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Abstract

In this paper we consider evaluating queries on relations defined by a combination
of recursive rules. We first define separable recursions. We then give a specialized
algorithm for evaluating selections on separable recursions. Like the Magic Sets and
Counting algorithms, this algorithm uses selection constants to avoid examining irrel-
evant portions of the database; however, on some simple recursions this algorithm is
O(n), whereas the Magic Sets algorithm is Q(n?) and the Generalized Counting Method
is Q(2").

1 Introduction

Evaluation algorithms for queries on recursively defined relations can be divided into two
classes: those intended for a specific class of recursion, and those intended for general
recursions. This paper continues research into algorithms for special classes of recursions.
Developing specialized algorithms in addition to general algorithms will be a “win” if the
classes for which we have specialized evaluation algorithms are frequently used, and the
specialized evaluation algorithms are better than the general algorithms on these recursions.

In this paper we identify a class of recursions called “separable recursions.” While it
is impossible to be certain how frequently separable recursions will appear in as-yet un-
available systems, initial studies of logic programs suggest that they will be common. Fur-
thermore, for selections on separable recursions, our evaluation algorithm can outperform
popular general evaluation algorithms by a factor proportional to the size of the database.

Separable recursions are a subset of linear recursions, and include non-chain rules and
non-binary predicates. Section 2 gives a precise definition of separable recursions; here we
present two examples.

Example 1.1 Suppose that we have a relation perfectFor(X,Y") of people X and products
Y such that YV is perfect for X, and also two relations friend(X,Y ) and idol(X,Y) of people
X and their friends and idols Y. Furthermore, suppose that a person will buy a product if
it is perfect for them, or if their friend or idol has bought it. Then the following recursion
defines a relation buys(X,Y") of people X and products ¥ that they buy.



ri: buys(X,Y) -~ friend( X, W) & buys(W,Y).
ro: buys(X,Y) - idol(X, W) & buys(W,Y).
r3:  buys(X,Y) - perfectFor(X,Y).

This is a separable recursion. |

Example 1.2 Suppose now that someone will no longer buy a product if their idol buys
it, but that they will buy a product if it is cheaper than another product they will buy.
Assuming that we have a relation cheaper(X,Y’) of products X and Y such that X is
cheaper than Y, we can now define the relation buys as follows:

ry: buys(X,Y) — friend(X, W) & buys(W,Y).

ro: buys(X,Y) — buys(X,W) & cheaper(Y,W).

ra:  buys(X,Y) - perfectFor(X,Y).

This is also a separable recursion. |

Two currently popular evaluation algorithms are Magic Sets [BMSU86,BR87] and Count-
ing [BMSU86,BR87,5Z86]. Section 4 discusses the relative worst case performance of Magic
Sets, Counting, and Separable on some general classes of separable recursions. That section
also shows that if n is the number of distinct constants in the base relations mentioned in
the recursion, on the query buys(tom,Y )? on the relation buys defined in Example 1.2, the
Generalized Magic Sets algorithm generates relations of size is Q(n?). For the same query
on the relation buys defined in Example 1.1, the Generalized Counting Method generates
relations of size Q(2"). The evaluation algorithm presented here is O(n) for both queries.

In related work, Beeri et al. [BKBR87] suggest that an evaluation algorithm uses a
selection effectively if it reduces the arity of the recursion, and prove that a selection
on a binary chain rule program can be replaced by a monadic recursion if and only if
the underlying language for the program is regular. For binary chain programs that are
separable, this work provides an algorithm to do so. However, there are separable recursions
that are not binary chain programs; for such programs the connection between the two
papers is less obvious.

Chang [Cha81] presents an algorithm for evaluating queries on relations defined by a
system of regular chain rules. As separable recursions do not include mutually recursive
predicates, but do include non-chain rules, the class of programs to which Chang’s algorithm
applies and the class to which our algorithm applies are incommensurate. Chang’s algorithm
requires that the base relations be acyclic, and is Q(n?) on the queries in Examples 1.1 and
1.2. Minker and Nicolas [MN82] note that Chang’s algorithm can be extended to some
nonlinear chain rule recursions.

Henschen and Naqvi [IN84] note that for some special cases of single rule linear re-
cursions (no “induced part” or no “determined part”) their general algorithm can be sim-
plified. Han and Henschen [HH87] mention a similar algorithm for computing selections
on transitive closure queries. The separable recursion evaluation algorithm reduces to this
simplification for these special cases, but is more general in that it applies to multiple rule
recursions. The general Henschen and Naqvi algorithm [HN84] fails for cyclic data and,
like generalized counting, is ©(2") on the query in Example 1.1.



The one-sided recursion evaluation algorithm in Naughton [Nau87] and the separable
algorithm are identical for separable single rule recursions. However, as not all one-sided
recursions are separable and not all separable recursions are one-sided, the one-sided evalua-
tion algorithm and the separable evaluation algorithm apply to different classes of programs.

Aho and Ullman [AUT79] present a technique of pushing selections into fixpoints that,
when combined with semi-naive evaluation, produces an instance of our algorithm if the
selection is on a “stable” variable and the recursion is separable. As their algorithm applies
to recursions that are not separable but not to all selections on separable recursions, their
algorithm also applies to a set of programs and queries incommensurate with that to which
our separable recursion evaluation algorithm applies.

As the algorithm presented here applies to a special class of recursions, it must supple-
ment more general algorithms such as Generalized Magic Sets rather than replace them.
However, because of its superior performance on queries on separable recursions, and be-
cause it is computationally simple to detect separable recursions, we expect that this eval-
uation algorithm will be a useful component of a recursive query processor.

2 Definitions

We consider queries on relations defined by function-free pure horn clause programs. We
use Prolog syntax, and require that the heads of the rules contain no repeated variables
and no constants. (The effect of both repeated variables and constants in rule heads can
be handled by adding equalities to the rule bodies.) The predicates are divided into two
types: IDB predicates, which appear in the head of some rule, and EDB predicates, which
appear in the head of no rule and are defined by their extent.

If the predicate appearing in the rule head appears exactly once in the rule body, then
the rule is linear recursive. The definition of an IDB predicate t is the set of all rules in
which ¢ appears in the head. In this paper we consider queries on relations defined by one
or more linear recursive rules 7, through r,. We assume without loss of generality that
cach definition also contains a single nonrecursive rule ro. Furthermore, we assume that
the definitions of the predicates other than ¢ do not depend on ¢ — that is, they are not
mutually recursive with ¢. We will call any predicate other than ¢ a base predicate.

A query is some predicate instance, possibly containing variables and constants. The
evaluation algorithm must return the set of all tuples of values for the variables that make
the query true. In this paper we consider queries in which at least one argument of the
query predicate is a constant.

The ezpansion of a predicate t is the set of all conjunctions of EDB predicates that can
be generated by some sequence of rule applications beginning with applying some rule to .
To “apply” a rule to a conjunction of predicate instances, choose some predicate instance
in the conjunction and some rule with a head that unifies with that predicate instance.
Then replace the chosen predicate instance with the body of the chosen rule after the most
general unifier has been applied. For recursive predicates, the expansion is infinite.

For the recursions considered in this paper, the expansion can be generated by procedure
Expand in Figure 1. The input to that procedure is some recursion, and an instance of the
recursive predicate ¢; the output is the infinite set S, the expansion of that recursion.



