ON SELECTING THE k LARGEST WITH MEDIAN TESTS

Andrew Chi-Chih Yao

CS-TR-138-88

March 1988



On Selecting the k Largest with Median Tests'

Andrew Chi-Chih Yao

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

Abstract

Let Wi(n) be the minimax complexity of selecting the k largest elements of » numbers
T1,T2, ..., Tn by pairwise comparisons z; : x;. It is well known that Wy(n) = n—2+ [lg n], and
Wi(n) = n+ (k- 1)lgn + O(1) for all fixed k > 3. In this paper we study W}(n), the minimax
complexity of selecting the k largest, when tests of the form “Is z; the median of {z;,z;,z:} 77
are also allowed. It is proved that Wj(n) = n — 2+ [lg n], and W(n) =n + (k—1)lgyn + O(1)
for all fixed k£ > 3.

!This research was supported in part by the National Science Foundation under grant number DCR-8308109.



1 Introduction

The problem of finding the & largest elements, including their individual rankings, of n distinct
real numbers, and other variants of the selection problem, have been studied extensively (see e.g.
Knuth [Kn, Section 5.3]). Let Wi(n) denote the worst-case complexity in the decision tree model
when only comparisons of the form z; : z; are allowed. It is well known that Wi(n) = n — 1
, Wa(n) = n — 2 + [lg n] (Kislytsyn [Kis]), and, for large n, Wi(n) = n + (k— 1) lg n + O(1)
for any fixed £ > 3 (Yao [Y3], Pratt and Yao [PY], Hyafil [H], Kirkpatrick [Kir] ). When
comparisons f(z1,22, ..., €,) : 0 with more general f are allowed, the corresponding complexity
is less understood. It is known that, when linear functions f are permitted, the corresponding
complexity satisfies Wi(n) = n — 1 (Reingold [Re]), Wa(n) = n — 2 + [lg n] (Yao [Y1]), and
Wi(n) = n 4 (k — 1) 1g n + O(1) for fixed k > 3 (Fusseneger and Gabow [FG]). However, when
higher degree polynomials f are employed, it is only known (Rabin [Ra]) that n — 1 comparisons
are necessary and sufficient to find the largest element of n numbers. In particular, it is not even
known whether, for some constant ¢, » + ¢ comparisons f(zq1,22, ..., 2,) : 0 with quadratic

polynomials f are sufficient to determine the two largest of n real numbers.

In this paper, we study the complexity Wj(n) of finding the k largest of 21,22, ..., =, using
comparisons z; : «; and a special type of quadratic tests (z; — 2;)(z; — 2¢) : 0 (i.e. “Is z; the
median of {z;,z;,2:}?”).

To be precise, an algorithm A for finding the k largest elements is a binary decision tree, in
which each internal node u contains a test of either the form “z;—z; : 0” or “(z, —z,)(zs—2¢) : 07,
where ¢ # j and r # s # {, and has two outgoing branches labeled respectively by “ < ” and
“>7; each leaf £ of A contains an output, which is a k-tuple of integers (11(£),2(£),. .., ¥r(£)).
Let Rj be the set of & = (24,22, ..., 2,), Wwhere z; are distinct real numbers. For any input
& = (z1,%2, ..., Tp) € R, one can traverse a unique path in A from the root down, testing and
branching at internal nodes encountered, until a leaf £ is reached; for A to be an algorithm, it is
required that, for all 1 < ¢ < k, 2y,(¢) must be the i-th largest among 1,29, ..., Z,. Denote
by cost(A,#) the number of internal nodes along the path. Let C(A) = max{cost(4, )| € R%}.
Let Ay, i be the family of all algorithms for finding the k largest of n distinct real numbers. Define
the complezity by Wj(n) = min{C(A4)|A € A, i}

The main result of this paper is the next theorem, which essentially states that, for fixed k,
the allowance of median tests changes the asymptotic complexity by at most an additive constant.

Theorem 1 Wi(n) > n —k+ Yicicp1lg(n—i+ 1) foralln >k > 2.

Corollary Wj(n) = n—2+[lgn] for n > 2, and for all fixed k£ > 3, W/(n) = n+(k—1)1gn+0(1)
as n — 00.



