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Abstract

It was conjectured in Borodin et al. [J. Comput. System Sci. 22 (1981), pp. 351-364] that to solve
the element distinctness problem requires T'S = ©(n?) on a comparison-based branching program
using space S and time T', which, if true, would be close to optimal since 'S = O(n%logn) is
achievable. Recently, Borodin et al. [SIAM J. on Comput. 16 (1987), pp. 97-99] showed that
TS = Q(n*?(logn)'/?). In this paper, we will show a near-optimal tradeoff TS = Q(n2~<()),
where €(n) = O(1/(log n)'/?).



1 Introduction

In Cobham’s classic paper [C], time-space tradeoffs were established for one-tape Turing ma-
chines. In recent years, a number of time-space tradeoff results have been obtained for various
computational models, such as Boolean and arithmetic circuits (Tompa [To]), a general sequential
computing model (Borodin and Cook [BC]), multihead Turing machines (Duris and Galil [DG],
Karchmer [K]), comparison-based branching programs (Borodin et al. [BFKLT], Yao [Y], Borodin
et al. [BFMUW], Johnson [J], Karchmer [K]), and VLSI models (Thompson [Th], see Ullman [U]
for a review of results). In this paper, we will establish a tradeoff result in the comparison-based
branching program model, proving in weaker form an interesting conjecture of Borodin et al.
[BFKLT].

Borodin et al. [BFKLT] proved a tradeoff 'S = Q(n?) for sorting n numbers on a comparison-
based branching program, but were not able to establish a similar tradeoff for any decision problem
in their model. They conjecture, however, that the tradeoff TS = Q(n?) is also true for the
element distinctness problem. This, if proved, would be close to the best possible, since an upper
bound T'S = O(n?logn) is achievable for sorting, and hence for the element distinctness problem.
Recently, Borodin et al. [BFMUW] gave a partial resolution to the above conjecture, showing in
the same model that T'S = Q(n%/?(log n)'/2). In this paper, we will prove that TS = Q(n?~<("),
where ¢(n) = O(1/(logn)'/?). As mentioned earlier, such a tradeoff is nearly the best possible.

Let zq,22,...,2, be n elements chosen from a linearly ordered set (D, <). The element
distinctness problem (on n elements) is to decide whether all z; are distinct. Following [BFMUW],
a comparison branching program A is a labeled directed acyclic graph with a distinguished nonsink
node, called the source. Each nonsink node is labeled by a comparison z; : z; with ¢ # j, and has
three outgoing edges, labeled by <, =, >, respectively. The sinks are labeled by either ”accept”
or "reject”. An input & = (z1,22,...,2,) € D™ starts at the source and traverses A, making
comparisons and branching according to the outcomes, until a sink is reached. The input is
accepted if and only if it reaches a sink with an "accept” label. The capacity of A is the base-2
logarithm of the number of nodes. The length of A, or the time T used by A, is the length of
the longest path starting with source. We say that A is an algorithm for the element distinctness
problem, if & is accepted when and only when all z; are distinct. Let 4, denote the set of all

algorithms for the element distinctness problem. We now state our main result.

Theorem 1 Any A € A, with capacity S and time 7 must satisfy T.S = Q(n?~<(")) for large n,
where ¢(n) = 5/(Inn)Y/2.



2 Preliminaries

2.1 Overview

As discussed in [BFKLT], by a result of Nick Pippenger, we can assume without loss of
generality that A is leveled, i.e. each node is assigned a nonnegative integral level number, and
each edge goes from a node at level ¢ to a node at level ¢ + 1; the source node is the only node
at level 0, and all sinks are at level T. From now on, all branching programs will mean leveled

comparison branching programs.