1)  Give all variables in rules subscript 0;
2) B

3) Fringe =11}

4)  while true do

5) NewFringe := {;
6) for each element f of Fringe do
7) S := S U {f with r. applied};
8) for i := 1 ton do
9) NewFringe := NewFringe U {f with r; applied};
10) end;
11) end;
12) increment subscripts in all rules;
13) Fringe := NewFringe;
endwhile;

Figure 1: Procedure Expand

The elements of an expansion are conjunctive queries, and will be called strings. If a
variable V appears in the initial instance of t, then V' is a distinguished variable; otherwise,
it is nondistinguished. By our assumption that the heads of rules contain no repeated
variables, the unifications in line 7 and 10 of Procedure Expand can always be done by
replacing the variables in the heads of r, or r; by the corresponding variable in the instance
of the recursive predicate in f. As Fringe is initialized to the instance of ¢ containing the
distinguished variables, this implies that the distinguished variables will always appear in
the elements of the expansion without subscripts, while the nondistinguished variables will
always appear with subscripts.

If Va,...,V; are the distinguished variables, and W4, ..., W, the nondistinguished vari-
ables, then the relation specified by the string py...py, is

{(V1,..., V)3V, ...,W;)(p A ... Apn)}
The recursively defined relation is the union of the relations for the strings in the expansion.
Example 2.1 The expansion of the definition in Example 1.1 begins
p(X,Y),
J(X, Wo)p(Wo,Y),
i(X, Wo)p(Wo,Y),
F(X, Wo) f(Wo, W1)p(W1,Y),
f(Xv I/VU)E‘(WU':WI)p(WhY)a
i(X, Wo) f(Wo, W1 )p(W1,Y),
i( X, Wo)i(Wo, W1 )p(W1,Y),



Definition 2.1 A predicate instance p; is connected to a predicate instance po if py shares
a variable with po, or shares a variable with a predicate instance connected to ps.

Definition 2.2 A subset of predicate instances C is a mazimal connected set if

1. For every pair of predicate instances p; and p; in C, p; and p; are connected, and

2. No predicate instance in C shares a variable with any predicate instance not in C.
Example 2.2 The predicate instances in
a(X, Zo)a(Zo, Z1)b(Z1,Y)
form a maximal connected set of size 3. The instances in
a(X, Y)Y, Z)e(W)

form two maximal connected sets — one of size 2 containing instances of @ and b, the other
of size one containing the instance of c. |

Definition 2.3 Let r be a linear recursive rule and let ¢ be the recursive predicate in
r. Then r contains shifting variables if there is some variable X such that X appears in
position p; in the instance of ¢ in the head of » and in position p; in the instance of ¢ in
the body of r, where p; # po.

Definition 2.4 (Separable Recursions) Let ¢ be defined by n recursive rules r; through
r,. Furthermore, let tf‘ be the argument positions of ¢ such that in the instance of ¢ at the
head of rule r;, each argument position in ¢? shares a variable with a nonrecursive predicate
in the body of r;. Similarly, let ¢ be the argument positions of ¢ such that in the instance of
¢ in the body of rule r;, each argument position in 2 shares a variable with a nonrecursive
predicate in the body of 7;. Then the definition of ¢ is a separable recursion if

1. For 1 < i < n, r; has no shifting variables, and

il Forlﬁiﬁn,t?:tf,and

3. For 1 <i<nandi< j<n,either t? = t;b or t} and t_’} are disjoint, and
4.

For 1 < i < n, removing the instance of ¢ from the body of r; leaves a maximal
connected set.

Section 5 discusses what happens when each of these restrictions is removed. Note that
Condition 3 of the above definition partitions the recursive rules into equivalence classes,
where rules r; and r; are in the same equivalence class if t‘.;‘ = tf,‘ These equivalence classes
can be evaluated essentially independently; this is the motivation for the term “separable
recursion.” If a separable recursion has n such equivalence classes, we will denote these



equivalence classes e;, for 1 < i < n. The columns of ¢ that share variables with nonrecursive
predicate instances in equivalence class e; will be denoted by 1 P

In general, there may be columns of ¢ that share variables with no equivalence class.
These columns are denoted t|pers, because the variables in these positions are persistent,
that is, they always appear in the same position in the instances of ¢ in Fringe throughout
the expansion.

Example 2.3 In Example 1.1, n = 2. The recursive rules contain no shifting variables,
so the tecursion satisfies Condition 1 of Definition 2.4. Also, buysy = {buys'}, buys} =
{buys'}, while buysh = {buys'}, and buysh = {buys'}, so that recursion satisfies Condition
9 of Definition 2.4. Condition 3 is satisfied since {buys®} = {buys}}. Finally, removing the
instance of buys from r; and ry leaves a maximal connected set of size 1 in each case, so
that recursion satisfies Condition 4 of Definition 2.4. This recursion has one equivalence
class, e1, containing rules r; and ro. Here ¢, is the first column of ¢, and t|pers is the
second.

In Example 1.2, there are again no shifting variables, and we have buys? = {buys'},
buys® = {buys'}, while buysh = {buys®}, and buysh = {buys®}, so that recursion satisfies
Conditions 1 and 2 of Definition 2.4. Also, {buyst} and {buysk} are disjoint, so that
recursion satisfies Condition 3. Finally, removing the instance of buys from r1 and 72 again
leaves a maximal connected set of size 1 in each case, so that recursion is also separable.
This recursion has two equivalence classes, e; containing 71, and ez containing r3. Here i
is the first column of ¢, while |, is the second and t|pers is empty. |

In procedure Expand, the elements in Fringe grow from iteration to iteration as predicate
instances are added by rule applications. For any predicate instance p in string of the
expansion, there is an iteration ¢ and a rule r such that p first appeared in an element of
the fringe on iteration 7, and appeared due to the application of the rule r. We say that p
was produced by r on iteration 1.

Definition 2.5 Let s be an element of the expansion of a separable recursion R, and
let e; be an equivalence class of R. Then D(s), the derivation of s, is the sequence of
rule applications that produced s. Similarly, D;(s), the projection of D(s) onto e;, is the
subsequence of D(s) formed by deleting from D(s) all rule applications from equivalence
classes other than e;. Also, D;(s)g is the first k rules of D;(s).

Definition 2.6 Let s be an element of the expansion of a separable recursion R, and let
e; be an equivalence class of R. Then P;(s), the projection of s onto D;(s), is the predicate
instances of s that were produced by the application of rules from e;. Also, let Pi(s)r be
the predicates produced by the rules in D;(s).

The following theorem demonstrates an important property of separable recursions.
Theorem 2.1 Let s and s' be two elements from the expansion of a separable recursion R,

and let the equivalence classes of R be e;, for 1 < i < n. Furthermore, let Di(8) =|.Di(¢)
for 1 < i< n. Then s and s' define the same relation.



Proof: The proof proceeds by demonstrating that there are containment map-
pings in both directions between s and s'. A containment mapping from s to s
is a mapping m from the variables of s to the variables of s’ such that

o If V is a distinguished variable, then m(V) = V.
o If p(Vi,...,V,) appears in s, then p(m(Vy),...,m(V},)) appears in &'

Containment mappings were defined in [CM77,ASUT79]; those papers also proved
that two conjunctive queries ¢; and go define the same relation if and only if
there are containment mappings in both directions between the two queries.

We first show that for all 7, 1 < ¢ < n, the predicate instances of s that were
produced by the application of rules from e; can be mapped to the predicate
instances of s’ that were produced by the application of rules from e;. The proof
is by induction on prefixes of D;(s).

For the base case, note that D;(s)o is empty, so, vacuously, the predicate
instances in D;(s)o can be mapped to the predicate instances in D;(s")o. Next,
suppose that the predicate instances in D;(s);—, can be mapped to the predicate
instances in D;(s");—1. Consider the case D;(s), where k& > 0.