In the corollary, the constant in the O(1) term depends on the value of k. Note that the corollary
follows from the theorem, the fact W/(n) < Wi(n), and the known bounds on Wj(n) mentioned
earlier.

The complexity V}/(n) of the related problem of selecting only the k-th largest element of
n numbers seems harder to determine. It would be of interest to prove a result analogous to
Theorem 1. The next result states that V3(n) < V2(n) — 1 for infinitely many n, where V2(n) is
the complexity of selecting the second largest element when only direct comparisons z; : z; can
be used. (Va(n) = Wa(n) = n — 2 4+ [lgn]; see [Kn, Section 5.3].) That is, one can save at least
one test infinitely often, if median tests are allowed. No corresponding phenomenon is known for
the problem of selecting all the k largest.

Theorem 2 Vj(n) < n —3+ [lg n] for n = 2% 4 1 for all positive integers k.

In Section 2, a useful auxiliary theorem is derived; this result is also of independent interest.

In Section 3 we prove Theroems 1 and 2. Some open problems are mentioned in Section 4.

2 A Geometric Theorem

We prove in this section a result (Theorem 3 below) with a geometric flavor, which will be needed
to prove Theorems 1. For any set of real-valued functions G in R", let Sg = {Z|g(Z) > 0V g € G};
let S¢ = R™ when G = (). Let H be a set of real-valued functions in R™. We will say that G is a
certificate for H if SN R§ # 0 and Sg N R C Sy. Thus, if a point Z € RY is known to satisfy
the constraints g(Z) > 0 for all ¢ € G, then & must satisfy the constraints h(Z) > 0 for all h € H.

Let L, denote the set of all functions of the form }~, <;<, Ai#;, where all ); are real and at least
one A; is nonzero. For any H C Ly, let rank (H) be the"m-aximum number of linearly independent
functions in H. Let LY denote the set of all functions of the form P1(&) - p2(&) ... pj(&), where
pi(£) € Ly, for all 4.

Theorem 3 Let G C L, U L,(,,z] and H C L, be two finite sets of functions, where n > 2. If G is
a certificate for H, then |G| > rank (H).

The rest of this section is devoted to a proof of Theorem 3. We will consider R™ as a vector
space over the reals. For any 0 < £ < n, let V,,; denote the set of all linear subspaces of R™ with
dimension £. For any J C L{?, let Ny = {Z|g(Z) = 0 for some g € J};let Ny =0 when J =0. It
is clear that S;N Ny = §.

Lemmal Let0<m<n,JC ng) with |J| = m. If § € S, then there exists V' € Vp, y—m such
that §€ V and V — N; C §J.



Proof We prove the lemma by induction on m > 0. If m = 0, we can satisfy the lemma by taking
V = R™. In the inductive step, let 0 < my < n, and assume that we have proved the lemma for

all m < mg. We will prove it for m = my.

Let J = {fi,f2, ..+, fmo}. By the induction hypothesis, there exists Vi € V, n—mo+1 such
that § € V; and Vi — Ny, C Sy, where J1 = {f1, f2, -+ fmo-1}-

Write fn,(Z) = p(Z)-¢(Z), where p,q € L,. Let Q = {Z|p(Z) =0, ¢(Z) =0}, and T' = VN Q.
Then T is a linear space of dimension at least (n — mg+ 1) —2 =n—mg— 1. Let W C T be any
linear subspace of T' of dimension n —mg — 1. Define V={Z + A\l e W, —00 < A < 0}. We
need to verify that V satisfies the requirements as stated in the lemma.

As § € Sy, we have § ¢ Q and hence §  W. This implies V € Vy—p,. Also it is clear that
9 € V. It remains to show that V—-N; C §;. First, V—-N; C Vi —Nj C 5. Secondly, for every
ZeV—-Nj,wehave 2e V-Q CV-TCV —-W,and thus 2 = &+ A\j where # € W and A # 0,
which in turn implies that fi,,(2) = p(2)-q(2) = A2p(§)q(§) > 0; therefore V — N;j C {&| fin, (2) >
0}. From the above discussions, we conclude that V' — Nj C Sy, N {&|fme(Z) > 0} = §y. This
completes the inductive step of the proof. O

Lemma 2 Let X C L,, H C L, be two finite sets of linear functions. Let V € V,,, and
Y = Uigict Yi where Y; € Vyp,, with 0 < £; < £, 0 < £ < n and ¢ any non-negative integer. If
SxN(V-Y)#0and Sx N(V -Y) C Sy, then rank(X) + (n — £) > rank(H).