We review the ideas involved in the proof of T'S = Q(n*/2(log n)/?) in [BFMUW]. (Some of
these ideas originated in [BFKLT).) Let A € A,. For any input = (z1,22,...,%,) with distinct
z;, the sequence of comparisons made by A must include all the "adjacent” ones, i.e. comparisons
of the form z;; : 4, if the input satisfies z;, < z;, < --- < z;,; otherwise we could have two
identical z,. The idea is to show that any branching program of length less than or equal to
ng, where ng = (n.5/(16€)/2, can make more than § adjacent comparisons only for a very small
fraction of the n! possible linear orderings in the input. Thus, if we divide A into consecutive
blocks of ng levels each, there must be at least (n — 1)/§ such blocks in order to perform the

needed n — 1 adjacent comparisons for all linear orderings. This proves T' > ng(n — 1)/5, and
hence T'S = Q(n?/251/2) = Q(n®?(logn)'/?) as § = Q(log n).

To prove Theorem 1, we will adopt the same general approach. We will show that any
branching program of length less than or equal to n;, where ny = n'~“("), can make more than
S - n(n) adjacent comparisons only for a very small fraction of the possible linear orderings. The

asserted tradeoff then follows the same line reasoning as before.
2.2 Terminology

Let W = {wy,ws,...,w,} be any nonempty finite set. A linear ordering on W is a sequence
o=(w; < w; < +++ < w;,), in which each element of W appears exactly once. Let I'(W) denote
the set of all linear orderings on W.

Let P = (<p,W) be a partial order on W. A linear ordering p is said to be consistent with P,
if w <p w' implies w < w' in p. Let A(P) denote the set of all linear orderings on W consistent
with P.

Suppose that W' C W and ¢ = (wy, < wp, < +++ < wy,) € T(W’). A comparison w; < w;
is adjacent in o, if w;, w; are adjacent in the linear ordering o, i.e. there exists an m such that
i = 1y and j = rpyq. For any p € T'(W), let ply» denote the o € I'(W') obtained from the
restriction of p to W’. For example, if p = (w3 < wp < w5 < wy < wy) and W' = {wq, wq, ws},
then ply = (w2 < w5 < wy).



We will use the symbol X to denote exclusively the set {z1,23,...,2,} of the n input numbers.
Let C be a sequence of inequalities (z;; < zj,,%i, < Zjp,...,%i, < j,). Its length £ is denoted
by |C|, and support(C) is the set of all z, involved in any comparisons in C, i.e. those z,
with 7 = i; or r = jg for some s,s’. We say that C is nonirivial, if there is a linear ordering
(r, < Ty, < ++- < &y, ) on X such that all inequalities in C are true. For any nontrivial C, its
transitive closure defines a partial order Py on the set support(C). Now, for each C satisfying
2|C| € n, let Vg C X be a set disjoint from support(C) with |V¢| = 2|C| — |support(C)|, and
define support'(C)= support(C)UVg. Let PS5 be the partial order Po regarded as a partial order
on support’(C). In particular, if all the pairwise comparisons in C are disjoint, then V = () and
PL = Pe.

Let 0 < 7y < rg < £ be two integers. For any o € A(Pg), let Z(C,r1,rq,0) be the number of
pairs (4s,Js+1), 71 < 8 < 72, such that the comparisons z;, < z;j, are adjacent in o.

2.3 Main Lemma

Let A be any branching program of variables z1,z2,...,2n. For any node u and positive
integer s, let A[u,s] denote the sub-branching program of A of length s and rooted at node u. A
path § in A is a sequence uy,ey,uz,€2,...,1Us, €s, Where each e, is an edge from node u, to u,41;

s is the length of 6. Let Cs denote the sequence of comparison results "z; < z;”

and "z, = z,”
obtained along the path § ("z; > z;” will be written as "z; < ;). We are only interested in
paths é that (a) contain no edge labeled by =", and (b) have nontrivial Cs. From now on, when
we speak of a path §, we require that the above two conditions be satisfied. Let A4 be the set
of all paths of length T that begin with the source, where T is the length of A. For any linear
ordering p € I'(X), let Z, denote an input (z1,%2,...,%) that satisfies all the inequalities in p.

Let €4, € A4 be the path traversed by input Z,.

