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Shellsort is a simple classic algorithm that runs competitively on both mid-sized
and nearly sorted files. It uses an increment sequence, the choice of which can drasti-
cally affect the algorithm’s running time. Due to the results of Pratt, the running time of
Shellsort was long thought to be ®(N>?) for increment sequences that are "almost
geometric", however, recent results have lowered the upper bound substantially, although
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ABSTRACT

the new bounds were not known to be tight.

In this paper, we show that an increment sequence given by Sedgewick is @(N*?)
by analyzing the time required to sort a particularly bad permutation. Extending this
proof technique to various increment sequences seems to lead to lower bounds that in
general always match the known upper bounds. This suggests that Shellsort runs in
Q(N l““‘ﬁaﬂw') for increment sequences of practical interest, and that no increment

sequence exists that would make Shellsort optimal.
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1. Introduction

Shellsort is a simple sorting algorithm proposed by D. Shell [15] in 1959, For nearly sorted or mid-
sized files (a few thousand elements), Shellsort performs as well as or better than any known algorithm,
including quicksort. Furthermore, it is an in-place sorting algorithm requiring little extra space and is easy

to code.

Shellsort uses a sequence of integers h,, h,_;,...,h; and works by performing insertion sort on subfiles
consisting of elements k; apart. We call this an h;-sort. Thus, 1-sorting amounts to simple insertion sort
while when a file is 2—sorted, all elements in even spaces and all elements in odd spaces are sorted, but
there may be no relation implied between an arbitrary even-positioned element and an arbitrary odd-
positioned element. Shellsort works by performing passes consisting of an h—sort, h,_;—sort, and so on
until an h;=1-sort. It is both necessary and sufficient that some pass do a 1-sort for the algorithm to be
guaranteed to sort a file. Typically the increment sequences used are "almost” geometric sequences with
h=0 (o) for some o, stopping with 4, being the largest integer in this sequence less than N. This is by no
means a requirement, however these increment sequences perform better than others in practice.

Despite its simplicity, Shellsort has been analyzed only for some special cases. Furthermore, these
results indicate that the dependence on the choice of increments can be dramatic. If #=1, then Shellsort is
equivalent to insertion sort, an algorithm whose performance is well understood. For insertion sort, the

running time is known to be proportional to the number of inversions in the input: the worst-case running
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time is O(N?) [7]. For increments 1,2,...5,=2%,..., originally proposed by Shell, Shellsort is again quadratic
in the worst case, and O(N*'?) on average. At the other end of the spectrum, Pratt gives a set of O(log?N)
increments for which the running time is ®(Nlog?N), which is the best known bound for Shellsort. Unfor-
tunately, it performs poorly in practice unless N is unrealistically large because there are too many incre-
ments. Between these extremes, new results have lowered the worst-case running time of Shellsort to
values not quite optimal, but considerably better than quadratic. On the other hand not even the asymptotic
growth of the average case performance is known, for the types of sequences used in practice, although

none seem to be O(Nlog N).

In this paper, we consider lower bounds on the worst-case running time. The only previous non-
trivial lower bounds for Shellsort are due to Pratt, who showed that for increment sequences of the form
1,...lg=c10¥+c,..., o an integer, Shellsort runs in ®(N>'2) (subject to certain technical conditions). This
property is held by most of the increment sequences that have been tried in practice, however Sedgewick
[11] showed that if hy=4-4*+3-2%+1, then the running time is O(N*/*). Our first main result in this paper is
to prove this bound is tight by constructing a permutation that takes the required time to sort. Incerpi and
Sedgewick [5] have extended their results further reducing the upper bound to O(N 1+¢/W)_ Our second
main result is to show that this bound is tight also, assuming that an unproven (rather fundamental) conjec-
ture is true. Moreover, it appears that if the increments are of the form 4,=(0*), then the bound of Incerpi

and Sedgewick is the best possible.

Section 2 reviews the methods used to obtain the aforementioned upper bounds. This will eventually
explain why the lower bounds and upper bounds match. In Section 3, we discuss the Frobenius pattern and
prove a lemma about the number of inversions in this pattern. We use this lemma to prove the lower
bound. In Section 4, we discuss generalizations of this result to other increment sequences. Open prob-

lems are discussed in Section 5.

2. Previous Upper Bounds
To derive upper bounds for Shellsort, we consider an old problem from number theory:

Suppose that a country wishes to issue only k different types of stamps. What is the largest postage
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that can't be placed exactly on an (infinite-sized) envelope?
This is known as the Frobenius Problem, apparently because the mathematician Frobenius mentioned it

often in his classes [1]. A more formal definition follows:

Definition: g(a;,a,,...,a;) = the largest integer which cannot be represented as a linear combination, with

non-negative integer coefficients, of a{,a,,...,a;.