Let m;;_1 be the containment mapping from the predicate instances pro-
duced by the first £ — 1 rule applications in D;(s) to the predicate instances
produced by the first k — 1 rule applications in D;(s’). Extend mz—; to mj; as
follows:

e For any variable V' that appears in P;(s)x—1 and also in the predicate
instances produced by rule k of D;(s), let m;r(V) = mr—1(V).

o For any variable W), that appears for the first time in instances produced
by rule application k of D;(s), let m;x(W,) = W, where Wy, is the corre-
sponding variable in the predicate instance produced by rule application k
of D;(s").

We now show that m;; defined in this manner is a containment mapping from
P;(8); to P(s)s.

Consider the predicate instances produced by rule k of D;(s) and D;(s').
(By the assumption that D;(s) = D;(s"), rule k is the same in each.) Let f; be
the element of Fringe to which rule k& of Wj(s) was applied, and let f} be the
element of Fringe to which rule k of D;(s’) was applied. Also, let rule & of D;
be applied on on iteration p of Procedure Expand, and let rule k of D(s') be
applied on iteration p’ of Procedure Expand.

Any variable V' that appears in P;(s)r—1 and also in the predicate instances
produced by rule k£ must appear in {|,; in the instance of ¢ in f; before rule k
is applied. Note that, by definition of Separable recursion, only the application
of rules from e; can change variables in positions of ¢/, ; rules from other equiv-
alence classes simply use the identity substitution on variables in t|.;. Thus V'



appears in the same position in fj as it did immediately after the application
of rule ri_1 to fr-1.

Now consider the variable m;;_1(V). The assumption that m_; is a con-
tainment mapping from P;(s)g_1 to P;(s')x—1 implies that m_1(V") must ap-
pear in the positions of t|e, in ff_; in which V appears in t|e; in fr_1. By the
arguments of the preceding paragraph, V and mik-1(V) must also appear in
the same positions in fi and fj.

On iteration p, the variables in rule k& have subscripts p. In the unification
necessary to apply rule k, the variables that appear in the head of rule k will
be replaced by the corresponding variables in #|e; in f;. Hence the predicate
instances added to P;(s); by the application of rule & will be the predicate
instances from the body of rule k, with variables that appear in the head of the
rule replaced by the variables in t|e; of fi, and variables that do not appear in
the head subscripted by p. Similarly, the predicate instances added to P;(s')x
by the application of rule & will be the predicate instances from the body of
rule k, with the variables that appear in the head of the rule replaced by the
variables in |, in f}, and variables that do not appear in the head of the rule
subscripted by p'.

Hence all variables W, that do not appear in the head of rule k can be

consistently mapped by setting m;(W,) = W.

Now consider the variables that do appear in the head. There are two cases
to comsider: if k = 1, then no rule from e; has been applied, and the positions
t|e; in both s and s’ contain the distinguished variables that appear in those
positions in the original instance of ¢. These variables haven’t yet appeared in
any previously produced predicate instances of P;(s) (there are none), hence
for each such variable we set m;o(Wp) = Wy, which reduces to mip(V) = V.
If £ > 1, then we know that V and m;x—1(V) appear in the same positions in
fr and fi, so they will appear in the same positions in the predicate instances
produced by applying rule k. Hence the mapping is consistent, that is, it maps

predicate instances in P;(s) to predicate instances in P;(s').

We still must show that if V is a distinguished variable appearing in P;(s),
then m;(V) = V. First, note that by definition of distinguished variable, if a
distinguished variable appears in predicate instances added by rule & of D;(s),
it must do so through being substituted for some variable in the head of the
rule. Hence m;; (V) = V, and my(V) = mi_1(V) if k — 1 > 0. By induction,
this shows that if V is a distinguished variable, then m;x(V) = V, as required.

Up to this point, we have shown that, for each i, there is a containment
mapping m; from P;(s) to P;(s"). Now consider the mapping miotal defined as

e If V appears in predicate instances produced by a rule of equivalence class
ei, then myua(V) = mi(V).

o If V appears only in the instance of to (the only remaining possibility),
then ’mtomg(V) = V



We claim that my,s,; is @ containment mapping from s to s'.

By definition of m;, for each ¢ the mapping Myt is a containment map-
ping from P;(s) to P;(s'). By the definition of separable recursion, the variables
appearing in P;(s) and P;(s) are disjoint when ¢ # j. Hence myotar is a contain-
ment mapping from the predicates in U, P;(s) to the predicates in UL, Pi(s').
Now consider the instance of #g.

By an easy induction, if some variable V' appears in position p of o in s,
and V also appears in P,(s) for some i, then m;(V) appears in position p in
. Similarly, if V appears in position p in ¢ but not in P;(s) for any ¢, then
V appears in position p in s’. Hence myotq is a containment mapping from the
instance of tg in s to the instance in s'.

This shows that there is a containment mapping from s to s’. By interchang-
ing s and s’ in the proof above, we get that there is a containment mapping
from s’ to s as well. Hence s and s’ must define the same relation. i

We conclude this section with a definition of full selections. Intuitively, a full selection
binds every column of some equivalence class. As Lemma 2.1 shows, we need only consider
full selections in the Separable evaluation algorithm.

Definition 2.7 A selection on a separable recursion is a full selection if either the query
predicate contains a constant in V(t|pers), or there is at least one equivalence class e; such
that in the query predicate, all variables in Vj(t|¢;) are replaced by constants.

Lemma 2.1 Any selection on a separable recursion can be evaluated by taking the union
of full selections.

Proof: Clearly any full selection can be evaluated by a union of full selections.
Consider an arbitrary selection @ that is not a full selection on an arbitrary
separable recursion R defining a recursive predicate t. We can write R as

T11- b= t,an.
7128 t:—1,a2.
Ty t = t,85m, -
To1: i = t, as1.
T99: t —1t,a99.
Tomg " t = t,02m,.
TrLs t:—t,an1.
Tt t i~ LiGna.



Pyt t t =1, anm,-

where in general the a;; are conjunctions of base predicate instances, and the
equivalence classes of this recursion are ey = {r11,712,.++, lm1 s -+ €n =

{T'nl y Tn2s Tnmy, }

By definition of full selection, since @ is not full, there must be some equiv-
alence class e; such that a proper subset of the variables in Vj(t|e,) are replaced
by constants. Assume without loss of generality that this equivalence classis €.
Construct two new recursive predicates tfull and Pt where these predicates
appear nowhere else in R. Replace R by the two recursions

ull, I 1
’f‘{l b tfu - tfu ,a11-
full, ; ]
Tio - tfull . gfu , 412
fall, . 1l
?‘lmﬁ- t'fu” « tfu ’a'}-ml .
frgf : tfull . tf“”,agl.
Full, . I
Toe ¢ tfu’ b 't‘,fu s @22.
Sull, wll . I
Tomy® it o R s
1
r,{i‘ : gfull o gfull g ).
1
r,{g : tfull . yfull g 0.
5 i,
r,{i‘,fi gfull o gfull g
rg'"'”: gl . 1o.
and
i
i gport . gpart_gos.
frggrt: tpart . gpart g.o.
Tgi:;: PP e PO g e s
Ti‘irf: tpcu"t — tpa'rt, @i
art
i part . gpart g o.

10



Tﬁ%t: tpm't — tpart
n

Tg'm: trort . 4.