Let No = 108, n > No, § > 0, t = [e®™™)'*], and ko = |log,(n/4)|. Then ¢,ko > 4. For any
integer k > 0, let my = 24%+161§ and gz = (4¢)k2-105,

Main Lemma Let 1 < k < ky. Suppose A is a branching program of length t* and capacity
S. Take a random p, uniformly chosen from T'(X), then Pr{Z(Cs,0,t*, p|x:) > ms} < qi, where
§ = €4, and X' = support’(Cy).

Corollary Suppose that A is a branching program of length < t* and capacity §. Take a
random p, uniformly chosen from I'(X'), and input Z, to A, then the probability that A makes at
least my, comparisons adjacent in p is < gx.

We remark that the Main Lemma is true for any choice of the sets V. However, the choice
must be made before taking the random p. The corollary follows from the Main Lemma, since the
introduction of additional elements z; into support’(Cs) will not increase the number of adjacent

comparisons. It is this corollary that we will use later in the proof of Theorem 1. Before doing that,



we need to prove the Main Lemma. We first derive an auxiliary lemma in the next subsection.
This will be used in Section 3 to prove the Main Lemma. The proof of Theorem 1 will then be

given in Section 4.
2.4 An Auxiliary Lemma

Let X’ C X be nonempty, and ¢ € I'(X’). Suppose that C is a nontrivial sequence of
comparisons z; < z; with z;,z; € X', with exactly £ of them being adjacent in o. Let A be
a branching program of length T' with n > 2T + |X'|. For any path § € Ay, let W5 C X be
such that W is disjoint from X' U support(Cs), and |Ws| = 2T + |X’| — | X' U support(Cs)|. Let
Ws = Ws U X' U support(Cs). Clearly, |Wy| = 2T + | X|.

Now, take a random p € L(o), uniformly chosen, and let f(o,C, A, m) be the probability that
the number of comparisons of C' adjacent in P]W; is greater than or equal to m, where § = £4,,.
) AN YN
Lemma 1 Suppose n > 2T + |X’|. Then f(o,C,A,m) < . (—) :
m 2T
Proof Without loss of generality, assume that X' = {z1,22,...,2,}, where a = |X’|. Let
C' be the set of the comparisons of C that are adjacent in o, say, C' = {z;, < zi41,2i <
Tiy+1s---2 i, < Tip+1}. We can also assume that £ > 0 and | X| > m > 0; otherwise the lemma is
trivially true.

We express f in terms of a stochastic process. Take a random p € L(o), and traverse the path
€4,. Let us keep a sorted list W’; initially, W’ is the sorted version of X’. When we encounter
a new node u with a comparison z, : z,, we insert the elements in {z,,2,} — W', if any, one
at a time into the ordered list W’. Note that each new element, when added to an ordered list
of ¢ elements, will be equally likely in any of the ¢ + 1 ranks. When we reach the leaf, we add
the 27" + |X'| — |W’'| new elements of W, one at a time, into W’. Again, each new element is
eqally likely to occupy any of the ranks currently possible in W’. The quantity f(eo,C, A,m) can
thus be calculated as follows: We start with an ordered list of |X’| items with £ of the intervals
(between the i;-th and the ¢;41-th items for 1 < j < £) marked; then we sequentially insert new
items into the list, each time the new item is equally likely to be inserted into any of the existing
intervals; f(o,C, A,m) is the probability that, after 2T insertions, at least m of the original ¢

marked intervals remain intact (no item has been inserted into these intervals).

We will obtain an upper bound on f. (Essentially, this is now reduced to a calculation which
was done in [BFMUW].) Let us describe the above stochastic process using a sequence of 2T
integers j1,72,...,J2r, where 1 < j, < |X’| 4+ r is the rank of the r-th inserted item when it is
being inserted. Thus, there are in all [], <, <o7(]X’| 4 ) configurations. To specify a configuration
for which at least m marked intervals rgm;iu intact, we first specify m such intervals, and then

specify the ranks of the inserted items by integers ji,ja,...,J2r, where 1 < j. < |X'| 4+ r — m.



