of garbage collection, i.e. 2-4%.

There is a space cost of tagless garbage collection, too. The machine code
for each function must be annotated with descriptions of the types of its local
variables and of the functions it calls. This might be half the size of the ex-
ecutable code. In our benchmark, code was usually just under half of all live
data at any time, so the effective space overhead of tagless collection might be
on the order of 25%. For programs that have much more data than code (and
such programs are common), the space overhead vanishes.

So we find that the cost of tagless collection would probably be about equal
to the cost of conventional garbage collection, in the given benchmark. For ma-
chines with more memory (where the overhead of garbage collection decreases),
and for programs with much more data than program, the cost of tagless col-
lection will begin to win.

9 Conclusion

Run-time tags are not necessary for statically-typed polymorphic languages.
The performance of a system without type tags will probably be comparable
the the performance of a conventional system. Programming language features
(e.g. the polymorphic equality feature of Standard ML) that require runtime
tags should not be thrown into the language “because the tags have to be there
anyway;” the tags don’t have to be there.

Acknowledgement

Thanks to Trevor Jim for many useful comments on the manuscript.

References

[1] Andrew W. Appel. Garbage collection can be faster than stack allocation.
Information Processing Letters, 25(4):275-279, 1987.



[2]

[3]

[4]

(5]

[6]

(8]

[9]

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time Concurrent Collec-
tion on Stock Multiprocessors. Technical Report CSL-TR-133-88, Princeton
University, 1988.

Andrew W. Appel and David B. MacQueen. A Standard ML compiler.
In Gilles Kahn, editor, Functional Programming Languages and Computer
Architecture (LNCS 27/), pages 301-324, Springer—Verlag, 1987.

Dianne E. Britton. Heap Storage Management for the Programming Lan-
guage Pascal. Master’s thesis, University of Arizona, 1975.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based
on the lifetimes of objects. Communications of the ACM, 23(6):419-429,
1983.

Robin Milner. A proposal for Standard ML. In ACM Symposium on LISP
and Functional Programming, pages 184-197, 1984.

Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348-375, 1978.

Paul Rovner, Roy Levin, and John Wick. On Extending Modula-2 For
Building Large, Integrated Systems. Technical Report Research Report 3,
DEC Systems Research Center, Palo Alto, CA, 1985.

David Ungar. Generation scavenging: a non-disruptive high performance
storage reclamation algorithm. In SIGPLAN Notices (Proc. ACM SIG-
SOFT/SIGPLAN Software Eng. Symp. on Practical Software Development
Environments), pages 157-167, 1984.

David M. Ungar. The Design and Evaluation of a High Performance
Smalltalk System. MIT Press, Cambridge, Mass., 1986.