Proof Let V = {&|pi(&) = 0, 1 < ¢ < n—(}, where p; € L,. For any set B C R", let
B denote the closure of B under the standard topology on R" (induced by e.g. the Euclidean
metric). It is elementary that V —Y = V and that Sy = {h(Z) > 0lh € H}. It follows that
SxNV =8xn(V-Y)C Sy = {h(&) > 0|h € H}. By the well-known Farkas’ Lemma (see e.g.
[SW]), we can write for each h € H,h =3 sex As-f+Ticicn—¢ pipi for some constants Ay > 0
and arbitrary p;. This immediately implies rank(H) < rank(X)+ (n—¢). O

We will now prove Theorem 3. We can assume that |G| < n, as otherwise rank(H) < n < |G|
is obviously true. Suppose G = {g1,93,...,9|¢|} with g; € LSE) for 0 < i < m and g; € L, for
m < j < |G|, where 0 < m < |G|. Let J = {91,92,...,9m}. Choose any §§ € Sg N R}. Then
7 € Sy, and by Lemma 1, there exists a V € V,, ,—, such that §j € V and V — N; C §;. Define
Y;=Vn{Z|gi(Z)=0}forl1<i<m. Lett=m+ (g), let Yz, m < £ < t, be the (’;) linear spaces
of the form V N {Z = (21,22, ..., zx)|®; = z;} where ¢ < j. Then each Y;, 1 < i < t, is a linear
space of dimension one less than the dimension of V, since § € V —Y;. Let Y = Uj<i<t ¥;. Then
N;yCY.

Now, let X = {g:lm < i <|G|}. Clearly, SxN(V-Y) # 0, as j € SxN(V —Y). Furthermore,
SxnN(V-Y)C Sxn(V-Ny)C SxNSy= Syg. By Lemma 2, rank(X)+n—(n—m) > rank(H),
which implies |X| + m > rank(H), i.e. |G| > rank(H). This proves Theorem 3.
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3 Proof of Theorems 1 and 2

We first prove Theorem 1. The general approach of the proof extends that used in Fussenegger
and Gabow [FG]. Given any algorithm A € Ay k, we will classify its leaves into [T) ¢;<x_1(n—1+41)
classes, and show that each class must contain at least 2"~* leaves. This gives a lower bound
of 2" ¥, cick_1(n — i + 1) to the total number of leaves in A. Taking the logarithm gives a
lower bound on the cost of the algorithm. Before doing that, we use Theorem 3 from the previous
section to establish a result (Lemma 4 below) concerning algorithms for finding the maximum of

n numbers.

Let G and H be finite sets of functions on R™. The next lemma states that any certificate for
z1 being the maximum of 21,23, ... ,z, must have cardinality at least n — 1.

Lemma 3 Let G C L, U L,(@Z) be a certificate for H = {z; — 2;|2 < ¢ < n}, where n > 2. Then
|G| >n-1.

Corollary Any A € A, 1 must have at least 2"~ leaves.

Proof The lemma follows from Theorem 3, since rank(H) = n — 1. We now prove the corollary.
Let A € A, ;. Without loss of generality, we can assume that there are no redundant tests, i.e.
each branch of any internal node is traversed by some input # € Rj. By the lemma, no node at a
distance j < n — 2 from the root can be a leaf. It follows that there are 2*~2 internal nodes u at
a distance n — 2 from the root. Since each such u has at least two leaves among its descendants,
the corollary follows. O

We need to consider a class of decision tree algorithms more general than A,, ;. Consider input
vectors of n distinct components # = (z1,22,...,%,). Let B be a decision tree, each of whose
internal nodes u contains a test f(Z) : 0, and has two outgoing branches labeled by ”<” and ”>”,
where f is either ¢, ¢(2; — 2;), or (2; — z;)(z; — z,) for nonzero constants c; every leaf of B is
associated with an integer output n(£). We will say ” B selects the largest element of n numbers”,
if for every input & = (z1,2,...,2,) € R§, the leaf £ reached will give the correct output, i.e.
Ty(¢) is the largest of all the 2’s. Let B, be the family of all such B.