The total number of such configurations is thus at most (:1) [Ti<r<or(X'| + 7 — m). It follows
that

f(e,C,A,m)

IA

(f) [h<r<or(X|+r—m)
m/)  Ilicr<or(IX'|+7)

(E) X' (X' 42T — m)!
m) (| X' +2T)!  (|X'] - m)!

_ (f) X' - (1X] = DX’ = m+ 1)
m) (X' + 20)(| X[+ 2T — 1)---(|X'| + 2T — m + 1)

BRCO.

3 Proof of the Main Lemma

We will prove the Main Lemma by induction on k > 1. For k = 1, we have my > t*. Since A can

make only t¥ comparisons, M4 = ), and the Main Lemma is true in this case.

We now assume that 1 < k£ < kg, and that the Main Lemma has been proved for all values
less than k.

Assume that the choice of Vo has been made. Let p € T'(X). Write § = €4, and X' =
support’'(Cs). If Z(Cs,0,t*,p|x:) > my, then there is a 1 < d, < t, such that Z(Cs,(d, —
1)t+=1,d,t*=1, p|xs) > myft. Thus,

Pr{Z(Cs,0,t",plx1) > mp} < 3 Pr{Z(Cs,(d — 1)t*,dt* 2, plxr) > my/t}. (1)
1<d<t

We will show that, for each 1 < d < {,

Pr{Z(Cs,(d — 1)t*,d* %, plx1) > my/t} < 2g5-1. (2)

This will complete the inductive proof of the Main Lemma, as it follows from (1) and (2) that

PI{Z(CﬁsoatkvplX‘)zmk} < 2tq1c—1
< Gk

Although we have made the choice of Vi, which is needed to define the function Z above, we
observe that the values of Pr{Z(Cj,0,t*,p|x:) > mi} and Pr{Z(Cs,(d — 1)tF~1,dt*=1, p|x/) >
my [t} are in fact independent of the choice of Vi, as p is uniformly chosen from I'(X). We will
now evaluate Pr{Z(Cs, (d — 1)t*=1,dt*=1, p|x+) > my/t} with a special new choice of Vg, to be
described below.



Fix 1 < d < t. Let v,v2,...,v, be the nodes of A at level (d — 1)t*~1. For each i, let
B; be the set of paths 8 of length t*~! starting at node v;. For each 8 € B;, let us choose a
subset X3 C X such that (a) Xg N support(Cs) = @, and (b) |Xg| + |support(Cg)| = 2tF~1. Let
X b = X Usupport(Cg), and Qg be the partial order on X,g. generated by the inequalities in Cpg.
Let ¥; = Ugep, A(Qp)-

For any ¢ € I'(W), where W C X, let L(o) denote the set of all linear orderings p € T'(X)
that are consistent with o.

Fact 1 Let 8,0’ € B;. If 0 € A(Q3) N A(Qp), then g = f'.
Fact 2 The family L(o), o € ¥;, form a partition of the set I'(X).

Fact 11is true because any two distinct 3, 8’ must have a common node at which the comparison
z, : ¢, made gives opposite outcomes. We can thus write §(¢,0) for the unique $ for which
o € A(Qp). To prove Fact 2, first we observe that every &, starting at v; will follow some path
B. This shows that the union of L(0), o € ¥;, contains I'(X'). It remains to prove that, if o # ¢/,
then L(e)N L(¢’) = 0. This is clearly true when 0,0’ € A(Qp) for some common 8. In the other
case, 0 € Qp and o’ € Q with 3 # . Any p € L(o) and p’ € L(0’) must be different, since Z,,
&y follow two different paths 8, #’. This proves Fact 2.