? a'nmn .

where the variables in each rule in the new recursions are the same as the
variables in the corresponding rules in the original recursion. Finally, add the
rules

t P,

1~ tfu”, ay1-
i tf“”,alg.
1= tf“",alml.

where the variables in #?%* in the first rule are the same as the variables in ¢
in the heads of the original recursion, and the variables in 174l and the aq; in
each of the remaining rules are the same as the variables in the corresponding
rules of the original recursion.

We now prove that the new recursion R’ computes the same relation for t
as the original recursion R. By Theorem 2.1, all that is necessary is to show
that for each element s of the expansion of R, there is an element s’ in R’ such
that, for 1 < i < n, D;(s) = D;(s'), and vice-versa.

Let s be an arbitrary string in the expansion of R. Suppose that Dy (s) is
empty. By definition of Dj(s), this implies that s was produced without any
applications of rules from e;. Now consider s’ in the expansion of R' produced
by first applying the rule ¢ i~ t**"*, and then applying the sequence of rules
D(s") where D(s') is defined by replacing r;; in D(s) by Téull. As 7;; and Tf;-“”
are identical, s and s’ will be identical, hence s and s’ define the same relation.

Now suppose that D;(s) is not empty. Let r1; be the first rule application in
Dy(s). Consider the string s’ produced by first applying the rule ¢ - tP%"% ay;,
then applying the sequence of rules D(s’) where D(s') is defined by deleting
the first rule application from Dy(s), then replacing r;; in D(s) by Tf;”. As ry;
and 2" are identical, and the rule ¢ :- t**"*, a1; is the same as the first rule
application in D (s), Di(s) = Di(s"). Then by Theorem 2.1, s and s’ define the
same relation.

Hence we have shown that for every string in the expansion of R, there is a
string in the expansion of R’ that defines the same relation. Now consider an
arbitrary string s’ in the expansion of R’. Suppose that s’ was produced by first
applying the rule ¢ :~ t?*%, then applying the sequence of rules D(s). Then the
string s in the expansion of R, where D(s) = D(s') with Tf;” replaced by rij,
defines the same relation.

11



Now suppose that s’ was produced by the sequence of rules D(s), where the
first rule in D(s') is the rule ¢ :- t/*!' ay;. Consider the string s in the expansion
of R, where s was produced by the sequence of rule applications r;D(s), where
D(s) is D(s") with r;j“” replaced by 7;;. For 1 < i < n we have D;(s) = Di(s'),
so again s and s’ define the same relations.

Thus the new recursion and the original recursion define the same relations.
To complete the proof, note that a the partial selection on t gets transformed
(via sideways information passing) to full selections on t7ull and Pt In more
detail, through sideways information passing the original selection binds all
columns of t|, in tfull | while the original selection is on a variable in 1P s
so both are full selections. i

Example 2.4 If t|,, for all equivalence classes e; of a recursion, consists of a single column,
any selection on t will be a full selection. This is the case for the recursions in Examples
1.1 and 1.2. Let R be the recursion

H(X,Y,Z2) - a(X,Y,U,V),1(U,V, Z).

HX,Y,Z) - (X,Y,W),b(W, Z).

HX,Y,Z) — to(X,Y, Z).

and the query t(c,Y, Z)?. Here there are two equivalence classes. The class e; consists of
the first rule, and t|e, consists of the first two columns of t. The class e; consists of the
second rule, and |, consists of the third column of ¢. The selection is not a full selection,
as it only binds one of the two columns of t|, . The recursion can be rewritten as

(XY, Z) - oYX, Y, W), b(W, Z).
(XY, Z) — to(X,Y, Z).

(XY, Z) - o(X,Y,U,V),t/(U,V, Z).
thill(X,Y, Z) - /(X Y, W), bW, Z).
(XY, Z) — to(X,Y, Z).

HX,Y,Z) - (XY, Z).
#(X,Y,Z) - o(X,Y, U, V), t*(U,V, 2).

Note that the original selection, t(c,Y, Z)?, is passed unchanged to the query Pari(e, Y, Z)?,
which is a full selection, as the first column of #*"* belongs to #?*"*|,.,,. The original
selection is passed through the instance of a(X,Y,U,V) to give bindings for the first two
columns of 7! which completely binds t/%#|e;, so that is also a full selection. Hence the
original selection is transformed to a union of full selections. |

3 Algorithms

3.1 Detection Algorithms

If an algorithm for a subset of recursive definitions is to be practical, we must have an
efficient way of determining whether or not a given recursion falls into the class. To decide
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if a recursion is a separable recursion, we have to verify each of the conditions of Definition
2.4. Below we give upper bounds on the time required to do so using straightforward
algorithms.

Let r be the number of rules in the recursion, & be the maximum over all predicates
occuring in the recursion of the number of arguments of a predicate, and let I be the
maximum over all rules of the number of predicates in the rule body.

Condition 1 can be verified in time O(k*r) by, for each rule, checking each variable in
the head to see where it appears (if at all) in the instance of the recursive predicate in the
body. Similarly, condition 2 can be verified in time O(k%Ir) by, for each i, first identifying t‘.;"
(O(k21)), then identifying 2 (also O(k*)), and finally checking that they are equal (O(k?).)

Once t? and % have been identified, for 1 < ¢ < 7, then condition 3 can be verified
in O(k?r?) by checking, for each i and for all j # i, that either t¥ = ¢} or th and 1%
are disjoint. Finally, condition 4 can be verified in time O(rk%1?) by, for each ¢ and each
predicate instance p in r;, checking each argument of p to see if it shares a variable with
some other predicate instance p’ in 7;.

Clearly, the above can be improved upon. The important thing to notice, however, is
that the parameters r, k, and ! refer to the rules and predicates in the recursion, not to
the database. If we let » be the size of the database, in general we expect n will be much
large than r, I, or k. Hence the time to evaluate the query, which is proportional to n,
will dominate the time to verify that the recursion is separable. Put another way, spending
time that is a small polynomial in the size of the query to deduce that an algorithm that
is O(n) can be used instead of one that is O(n?) or even O(2") will be a “win” in almost
all cases.

3.2 Motivation for Evaluation Algorithm

In this subsection we present an algorithm to evaluate queries of the form “column =
constant” on relations defined by separable recursions. We begin with a motivating abstract
example. Consider the recursion

HX,Y) - a1 (X, W) & t(W,Y).

HX,Y) - ax(X, W) & t(W,Y).

HX,Y) - (X, W) & b(W,Y).

t(X,Y) — (X, W) & boy(W,Y).

t(X, Y) b to(X,Y).
This is a separable recursion. Ignoring variables, the elements of the expansion can be
described by the regular expression (ay + a2)*to(by + b2)*.

Suppose that we wish to evaluate the query t(zo,Y)?. Then, after substituting z¢ for
X in each string, the strings of the expansion can be evaluated from left to right, using the
selection constant to restrict the first lookup and shared variables to restricted subsequent
lookups. The answer to the query is the union of the values for Y, which will appear in
column 2 of the last predicate of the string.

We will describe our algorithms using Datalog notation rather than relational alge-
bra. For example, instead of writing p := mia(p =,=1 ¢) we will write p(X,Y) :=
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p(X, W) & ¢(W,Y). This is not a Datalog rule; in particular, it is not a fixpoint equa-
tion. The right side of the statement is evaluated, and assigned to the left side, once. For
convenience we extend the notation to allow unions and differences on the right side. For
example, p(X,Y) := ¢(X,Y)Ur(X,Y) assigns the union of the relations ¢ and r to p.