For any B € B,, let Tp denote the set of leaves that can be reached for at least one input
Z € Rg.
Lemma 4 Let n > 2. For any B € B, |Tg| > 2.
Proof For any B € B, one can prune away all the branches and nodes that cannot be reached
by any input Z € Rj, and obtain a B’ € B, such that the number of leaves in B’ is no greater

than |Tg|. To establish the lemma, it is sufficient to show that the number of leaves in B’ is at
least 2"~1,



We construct from B’ a modified decision tree. We process the internal nodes one at a time
(in any order). For each internal node u with test f : 0, we perform the following modification:
if f = e(z; — 2;) and ¢ is positive, we replace the test by z; — z; : 0; if f = ¢(¢; — z;) and ¢ is
negative, we replace the test by z; — z; : 0; if f = (z; — z; )(a:J — &), we change nothing; if f = ¢,
then u has only one son, and we will just erase the node u ( i.e. connect the parent node of u
directly to the son of u if » is not the root, or in case that u is the root, delete u and make its
son the new root). It is clear that the modified decision tree A has |T5| leaves, and is in A, ;. By
the coollary to Lemma 3, A has at least 2"~ leaves. It follows that |Tg| > 2"~1.0

To prove Theorem 1, let A € A, ;; we will prove

CA)>2n—-k+ Z lg(n —i+ 1). (1)
1<i<k-1

Let N(A) be the number of leaves in A. It suffices to show that

Ny >2vk. I (n-i+1). (2)
1<i<k-1

For any (k — 1)-tuple I = (i1,142,...,ik—1) of k — 1 distinct integers between 1 and n, let
M7 denote the set of input & = {z1,22,...,2,} € R} such that z;; is the j-th largest element
of {z1,22,...,2,} for 1 < j < k—1. Let L; be the set of leaves for which the output is
(#1,%2,...,1k—1,m) for some m. Thus, if £ is reached when some # € M is input, then £ € L;. To
prove (2), it is sufficient to prove that |L;| > 2"~* for all I, as Ly and L are disjoint if I # J.
Without loss of generality, we will only prove

|Eg| 22, (3)

forI=(n,n—-1,...,n—-k+2).

Let S={¢|1<i<n—k+1}and §' = {i | n—k+2 < i < n}. Let F denote the set of functions
of the form f = z; — z; or f = (z; — zj)(z; — 2,) on variables 21,232, ++,z,, and F’ be the set of
functions of the form f = ¢, f = ¢(y; — y;), or (¥i — ¥;)(y; — y-) on variables y1,¥2,...,Yn—k+1,
where c are constants. Define a mapping D from F to F’ as follows: D(z; — ;) = y; — y; if
i,j € 5, and D(z; — z;) is defined as the constant ¢ — 7 if at least one of 7,5 is not in §; let
D((zi — zj)(z; — 2r)) = D(=i - z;)D(z; — /).

We now construct from A a decision tree B by the following modifications: At each internal
node, replace its test f: 0 by D(f): 0; at each leaf in Ly, replace its output (n,n—1,...,n—k+
1,m) by a single output m; for all other leaves, the outputs are set to be 1 (in fact any integer
will do).

Lemma 5 B € B,_j41 and |Tg| < |Lj|.



Proof For each node (internal node or leaf) u € B, let {(u) be the unique corresponding node in
A. For any § = (y1,¥2,- -+ »Yn—k+1) € Rg_k"'l, let () = (21,22,...,25) € R}, where z; = y; for

Fact 1 Let 1 < 4 < n. Then z; is the k-th largest element in 2y,29,...,2, if and only if the
following is true: 1 < i < n — k4 1 and y; is the largest element of y1, ya,. .. o Wil

Fact 2 If for input §, uy,us,...,u; is the sequence of nodes traversed in B, then for input (%),
E(y1),&(y2),- .., E(ye) is the sequence of nodes traversed in A.