For the discussion to follow, we will use the convention that a branching program of length 0
is a null branching program, denoted by ®. We agree that the expressions M @, ® M both stand
for M, where M is any branching program. A path of length 0 is the null path, denoted by 2.
A sequence of comparison inequalities is the null sequence, denoted by k. We define Cy, to be .
Define support(x)= 0, and Ag = {#}. For any p € I'(X), let £, = 9. The introduction of these
notations is mainly for convenience, so as to avoid the necessity of discussing degenerate cases in

the discussions to come.

Let A’ = A[root ,(d—1)t*71], and Ag = Alug,t* — t*~1], where ug is the node reached by the
last edge of the path 8. Let A’Ap denote the branching program one obtains by attaching a copy
of Ag to each leaf of A’. The length of A’Ag is clearly t* — ¢t*~!. We remark that, if d = 1, then
A’ = ®;if d =t, then Ag = ® for all 5.

Let 7 = (i,@,8,7) be any quadruple, where 1 < i < 7, @ € Ay, B € B;, and 7 € Ay,.
Define U, = support(Cy) U support(Cy) U Xj U Wy o, where W, , C X satisfies the conditions
that it is disjoint from support(Cy) U support(C,) U Xj and has cardinality 2tF — |support(C,) U
support(Cy) U Xp| but arbitrary otherwise. Thus, |Uy| = 2t*. Note that the last edge of the path
a does not have to end in the node v;. For any p € I'(X), define Y (p,n) = 1, if the number of

comparisons of Cpg adjacent in p|y, is at least my/t, and 0 otherwise.

Let 6§ € Ay. We will describe how to choose V. We can uniquely write § = a7, where
for some i, « is a path in A’, § € B;, and 7 is a path in Ag. Let n(p) = (i,a,8,7). Define

7



Vo, = (Xg U Wy,y) — support(C,) — support(C.,). Then support’(Cs) = Vg, U support(Cs) =
XpUsupport(Cy )Usupport(Cy )UWas,y. Thus, support’(Cs) = Uy(,). It follows that Y (p,n(p)) = 1
if and only if Z(Cs,(d — 1)tk_1,dtk_1,p|xa) > myft.

For 1 <1< r,let R; be the set of p € I'(X) such that input Z, will reach v; in A. Let ¥;; be
the set of o € ¥; such that Cﬁ(.;,,,) contains at least m;_; comparisons adjacent in 0. Let ¥; 5 be
the set of o € ¥; such that |L(c) N R;| < |L(0)|ge—1/(10 - 25). Let ¥;0 = ¥; — T, ) — ;5.

Let p; be the probability that £4 , will reach v; for a random p, i.e. p; = |R;|/n!. Let I be the
set of ¢ with p; > 0. For any ¢ € I and o € ¥;, let p; , = |L(o) N R;|/|Ri|, i-e. the probability
that, given that v; is reached by &4 ,, p will be consistent with o. Let ¥! = {¢ | p;» > 0}. Define
Vi =¥;; NV for j € {0,1,2}. With the above choice of Vg, for defining Z, we have

Pr{Z(Cﬁa(d_l)tk_ladtk_lﬁpl}(’) > mk/t}
= ¥ mro{gmam X Yoo} ©

1€l o] pEL(e)NR;
We need three facts. Let ¢ € I.
Fact 3 Toeu, Pio < Qoo
Fact 4 3 ,cut, PiPio < qx-1/(10 - 25).

Fact 5 For each o € ¥}, with L(o) N R; # 0,
1

T Y Y(p,7(p)) < gx-1/10.
(o) N Ril pEL(e)NR;

If we apply the induction hypothesis to A[v;,t*~1], we get Fact 3. We obtain Fact 4 from the
following derevation, using Fact 2 in the last step,

|Ri| |L(e) N R;
Y. Pitie = 3 T LN Bl

aE‘IJ;,:. aE'IJ'f |R’|
|L(o) N R
= E (o)l —=——
= IZ(o)]
1 1
< 10 35 %-1 Z; |L(o)|
G‘DtZ
1
< —a(i-1.
= 10‘23‘1.% 1