Every value that could be passed to tg in the evaluation of some string of the expansion
can be found by the following algorithm:

carrys(zo);

seeny(X) = carry(X);

while carry; not empty do
carryy (W) = carryy (X) & ay(X, W) U carryr(X) & az( X, W);
carryy (X) := carry, (X) — seeny (X);
seeny(X) := seeny(X) U carry, (X);

endwhile;

In the above, carry; and seen; are unary, relation-valued variables. At the end of the
algorithm, seen; contains all values that will be passed to #o in any string of the expansion.

By taking carrys(W):=seeni(X) & to(X, W), we get all values that can be passed from
fo to an instance of by or by in any string of the expansion. Thus the following algorithm
finds all values that appear at the right end of some string (the Y values):

carrya(W) = seenq (X) & to( X, W);

seeng(W) = carrya(W);

while carrys not empty do
carryy(Y) := carrys(W) & by(W,Y) U carryze(W) & ba(W,Y);
carryz(Y) 1= carryz(Y) — seeny(Y);
seeny(Y) := seenay(Y) U carryz(Y');

endwhile;

Here carry, and seeng are unary, relation-valued variables. At the end of this algorithm,
seeny will be the answer to the query.

There is no need to record how a tuple got into seen; or seeny; this independence of the
evaluation of the a and b parts of the recursion is crucial to the efficiency of the separable
recursion evaluation algorithm. Note also that the above evaluation procedure only looks
at tuples along a path from o, and it examines each tuple at most once.

3.3 The Separable Evaluation Algorithm

Figure 2 gives a general schema for evaluating a full selection on a separable recursion. The
carry;, the seen;, and ans are relation-valued variables. The f;, gi, and h are relational
operators. In addition to the arguments listed, the f;, gi, and h may involve relations and
constants appearing in the rules and in the query.

We assume that the rules are “rectified,” that is, they have been re-written so that
heads of the rules are identical and contain no repeated variables. (The term “rectified”
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1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

init carrys;

seeny = carryi;

while carry; not empty do
carryy = fi(carrys);
carryy 1= carry; — seeny;
seeny = seeny U carryy;

endwhile;

carryy := ga(seeny);

seeny 1= Carrya;

while carry, not empty do
carryz := fa(carryz);
Carrysy 1= carrys — Seemns;
seensg = seeng U carrys;

endwhile;

ans = Seensy;

Figure 2: A schema for evaluating single selections on separable recursions.

is from Ullman [UL88].) Furthermore, we assume that the rules are re-written so that if
t}; = t], then the variables in corresponding positions of ¢ and t] are identical.

Definition 2.4 partitions the rules of a separable recursion into equivalence classes, where
rule r; and r; are in the same equivalence class iftf = t;-‘. Let there be n equivalence classes

€1,.

.,én. To describe how the schema in Figure 2 is instantiated, we will use the following

notation:

Let the rules in equivalence class ex be 7x1, Tk2, -« Thmy - We represent the nonre-
cursive predicate instances in the body of the rule ri; by ag;.

Let the predicate instance in the body of the nonrecursive rule be .

Recall that by definition of a separable recursion, for each rule r4; in ek, the argument
positions t?m‘ = tﬁi. Furthermore, by definition of ej, for each pair of rules 7¢; and rg;
in eg, the argument positions ¢}; = ti‘j. We represent these positions by t|c,.

For 1 < k < m, let Vj,(t|¢, ) be the variables that appear in t|e, in the head of the rules
in e, in the order in which they appear in tl¢, in the heads of the rules. (Because we
assumed the recursion is rectified, this is well defined.)

For 1 < k < n, let Vj(t|e,) be the variables that appear in t, in the body of the
rules in eg, in the order in which they appear in |, in the bodies of the rules. (By
our additional assumptions on variable renaming, this is also well defined.)

Let V (¢|pers) be the variables that appear in t|pers in the heads of the rules.



o Let zo be the vector of selection constants, and let X be the vector of variables that
appear in the selected-on columns in the heads of the rules.

We now describe how to instantiate the separable recursion evaluation schema for a full
selection on a separable recursion.

If the selection constants appear in t|pers, then replace lines 1-7 of Figure 2 with the
single statement seen;(2o) and create a dummy equivalence class e1, setting V() = X,
the where X is the vector of variables replaced by the selection constants in the query.
Also, delete the positions in which the variables X appeared from t|pers, and renumber the
other equivalence classes so there is only one e;.

If the selection constants do not appear in t|pers, then without loss of generality assume
that the selection constants appear in t|,,. We create a pair of relation-valued variables
carry; and seen;. These relation variables have one column for each variable in Vj,(tle, ).
The carry initialization statement (line 1 in Figure 2) is the fact

carryy (Vi (tle,))-

with the variables in Vj(tle, )) replaced by the corresponding selection constants. The carry
extension operator f; (line 4 of Figure 2) is given by

carryy(Vi(tle,)) :=a11 & carryy(Va(tle,)) U ... Uaim, &earryr (Vi(tle, ))s

Next create another pair of relation-valued variables carry, and seeny. These variables
have one column for each variable in the concatenation of Vi(tle,),- - -, Va(tlen), V(tlpers)-
The initialization of carrys is

carrya(Vi(tley)s -, V(tlen)s V(tpers) = to & seeni(Vi(tle,));
The carry extension operator f (line 11 of Figure 2) is given by

caTTyg(Vh(t]eg), vs o5 Valtle, )s Vitpers)) 1=
Uiz U;Zl aij&car'rw(%(ﬂez): covs Vi(tlen ), V(tlpers))s

Finally, the answer operator h is given by

ans(Vi(tley )5« -+ Valtlen )s V(tlpers)) := seena(Vi(tles)s- - > Valtlen ), V{tlpers))

Example 3.1 On the query buys(tom,?) on the recursion of Example 1.1, the evaluation
algorithm produced by instantiating the schema is shown in Figure 3.

For the same query on the recursion of Example 1.2, instantiating the schema produces
the algorithm of Figure 4. |

3.4 Correctness of Separable

In this section we prove the following theorem:

Theorem 3.1 The separable recursion evaluation algorithm produced by instantiating the
schema in Figure 2 terminates and correctly evaluates any full selection on a separable
recursion. '
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carryy (tom);

seeny (W) = carry;(W);

while carry; not empty do
carry; (W) 1= carry1(X) & F(X,W)) Ucarryy(X) & i(X,W);
carry (W) = carry (W) — seeny (W);
seeny (W) := seeny (W) U carry,(W);

endwhile;

seeny(Y) 1= seeny(X) & p(X,Y);

ans(Y) := seeny(Y);

Figure 3: The instantiated separable recursion algorithm for Example 1.1.

carrys (tom);

seeny (W) = carry, (W);

while carry, not empty do
carryr(W) 1= carry(X) & f(X,W);
carryy (W) 1= carry (W) — seeny (W);
seeny (W) := seeny (W) U carry(W);

endwhile;

carryy(Z) = seeni(X) & p(X,Y);

seeny(Z) = carryy(Z);

while carry, not empty do
carrys(Y) 1= carrys(Z) & (Y, Z);
carryz(Y) := carryz(V) — seeny(Y);
seeny(Y) := seeny(Y) U carryq(Y);

endwhile;

ans(Y) := seena(Y);

Figure 4: The instantiated separable recursion algorithm for Example 1.2.
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To prove this theorem we need some auxiliary definitions and lemmas. The first defini-
tion is that of the justification of an answer produced by Separable. Intuitively, a justifica-
tion of an answer is a record of how the tuple came to appear in the ans relation through
the course of the algorithm. More formally, the justification J of a tuple a in ans produced
by an instantiation of the separable schema of Figure 2 is a string defined recursively as
follows: The tuple @ must have appeared in seeny. There are two places at which a could
have been added to seeny — either at line 11, or at line 8.