We make several simple observations: First, we assume a;<aj<...<a;, without loss of generality.
Throughout the rest of this paper, we shall make this assumption. Now, g(1,...)=0, as all positive integers
are representable; we thus assume a;>1. Also, we may assume that each g; is independent of the other
arguments (that is it cannot be represented as a linear combination of the other arguments) since otherwise

it could be removed without affecting the result. Finally, g(a,a,,...a;) is defined iff gcd(ay,a,,....a;)=1.

For k=2, we have a solution due to W.J. Curran Sharp [14]:
g(ay,az)=(a;—1)ay-1)-1
provided, of course, that a; and a, are relatively prime. The case for three arguments remained unsolved

for quite some time, but in the interim Johnson [6] provided the useful result

a, a

o W . - R TE W
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g(aliazs"-sak)zd'g(

where

d=gcd(a,,az,....a;_1)
Several results in this period deal with special cases such as arithmetic or "almost arithmetic"

sequences, but are seemingly useless for Shellsort analysis. Finally, Selmer [12] provided the formula:

g(a1,az,a3)5max[(s-—l)a2+(q—l)ag,(r—l)az+qa3] —-a;
where
az=sa, mod a;,1<s<a;

a;=qs+r

provided that the arguments are pairwise relatively prime and independent (if not, either Johnson’s formula

can be used, g is undefined, or one argument can be eliminated and Curran-Sharp’s formula used).
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Incerpi and Sedgewick [5] provided a lower bound for the Frobenius function:

g (al » @2, --’ak)m(a 1 VALl ),
provided of course that a;<aj,<...<ay.
We now need two important lemmas before we use the Frobenius function to upper-bound Shellsort.

The first is the fundamental result for Shellsort:

Lemma 1: If a k—sorted file is h—sorted, if remains k —sorted.

Proof: See [4] or [7], or [10]. O

The implication of Lemma 1 is that when we come to h;—sort a file, we know that it is already h, ,;—sorted,
hisg—sorted, ... , h—sorted. Thus when we do insertion sort on a subfile and come to a particular element
x;, we know that there are many elements guaranteed to be smaller than x; and so insertion sort shouldn’t
take as long as its worst-case bound would indicate. Lemma 2 tells us how many elements can be larger

than x;, and hence involved in the insertion sort:

Lemma 2: If a file is h—sorted and k—sorted, then for each ', x;_;<x; whenever i can be expressed as a

linear combination with non-negative integer coefficients of 4 and k.

Proof: If i=sh-+tk, then xy2x;_,>..2x,_, since the file is h—sorted, and x;_g,>Xp g 4. 2% g4 _g=Xr_; SiNCE

the file is k—sorted. O]

Remark: Lemma 2 can be easily extended to take more passes into account.

From Lemma 2 (extended), it follows that if a file is hy,;,A.43,....s—sorted, then for any element x;,
the insertion sort needs to consider elements that are less than g(hg,1,k42,-.. ;) away. Thus with Lemma
2, we have a way to bound the running time of Shellsort. For each h,—sort, we bound the running time and

then sum over all passes. The time to #,—sort can be bounded in two ways:

(A) Since we are running /; insertion sorts of size N/h, an obvious bound is O (hy(N/h)>)=0 (N / k).
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(B) For each element x;, only elements a distance g (%y.1,M42,....5;) can be involved in exchanges and of
these, only g(Ag41,hk42,... 1)/ by can be involved in exchanges in an h,—sort, since only every hyth
element is examined. Applying this bound to each of the N elements yields

ON!hy g(his15heszs s hy).

As examples of this application,

Theorem 1: (Papernov-Stasevich) The running time of Shellsort is O(N>'?) for the increments 1, 3, 7, 15,

wes 21, ...

Proof: For b >0(N*), we use bound (A) above; for smaller hy, we use bound (B), taking into account only
two previous passes. Since ged(hyi1,hes2)=1, g(hes1shesa)=0(H2), so bound (B) is O(Nh,). Thus the

running time, 7, may be bounded by

T< 2 Nh+ E Nz."h,,
hysN* N%<p, <N

Since 2'=0 (N)) (i.e. there are ¢ increments less than N),

TSN ¥ 2-1 + N? ¥} L
1<j<002 ez 2/-1

which implies that T=0 (N2"?)=0(N*'?).0O0

Remark: Due to Pratt’s results, even if we take more passes into account in the Frobenius function, we

can’t lower the bound on 7. It turns out that g(Ag41,Rk42s.- B )=(Rs1 ) Brsg+1)-1=0 (b, 2).