Fact 1 is true, since z; > z; = y; foraln -k +2<j<nand 1 <i<n—-—k+1. Fact?2
follows from the construction of B.

For any input § = (Y1,¥2,.--,Yn—k+1) € Rg to B, suppose that the traversed path ends in
leaf u with output b. By Fact 2, if we feed input a(§) = (z1,22,...,2,) to A, then the traversed
path will end in £(u). We now prove the two inequalities stated in the lemma.

Clearly, a(fj) € My, and thus {(u) € L;. We conclude that £(u) € Ly for for every reachable
leaf u in B; hence |Tg| < |Lj]|.

To prove that B € B,_k4+1, we need to show that y; is the largest of the y;’s. Suppose that,
in A, the output at &(u) is (¢1,%2,...,%). As {(u) € Ly, we have b = i}, from the construction of
B. Since z;, is the k-th largest element in #1,22,...,2z, by definition, we have, by Fact 1, y; is
the largest of y1,92,...,Yn—k+1. This proves B € By, _g41.0

It follows from Lemma 5 and Lemma 4 that |Lj| > |[Tg| > 2"~*. This proves (3), and
completes the proof of Theorem 1.

We now turn to the proof of Theorem 2. Let n = 2F 4 1. We will give an algorithm A with
C(A) =n — 2+ k, which identifies the second largest element of z,,29,...,2,.

First perform a knockout balanced tournament using comparisons of the form z; — z; : 0 for
each of the groups {z1,23, ..., @1} and {@pk-1, ..., Zn—1}. This takes 2(2*"1 —1)=n -3
tests. Now let the largest elements of the two groups be z;,2; and let S;,52 be the set of z,’s
directly defeated by z;,z;; clearly |S1]| = |S2| = k — 1.

Now make one test “(z; — zn)(zn — ;) : 0.7

CASE 1: If the answer is “ >.” then make one further test “z, — 2; : 0;” this tells us whether
Ti < Zn < Tj OF T; < T, < 2;. Without loss of generality, assume z; < z, < z; to be the case.
We perform k — 1 tests to find the largest of S3 U {z,}, which clearly is the second largest of all
z¢’s. The total number of testsis (n —3)+ 2+ (k—-1)=n—-2+k.

CASE 2: If the answer is “ <,” then make one further test “(2; — ;)(2; — ©,) : 0;” this tells us



whether z; or z; is the median of {z;,z;,2,}. Without loss of generality, assume the case z; is
median of {z;,z;,z,}. It is easy to see that the maximum of the elements in Sy U {z;} must be
the second largest of all z,’s. Thus, in k — 1 further tests, we can find the desired output. The
total number of tests is (n —3) +2+(k—-1)=n—-2+k.

This proves Theorem 2.

4 Conclusions

There are many interesting unresolved questions on this subject. The traditional region-counting
technique for algebraic decision trees (e.g. Dobkin and Lipton [DL], Steele and Yao [SY], Ben-
Or [B]) does not seem to yield nontrivial results to these problems. We list below a few open

problems.

(a) Let WISE)(n) be the complexity of finding the k largest of n numbers, when polynomial tests
of degree at most £ are allowed. Is there a constant gy > 0 and a function N(k,£{) such that
ngg)(n) —n > pklog nfor all n > N(k,£)? We conjecture that this is true at least for k = £ = 2.
The method used in Yao [Y2] for deriving lower bounds for the convex hull problem may be of

some use in this special case.

(b) The complexity Vi(n) of selecting only the k-th largest element is related to the complexity
Wi(n) of selecting all the k largest elements by an added constant term. Can we prove that the
relation is still true, when median tests are allowed? Equivalently, can we prove that V/(n) =
n+ (k—1)lgn+ O(1) for all fixed k and n — oco?

(c) Does Theorem 3 generalize to the case G C L, ULP U...U LY for j > 27

(d) Is there purely combinatorial proof of Lemma 3? The present proof involves geometric argu-
ments, since it employs Theorem 3.
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