If @ was added to seemy at line 11, then it must have been added by some term
a;j&carry, of the operator f. This in turn implies that there was some tuple o' in carry,
that joined with a;; to produce a. In this case, define J(a) = J(a')ri;.

If @ was added to seeny at line 8, then there must have been some tuple a’ in %y such
that o’ joined with a tuple b of seen; to produce a. Here we define J(a) = J(b).

Finally, let b be some tuple in seeny. The tuple b must have appeared in carry;; either
b was added to carry, through the initialization at line 1, or it was added by some term
ayj&carryy of fi at line 4. In the first case, J(b) is the empty string. In the second case,
let b’ be the tuple that joined with a;; to produce b. Then J(b) = J(¥')ry;.

The elements of an expansion are unordered, but the predicate instances in an element
can be ordered by applying the following rule in Procedure Expand: Whenever a rule from
equivalence class e; is applied, add the instance of the recursive predicate to the right of
the instances of the nonrecursive predicates in the rule. Whenever a rule from equivalence
class e;, where i > 1, is applied, add the instance of the recursive predicate to the left
of the instances of the nonrecursive predicates in the rule. Thus in an element s of the
expansion, the predicate instances due to rules from equivalence class e; appear to the left
of the instance of to, and ordered from left to right in the the order in which they were
added. The predicate instances due to rules from equivalence class e;, where 7 > 2, appear
to the right of #g, in the reverse of the order in which they were added.

Once this order has been established, it makes sense to talk about evaluating the ele-
ments of the expansion “from left to right,” using the shared variables from one predicate
evaluation to restrict the lookup of the next. The values taken on by these shared variables
are critical to the correctness of the algorithm.

For any string s, let Lix(s) be the relation of values found for variables shared be-
tween predicate instances produced by the application of rule k in D;(s) and the predicate
instances produce by rule k + 1 in Dq(s) in a left-to-right evaluation of s.

Similarly, let L,x(s), for i > 1, be the relation of values found for the persistent variables
and the variables shared between predicate instances produced by the application of rule &
in D(s) — Di(s) and the predicate instances produced by the application of rule k — 1 in
D(s) — D1(s) in a left-to-right evaluation of s. (D(s) — D1(s) is simply D(s) with all rules
from ey deleted.)

Lemma 3.1 Let a be an answer produced by applying the Separable algorithm to a separable
recursion R and a full selection query Q. Then a is an answer to Q.

Proof: Consider an answer a with justification J(a). Let s be the string in the
expansion of R such that D(s) = J(a). We show that a is the in the relation
defined by s, after substituting the query constants from @ for the corresponding
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variables in s. By definition of the expansion of a recursion, this implies that a
is an answer to Q).

First we prove, by induction on the rules in Dy(s), that any tuple appearing
in carry; at line 3 in Figure 2 on iteration k of the while loop of lines 3-7
appears as a value in Lyg(s) in the left-to-right evaluation of s.

The basis, k = 0, is trivial. Any tuple b appearing at line 3 on iteration 0
must have been added by the initialization statement carry;(c), where ¢ is the
vector of selection constants from (). The variables in Lqo(s) are the variables
that were replaced by constants in the query @, so after the corresponding
substitution in s, we have that ¢ appears in Lio(s).

If a tuple b appears at line 3 on iteration £ > 0, it must have been added at
line 4 on iteration k — 1. Suppose that b was added by the term carry, & aq;.
Then there must have been some tuple ' in carry; on iteration k — 1 such that
b was produced by the join of b’ and tuples of ay;; by induction, b’ appears in
Lig-1(8).

By the way we chose s, the predicate instances produced by e; on iteration
k were also instances of aj;. Hence if b’ appears in Lyj_1(s), b will appear in
L]_k (3)

Let | D1(s)|, the number of rules in D;(s), be k;. Also, let |D(s) — Di(s)],
the number of rules in D(s) but not in Dy(s), be k. Consider the initialization
of carryy. Let a’ be the tuple, mentioned in the definition of the justification of
an answer tuple, that was added to carry; at line 8 of Figure 2. We claim that
a' is in the relation Ly, (s).

The tuple @’ must have been added to carry; at line 8 by the statement
carryy:=seeny & to. There must have been some tuple b in seen; that joined
with a tuple in %o to produce a’. By the preceding induction, that tuple b
appeared in Ly, (s), so @’ is also produced by evaluating the join of the predicate
instances produced by rule ky of Di(s) and to, which again implies that a’ is in
Lsps (8)-

Finally, we show by induction that if a tuple a appears in carrys at line 10
of Figure 2 on iteration k, a also appears in Ly(z,-z)(s). The basis, k = 0, is
given by the preceding paragraph.

If a tuple a appears at line 3 on iteration k& > 0, it must have been added at
line 11 on iteration k — 1. Suppose that a was added by the term carry: & a;;.
Then there must have been some tuple a’ in carrys on iteration k — 1 such that
a was produced by the join of o’ and tuples of a;;; by induction, a’ appears in
Ly (kg — (k-1))($)-

By the way we chose s, the predicate instances produced by rule & of D(s)-
D;(s) were also instances of a;;. Hence if a’ appears in Ly(,_(x—1))(s), @ will
appear in Ly, —k)(8)-
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To complete the proof we note that because @ is a full selection query, the
relation for string s after the substitution of the selection constants of @ is the
relation for L,o(s). Hence if a is an answer produced by separable, a is produced
by the left-to-right evaluation of s. 1

Definition 3.1 Let s be an clement of the expansion of a separable recursion R, and
consider a query @ on R over database EDB. Furthermore, let R have n equivalence classes
ey through e,. Then s is a minimal element with respect to EDB if, when evaluating s over
EDB by left-to-right evaluation, for all k such that 1 < k& < n, whenever ¢ # j, we have
that Lki(s) 7& ij(s).

Lemma 3.2 Let a be an answer to a query @ on R over EDB. Then there exists an s
in the expansion of R such that s is minimal with respect to Q and EDB, and a is in the
relation for s.

Proof: By a splicing argument. By definition of answer and expansion, if an
answer a appears in @, it must be produced by some string s in the expansion
of R. If s is not minimal, then by definition of minimal there must be 4,7,
where i # 7, such that for some k, the relation for Ly;(s) equals the relation for
Li;(s). Consider the string s’ deﬁned such that D(s") is just D(s) with the rule
applications from i up to (but not including) j from Dy (s) removed. Clearly,

is also in the expansion of R. We claim that a is also in the relation for s

If a is in the relation for s, then there must be an answer mapping i from
the variables of s to constants in EDB such that
o If V is a distinguished variable, then h(V) = ¢, where c is the constant
appearing in a in the position in which V" appears in the original query.
o If p(V4,...,V,) appears in s, then the tuple (h(V1),...,h(V4)) appears in
the relation for p.

Consider the mapping h/ from the variables of s’ to the constants of the EDB
defined as follows:
e If V is a distinguished variable, then &'(V) = h(V').

o If V is a nondistinguished variable not appearing in P;(s), then A'(V) =
h(V).

o If V is a nondistinguished variable appearing in predicates produced by
the first ¢ rule applications in Dg(s), then 2'(V) = h(V).

e If V, is a nondistinguished variable appearing in predicates produced by a
rule application p > i of Dy(s), then #'(V,) = h(Vpy(j-i))-

As W/(V) = h(V) for all distinguished variables V, then if 4’ is indeed a proper
answer mapping it will demonstrate that a is an answer to s'.