Theorem 2: (Sedgewick) The running time for Shellsort is O(N*) for the increments 1, 8, 23, 77, ...,

414322, .

Proof: For all k it can be shown that A1, k40,43 are pairwise relatively prime and for k >2, they are

independent also. Using Selmer’s formula with s=42¥"147, g=2*"'—1, and r=8, one obtains
8(hests hisz, hiys =0 (h*'?)

(The constant implied is 16). For increments smaller than O(N?/*), we use bound (B), otherwise we use

bound (A). Thus

T< ¥ Ni*+ ¥ N%/ih,
hy<N?3 N2 psN



Again, if 2'=O(N),

’ . 1
T<N @ 1432241)% + N? e
1s;§ua 2:{5;5: 4143217241

=0(N.2J‘J'3)=0(N4f3).m
Further improvements can be made by using different increment sequences that will allow more
passes to be taken into account and lower the value of g. Typically, g is bounded by Johnson’s formula.
Using this technique, Incerpi and Sedgewick obtained bounds of O(N'*€) and then O(N™ VeV for

Shellsort.

3. A New Lower Bound

In this section, we derive the main results of this paper by giving a permutation that is asymptotically

as bad as possible for Shellsort. First, we define inversions:

Definition: Given a file of integers represented by x;,x5,...,xy, an inversion is any pair (x;,%;) such that i<j
and x,->xj.
As an example, the file 3,5,1,4,2 has 6 inversions, namely (3,1), (3,2), (5,1), (5,4), (5,2) and (4,2).

In the worst case, the file is in reverse order and there are (g)=0 (N?) inversions. Only a sorted file has no

inversions, and on average a file has N?/4 inversions. Exchanging two adjacent elements that are out of
place removes exactly one inversion, so that insertion sort runs in time proportional to the number of inver-

sions, and is thus quadratic in both average and worst-case.

To make our calculations easier, we will make the simplifying assumption that there are only two

keys, 0 and 1. The following lemma then applies:

Lemma 3 (Swapping lemma): Swapping a 0 and a 1 a distance d apart in a 0-1 permutation removes

exactly d inversions.

Proof: Consider an element between the 0 and 1 before the swap:

1..e..0
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If e=0, one inversion is removed because ¢ and the first element ( 1 before the swap, 0 after) will no
longer be inverted after the swap. Similarly if e=1, then one inversion is removed because e and the last
element will no longer be inverted. There are d—1 elements of this type. This plus the inversion that is
removed by actually swapping the 0 and 1 accounts for a total of d inversions. This is all there can be since

none of the elements to the left of the 0 or right of the 1 can be "uninverted”. (]

Remark: We can prove easily that if the elements of the permutation are not restricted to be 0 and 1, then

the number of inversions removed lies between 1 and 241,

‘We prove later that using 0-1 permutations instead of general permutations does not affect our result.
We will also prove our theorem only for a few specific permutation sizes, N, although again, our results are

applicable for any value of N. We postpone details until later.

The natural permutation to consider is a file in reverse order. In our case this would be a file of N/2
ones followed by N/2 zeros (we assume that a file is sorted by lowest value on the left). This "natural” per-
mutation is not a bad one for Shellsort, because the early passes quickly bring sortedness to the file. What

we need is a permutation that is very unsorted to start with and not made nearly sorted by early passes.

The permutation we will use is closely related to the specific increment sequence and the Frobenius
function. In particular, we have h;=1 and h=4*"1432¥241 for k>1. For any value of k >1, we choose
Ni=g(heshes15--,ha)+1. Eventually, there will be some maximum h,<N,, and thus we may write

Ni=g(hy, hi1,-.., h)+1. If we store our permutation, Py, as pg,p1,...Py-1, then we define P, as follows:

Definition: p;= 1 iff i is representable as a linear combination in non-negative integer coefficients of

hk, hk+1 ,...,h, and O otherwise.

Remark: py=1 by the above definition, and this permutation can be thought of as the "Frobenius pattern”

since it is so closely related to the Frobenius function.

Example: N,=g(8,23,77, + - + }+1=156 and
P,=1000000010000000100000011000000110000001100000111000001

110000011100001111000011110000111100011111000111110001111
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100111111001111110011111101111111011111110

Our permutation has the following very desirable property:
Lemma 4: No exchanges are performed by Shellsort for the increments A,,A,_1,..., i on permutation P;.