We now prove Fact 5. Let i € I and o € ¥} . Take a random p, uniformly chosen from L(o).
Write A” = A,G(i,a) and ((p) = (4, €41 ,p,B(%,0),€4n 5). Then

. 1
EOnE 2, O = T X YD
I
]L(O‘) n Rzl pg(:a) Y(p, C(p))
_ L)l 1
~ |L(e) N Ri||L(o)] > Y(p,C(p)

pEL()

IA

10-25 1
o1 @ pg(:a) Y(p,<(p)) (4)

It is clear that

IL(a)I ,,e%a)y(”’ C(0)) = F(9,Cp(i.0)s A' Apggi 0y i 1): 5)

Let £, denote the number of comparisons of Cp(;») adjacent in 0. Then £, < my_; as o € Ui .

Using (5) and Lemma 1 (noting that n > 2t¥), we have

ea th-l [my /1]
) (Q(tk _ tk—l)

IA

|L( )l pg(:a) Y(ﬂaC(p)) ([mk/ﬂ

ME—1 _ [ /1]
(fmk/ﬂ)“ 23
(et
(o=

emp_q )ka/ﬂ

(t- 1)fmk/ﬂ
my [t
)

IA

10(t 1)

< 210008 (6)

It follows from (4) and (6) that

1 1025 1 10008
TR X Yeue) < (3)
|L(J) n Ri' pEL()NR; Gk—1 2

< L
= 10%-1-

This proves Fact 5.

We will now complete the proof of (2). From Facts 3, 4 and 5, we obtain from (3) that

PI{Z(ClSa(d—l)tk_ladtk_laplX’) 2 mk/t}



= Z E p,p.,,o{lL(J) N Rl Z Y(p, "’.?(P))}

i€l gel! peL(c)NR;
< Z Z pipi,a"i'z Z PiPio
el aG'I’Ll i€l el 2
1
+Z Z PiDio 7 S A Bl Z Y(p,n(p))
i€l oel, |L(U)HR| pEL(c)NR;
< @- 1Zp,+2w 55 0k~ 1+ > pivie qu i
i€l i€l aetlﬂ
4 Gt m
S Gk 10‘11: 1 10‘1% 1
< 2q—1.

We have proved (2). This completes the inductive step in the proof of the Main Lemma.

4 Proof of Theorem 1

Let n > No, where No = 108. Suppose that A € A, has capacity S and time 7. Define t, ko, my,
g as in Section 2.3. Clearly,

T>n-1, (7)
and
5> Ig(n 1) ®)
Also, ko < Inn/Int < (Inn)'/2, and hence
9tk < (lnn)'/2+kodIn2
< i) ©)

It follows that my, = 24%0+1615 < 216,<n) S If my, > n/8, then § = Q(n!~4(™); hence from (7)
we have TS = Q(n?~<(")), which proves the theorem. Thus, we can assume that

mi, < =. (10)
8
We will prove that
j
e (11)
kao

Suppose not. We will derive a contradiction. For each node v, let F, denote the branching
program A[v, min{t*,T — h,}], where h, is the level number of v. Let K, be the set of p € T'(X)

10



such that Cj(,,,) contains at least my, comparisons adjacent in p, where é(v,p) = £r, ,. By the
corollary to the Main Lemma, |K,| < g, - n!.

Thus,
|Uy K| < 29gp, - n! (12)

Since ¢ > 4 and t* < n/4, we have gy, < t#027105 < p22-105 Using (8), we have 25¢;, <
n?(n — 1)7® < 1. Therefore, (12) implies that there exists a p & U,K,. Let us input Z, to A.
The total number of comparisons made by A that are adjacent in p is less than [T'/tFe] - my, <
[n/2mp, ] - mr, < 024 my,, which by (10) is less than n — 1. This is a contradiction. We have
proved (11).

It follows from (11) and (9) that

2my,
ko—1

= 9(24—%%)
2

- o5z)

- Q(lnz—e(n))

This completes the proof of Theorem 1.
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