The only place A’ differs from h is on nondistinguished variables in Py(s)
appearing due to rule applications after rule application ¢. "Il only place &
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differs from s is in Pj(s) and Pg(s’) — that is, the predicate instance produced
by rules of equivalence class e;. Hence we must show that A’ is a proper answer
mapping on Py (s).

Distinguished variables either appear only in predicate instances produced
by rule application 1, or are persistent and appear in the same positions in every
predicate instance produced by a given rule in Dy(s). (This follows from the
“no shifting variables” assumption in the definition of Separable recursions.)
Hence h' consistently maps distinguished variables.

For the nondistinguished variables, note that on variables appearing in pred-
icate instances produced after rule application ¢ of Dy (s), h' is h shifted by j—1.
But the predicate instances of s' appearing after those produced by rule appli-
cation i are just those of s produced after rule application j, with the exception
that the subscripts on nondistinguished variables have been decremented by j—1.
Hence k' consistently maps predicate instances produced after rule application
7 in Pk(s’).

Thus h is an answer mapping that demonstrates that a is an answer of s/,
hence we’ve shown that if for some i # j, the relation for Li;i(s) and Ly;(s) are
identical, then there is a shorter string &' that also returns a. This “splicing”
can be repeated until we have a string that returns a but has no repeats. |l

Lemma 3.3 Let R be a separable recursion, let Q be a full selection query on R, and let
s be an element in the expansion of R, with the constants of Q replacing the corresponding
variables in s. Then if a is a tuple in the relation for s, a is in the answer returned by
Separable.

Proof: By Lemma 3.2, we need only consider minimal s. Let s have the
derivation D(s), and let a be a tuple in the relation for s. We must prove that
a is in ans.

Suppose that for 1 < i < n, the projection of D(s) onto e; is D;(s). Consider
the string s’ such that D(s") = D1(8)D2(s)...Dn(s). By Theorem 2.1, the a is
in the relation for s if and only if @ is in the relation for s’. The lemma is proven
by demonstrating that the tuple a is in ans, with justification J(a) = D(s").

After evaluating (from left-to-right) the prefix of s’ given by predicate in-
stances produced by the first k rule applications in D1(s"), any tuple bin L1x(s")
is a tuple in carry; with justification J(b) = D;(s")x. This is proven by an in-
duction that mirrors that in the proof of Lemma 3.1. The basis is trivial — if
k = 0, the relation Lyo(s) contains just the vector of selection constants c¢. This
tuple will be added to carry; at line 1.

Now consider a tuple b in Lx(s’). The tuple b must have been added to
Ly;(s") through a join of some ai; and Ly(r—1). Let V' be the tuple in Lq(g—1)
that participated in this join to produce b. By induction, b’ appeared in carry
on iteration k — 1 with justification J(b') = D1(s")rx-1. Since s’ is minimal,
V' did not appear in carry; on any previous iteration, so ' is not removed by
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the difference at line 5. Hence on iteration k, the join carry; & aq; at line 4
produces b with justification J(b")r1; = D1(s")g. This completes the induction.

Let |Dy(s")| = k1, and let |D(s') — Dy(s)| = kz. Then by the previous
induction, any tuple b that appears in Ly, (s’) also appears in carry; on iteration
k1, hence also appears in seen;. Therefore the join seen; & to produces exactly
the values for seeng that were added to L,j, in the left-to-right evaluation of s'.

We now show that if a tuple a appears in L,(x,_x)(s'), then a appears in
carryy on iteration k of the second while loop of Figure 2. The basis, k& = 0, is
given be the previous paragraph.

Now consider a tuple a in L,(4,—)(s'). The tuple @ must have been added
t0 Ly(k,-k)(s") through a join of some aij and Ly, —(k—1))- Let a' be the tuple
in Ly(k,- ~(k-1)) that participated in this join to produce a. By induction, a’
appeared in carrys on iteration k — 1. Since s’ is minimal, a’ did not appear
in carry, on any previous iteration, so @’ is not removed by the difference at
line 12. Hence on iteration k, the join carrys & a;; at line 11 produces a. This
completes the induction.

Because Q is a full selection, the relation for s’ is just L,,(s"), which by the
above induction is carry, on iteration ko. Hence if a is in the relation for §', a
is in carrys, hence a must appear in ans. |

Lemma 3.4 The separable algorithm terminates for any query on any Separable recursion.

Proof: Consider the instantiation of Separable for a query on an arbitrary
recursion R. Let carry, have k; columns, and let carry; have ko columns.
Then if n is the number of distinct constants appearing in the base relations of
R, there are n*! possible tuples for carry;, and n*2 possible tuples for carrys.
In the while loops of the algorithm, no tuple ever appears in carry; or carrys at
the top of the loop twice. (The first time a tuple appears in carryy, it is added
to seeny; if it appears again, it is removed at line 5 by the difference operation.
Similarly, repeated tuples are eliminated from carry; at line 12.) Ience the
total number of iterations of the while loops is bounded by n* and n*2, so the
algorithm terminates.

Now we can complete the proof of Theorem 3.1.

Proof: (Of Theorem 3.1) By Lemma 3.1, Separable only returns tuples that
are indeed answers to the query. By Lemma 3.3, it returns all answers. Finally,
by Lemma 3.4, it terminates. [

4 Comparison

There are a number of measures one can use to compare evaluation algorithms for recursive
queries. An important measure is the “focus” of an algorithm, that is, how well it uses
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selection constants to limit the portion of the database searched. IHere we ignore this
measure, as the three algorithms are equivalent in that respect. Instead, we focus on the
size of the relations generated by each algorithm in the course of answering a query. In
[Nau88] we give empirical average case performance figures for the evaluation algorithms
on some representative recursions; here we state lemmas about the worst-case figures for
classes of separable recursions.

Of course, we must be more precise about what we mean by “relations generated by an
algorithm.” The difficulty is that one can put an arbitrary project-join query into the body
of a recursive rule. Clearly, we cannot put a bound on the size of relations constructed in
solving an arbitrary project-join query. Because of this, we focus on the relations that the
algorithms would produce even if the bodies of the recursive rule consisted only of a single,
nonrecursive predicate, and the recursive predicate. For example, Separable generates
carryy, carrys, seeny, seens, and ans. Generalized Magic Sets constructs magic and ¢, the

original recursive predicate. Generalized Counting produces count and a modified version
of t.

Definition 4.1 Let S;j be the class of all separable recursions with p recursive rules and a
recursive predicate of arity k.

Definition 4.2 Let R be a recursion, let ) be a query on the recursively defined relation
of R, let n be the number of distinct constants in the base relations of R, and let M be
a query evaluation method. Then we say that M is O(f(n)) on @ if, in evaluating @, M
constructs only relations of size O(f(n)). Similarly, we say that M is Q(f(n)) on @Q if, in
evaluating @, M constructs at least one relation of size Q( f(n)).

Definition 4.3 Let R be a separable recursion, let @ be a selection query on the recursive
predicate of R, and let e; be the equivalence class such that the constant(s) that appear in
Q appear in the columns of V(t|e,) in R. The width of ey, written w(e1), is the number of
columns in V (i, ).

Lemma 4.1 For all k > 0 and p > 0, for any recursion R in Sg, on any full selection
query @ on the recursive relation of R, Separable is O(nma"(w(“)'k‘w(“))).