Proof: For any h, such that k<r'<t, if a,=1, then a,,;,, must also equal 1, so that the lemma follows. O]

This lemma shows us that the early passes do no sorting work at all for our permutation. We now
show that P, has a lot of inversions to start with, so that we can expect Shellsort to run slowly on it. We

now need to estimate the number of inversions in our permutation. We start with the following lemma:
Lemma 5: N, = O(h,>'?).

Proof: We have

h=4"143:25241
=4 4414624241
hesa=164""14122%241

etc.

Divide the permutation into lines such that line / contains P(-1yh, O Pr-p—1. In our example, we have

line1: 10000000
line2: 10000000
line3:10000001
line4:10000001

Consider a 1 on line 0=2*"2. Its index clearly must have the form

o 451433252y,

Suppose that some element on line 0=2*3 with index phy+qhy .1 +7hy ;3 +5hy 3+... is 1. Then the only pos-
sibility is

p+4q+16r+645+256t+..=0
p+2q+4r+8s+16t+..=p
pH@+rsti+..=y
These three equations imply that 0<y<p<o. Thus the number of 1s on line o is }(B,y)}Saz. It follows that
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line 0=2%"2 has at most 43 ones. This implies that there are at least 154*~ zeros on this line; thus, the
Frobenius pattern does not end at this line. Since we have Q(2%) lines containing Q(4*) elements per line,
the total number of elements is Q(8%)=Q(#,*'*). Moreover, g (iR sty s o0)S8 (g B a1 Bian)=O0 ('),

proving the lemma. O]
Lemma 6: The number of ones in the first half of the permutation, Py is ©(N).

Proof: Clearly the number of ones is O(N), so we only need to show the lower bound. We partition the
permutation into lines, as above and calculate the number of elements in the first 2% lines that are expres-
sible as a linear combination, in non-negative integer coefficients of Ay, i1, and Ao, This is clearly a
lower bound for the total number we need to show to establish the lemma. As in the proof of lemma 5, we
have the three equations:

pHdg+16r=a

p+2q+4r=B

prq+r=y
with 0<2*¥~* and we need to lower-bound }(a,B,'y):. Each triple (p,q,r) generates a unique triple (o, BY).

To see this, note that if two triples (21,¢1,71) and (p2,42,72) both generated the same triple (o, B,7), then

one of the three equations above would be redundant. It is easily verified that the three equations above are

independent. Thus we only need to lower-bound the number of (integral) triples (p,q,r). The equation
p+d4q=L

clearly has about L/4 solutions, so for each 0<r<o./16, there are about (c—16r)/4 solutions. Thus, (with

big-theta notation implied), for each line o..

| I a/l6 o—16r
BH=Y —
B2
2 wl6
=—Y 4r
r=0
o o
64 128
a2
128

2
Thus each line a<2*~* has about -1%? ones. Thus there are
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24 (12 8k—4
2= Qv
Eo 128 384 )

ones in the first 2~ lines, proving the lower bound and hence the lemma. (]

It is now easy to prove that this permutation has a quadratic number of inversions, which is the most

we could hope for.
Lemma 7: The number of inversions in permutation, P, is ®(N?2).

Proof: By lemma 6, there are ®(N) ones in the first half of P, which implies an equal number of zeros in

the second half. (See [8] for a quick proof of this). Thus there are ®(N?) inversions. (]

Remark: The constant implied in this proof is quite small, because only the ends of P, are considered.
Empirical evidence suggests quite strongly that the number of inversions tends to N2/48. Proving this

would require a much tighter argument than the one above (which we have not done).

We are now ready to prove the first main result of this paper. The proof is actually quite simple,

given all the lemmas that have already been shown.,

Theorem 3: The running time for Shellsort is ©OW%¥?) for the increments

1,8,23,77,..., hy=4*"1432k241 .

Proof: Theorem 2 establishes the upper bound, so we need prove only the lower bound. We run Shellsort
on P, which has ®(N?) inversions to start with. Now no exchanges are performed during the h,—sort,
hy_y—sort, ..., hy—sort, and hence no inversions are removed during these passes. It follows from the swap-
ping lemma that at most k;_; inversions can be removed during any exchange. Thus the number of
exchanges necessary is Q(N2/hy_;). We know that h,_;=@(N>?), hence we obtain the lower bound of

@(N*?), completing the proof. (]

Remark 1: If we want to prove this for a general permutation of N integers, instead of for the case where
the keys are restricted to be 0 or 1, we proceed as follows: Assign the largest integers to the 1s, and the
smaller integers to the 0s. The particular order is unimportant. When we come to k,_;—sort, we still have

a quadratic number of inversions, and we can remove them only twice as fast as before. Hence the bound
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still holds.