Proof: Let R be any recursion in S;j , and let () be an arbitrary query on the
recursively defined relation in R. By definition of Sg , R must be separable.
Then by Theorem 3.1, Separable applies to ). The only relations generated by
Separable in answering @ are ans, seeny, carry, seeng, and carrys. Each of
these relations has at most max(w(ey),k — w(ey)) columns; thus if there are n
distinct constants in the base relations mentioned in R, each of these relations
is of size at most pmax(w(er)k—wle))

Lemma 4.2 For all k > 0 and p > 0, there is a recursion R in .S';f, and a full selection
query Q on R, such that Generalized Magic Sets is Q(n*) on Q.

Proof: For any k£ > 0 and p > 0, let R be the recursion
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t(Xl,Xg,...,Xk) ] al(X]_,W) & t(VV,Xz,.. . ,.Xk).
t(Xl,Xg,... ,X;,,) g= OZQ(X],W) & t(W,Xg,... ,Xk).

t(Xl,Xz,...,Xk) - GP(X]_,VV) & f(VV,Xz,.. -an)-
t(XlﬂX2!‘ "7Xk) B tO(XI:XQr'- 1Xk)'

Let the n distinct constants appearing in the a; and tp be ¢1,¢2,...,¢n.
Furthermore, let a;, for i > 1, be empty, and let a; consist of the tuples
{(c1,¢2),(c2,€3),. -+, (€no1,Cn)}, let to consist of the n* tuples {(¢i,, ¢iy, - - -, i, )}
for 1 < 41,%2,...,% < n. Finally, let @ be the query t(e;,Y)?. In response to
this query, Generalized Magic Sets will generate (among others) the rules

magic(cy).
magic(W) :— magic(X) & ai (X, W).

t(Xl, Xg,.. . ,Xk) o magic(Xl) & to(Xl,Xz, ‘e ,Xk).
t(.Xl,_Xg,. ..,Xk) = magic(X1) & a1(X1,W) & t(W,Xg,...,Xk).

The relation magic contains the n tuples {(c1),(¢2),...,(cn)}. Hence the base
rule of the re-written definition (the one with #p in the right hand side) will
add to ¢ the n* tuples {(ciy,Cipy.--,¢i )}, for 1 < dq,d9,...,%m < n. Hence
Generalized Magic Sets is O(n*) on Q. |

Note that as w(e;) £ k, max(w(ey),k — w(ey)) < k, so by this measure, Separable is
never worse than Generalized Magic Sets. The only time max(w(e;),k — w(e1)) = k is

when w(e;) = k, that is, every column of the recursively defined relation belongs to the
same equivalence class.

Lemma 4.3 For all k > 0 and p > 0, there is a recursion R in S;f, and a full selection
query Q@ on R, such that Generalized Counting is Q(p™) on Q.

Proof: For any k& > 0 and p > 0, let R again be the recursion

t(Xl,Xg,.. .,Xk) b al(Xl,W) & t(TV,XQ,...,Xk).
t(Xl,Xz,.. .,Xk) o ag(Xl,T’V) & t(W,Xg,.. . ,Xk).

t(Xl,Xg,... ,Xk) - O.p(Xl,VV) & t(T/V,Xz,.. .,Xk).
t(Xl,Xg,... ,Xk) = to( X1, Xo,. ..,Xk).

Let the n distinct constants appearing in the a; and tp be ¢1,¢2,...,¢,. In
this case, let the a;, for 1 < ¢ < n, be identical and consist of the tuples
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{(c1,¢2),(c2,¢3)5- -, (Cn—1,¢n)}. (Here to is arbitrary.) Finally, let @ be the
query t(c1,Y)?. In response to this query, Generalized Counting will generate
(among others) the rules

count(0,0,0,c1).
count(I + 1,J,(p+ 1) * K + 1,W) := count(I,J, K, X) & a1 (X, W).
count(I + 1, J,(p+ 1) * K + 2,W) = count(I,J, K, X) & az(X,W).

count(I+1,J,(p+ 1)« K + p,W) = count(I,J, K, X) & a,(X,W).

The relation count contains the tuples (1,0, J,¢z), for 1 < I < nand (p+1)1-1 <
J < (p+ 1)!. Hence Generalized Counting is Q(p") on Q.

These lemmas are illustrated by the following examples from Section 1.
On the recursion of Example 1.2, and the query buys(tom,Y)? the Magic Sets algorithm
[BMSU86,BR87] will generate the rules

magic(tom).
magic(W) - magic(X) & friend(X,W).

buys(X,Y) - magic(X) & perfectFor(X,Y).
buys(X,Y) - magie(X) & friend(X,W) & buys(W,Y).
buys(X,Y) — magic(X) & buys(X,Z) & cheaper(Z,Y).

Let friend contain the tuples (ay = tom,as),(az,a3),...,(@¢n-1,ar). Also, let cheaper con-
sist of the tuples (bn,bn-1), - - ., (b2,b1) and perfectFor consist of the tuple (an,bn). At the
end of the evaluation of these rules, buys will contain the n? tuples (a;,b;), for 1 < i,7 < n.
Thus Magic Sets generates relations that are Q(n?).

On the recursion of Example 1.1 and the query t(tom,Y)?, the Generalized Counting
Method [BR87,5Z86] constructs (among others) the rules

count(1,1,1,tom).
count(i + 1,25,2k, W) = count(i,7,k,X) & friend(X,W).
count(i + 1,25 + 1,2k, W) - count(i, j,k, X) & idol(X,W).

Consider the sample database in which both friend and idol contain the tuples (ai,as2),
(az,a3), ..., (an-1,0r). At the end of evaluating these rules the count relation contains
the tuples (i,7,2"1,a;) for 1 < i < n, 2=1 < j < 2'. Thus Generalized Counting is Q(2").
This implies that a 30 tuple database can generate a several gigabyte relation.

On both of the preceding queries, the separable recursion algorithm generates only
monadic relations. If the friend, idol, and cheaper relations contain n distinct constants,
then no more than O(n) tuples can appear in these monadic relations. Hence the separable
algorithm is O(n) on both of the queries above.
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5 Conclusion

We have demonstrated that for some separable recursions, the separable recursion evalu-
ation algorithm is significantly more efficient than Magic Sets and Generalized Counting.
However, as the separable algorithm is limited in applicability, it must be used to supple-
ment these more general algorithms rather than to replace them.

It is interesting to attempt to apply the separable evaluation algorithm to more general
recursions. Relaxing the conditions in Definition 2.4 sheds some light on the difficulties
encountered in doing so.

If we remove condition 1, the independence of the evaluation of each equivalence class
in Section 3 no longer holds. Intuitively, variables in one equivalence class can shift into
another. The separable evaluation algorithm may be extendible to handle some shifting
variable definitions if the algorithm maintains some state about rule applications.

If we remove conditions 2 and 3, in general we can no longer guarantee that the equiv-
alence classes will be well defined. Again, a modification of the separable algorithm may
work for some recursions in this class.

Finally, if we remove condition 4, the separable evaluation algorithm will still produce
the correct answer. However, it loses the “focussing” effect of the selection constant. For
example, if we apply the separable recursion algorithm to the recursion

HX,Y) - a(X, W) & t(W,2) & b(Z,Y).

HX,Y) —t(X,Y).
and the query #(zo,Y)?, we will examine the entire b relation. (The initialization of carry;
will be carryi(zo,Y) = a(zo, W) & b(Z,Y).)

Perhaps the most promising direction is to attempt to generalize the separable evalu-
ation algorithm to non-linear recursions and to recursions that contain mutually recursive
predicates. We are currently investigating this possibility.
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