Remark 2: If we want to generate a bad permutation of arbitrary size N, where N isn’t necessarily a Fro-
benius number (plus 1), take the next highest N” that is a Frobenius number of 4; , A;,, , ... , k., and use the
middle N elements of P;. This will have @(N %) inversions. To see this, note that an extension of lemma 6
is certainly true because the number of ones on a line can only increase as the line number gets bigger.
Thus there is a greater density of ones near the middle of the permutation than at the start. Lemma 6
implies lemma 7. Moreover, this permutation will also satisfy lemma 4, so we obtain an Q(N*/) lower

bound for any N.

4. More Lower Bounds

The general technique used in the previous section can be extended to prove lower bounds for other

increment sequences.

For instance, the increment sequence 1, 65, ..., h,=(2¥-3)(2**1-3)(2%+2-3)= 8 8%—42:4%+63-2¥-27, ...
can be shown to make Shellsort run in @(N>#) in exactly the same manner as above [13], [16]. The incre-
ment sequences of Incerpi and Sedgewick that yield O (N '*) upper bounds can likewise be proven tight.

In general, suppose the increments h, satisfy #,=@(c*) for any (not necessarily integer) o.. Suppose
that A, is the largest increment and that we use the permutation P, as before. In this case, we need to obtain
the maximum value of A to use in generating Py. g(h,he41, -+ ,h)=N—1 and thus the lower bound of
Incerpi and Sedgewick implies that

hkl+11'(t—k) SO(N)

On the other hand, we also have

N
h=8(—p)

Combining these equations, we obtain

t—k2Q(+[Tog,N)
which yields

=0 (N VPEy

Thus, if P, has Q(V?) inversions, we obtain a lower bound of QY& QN 1+NBN) which
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matches the best known upper bound for O(log N) increment sequences. We cannot prove that P has

Q(N?) inversions, but we make the following conjecture which would be sufficient to prove this result:

Inversion Conjecture: Given a;<a;< ... <ay, then the number of inversions in the Frobenius pattern (of

size N) formed from these integers is @(N?2/k).

For k=2, the conjecture is easily proven. For other values of k, empirical evidence strongly suggests
that the conjecture is true; in fact, the implied constant seems to be 1/24. Moreover, to obtain the lower
bound for Shellsort, all we need is the following weak form of the inversion conjecture which must cer-

tainly be true:

Weak Inversion Conjecture: Given a;<a,< ... <a; then the number of inversions in the Frobenius pat-

tern formed from the integers is Q(N2/f (k)), with f (k)=0(2).

We then have the following theorem:

Theorem 4: The running time for Shellsort is Q(N**V°8 ¥y for increments 1,=(ct*) for any o.>1 if the

weak inversion conjecture is true.

Proof: By the discussion above, if the number of inversions is Q(N?/f (k)), we obtain a running time of

Nl-!-ea'\fm =N
Q(——). If f (k)=0(2"), this is still QN *¢"V°8¥) for some 0<¢’<e. O
f(logeN)

Remark: 1f the number of inversions is ®(N2/2%), then we obtain the trivial lower bound of Q(N) because

2t VOB _py VBN

5. Conclusions and Open Problems

Increment sequences generally fall into two classes: uniform and non-uniform. Uniform increment
sequences satisfy h=f(k); the largest increment is determined by N. All of the increment sequences we

have used are uniform. Non-uniform sequences are h,=f(N,k); an example is Gonnet’s [2] h=| oM ,
hk=[u.h,,+1J » h1=1, with 0=5/11. Furthermore, to make Shellsort optimal, there can be at most O (log N)

increments. There is no indication that non-uniform increment sequences will perform better than uniform
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sequences either in theory or in practice and our results suggest quite strongly that no "almost geometric"
uniform increment sequence will run in O(Nlog N). Since all seemingly reasonable O (log N) uniform
increment sequences are "almost geometric", this seems to rule out O(Nlog N) Shellsorts for these types of

sequences and thus, probably for O (log N) non-uniform sequences as well.

Some interesting open problems remain. First and foremost is proving our inversion conjecture, or
any somewhat weaker form as suggested in Section 4. Assuming the inversion conjecture, proving that
even if only some subset of increments is (o), then Shellsort is not O(Nlog N) would generalize our
result quite a bit. This would take care of some uniform O(log N) increment sequences that don’t strictly
increase. It turns out that for many of these increment sequences, we can still prove the lower bound but
we need a slightly different proof; a unifying concept would be nice. Finally, another interesting conjec-
ture is that uniform and non-uniform increment sequences are asymptotically equivalent. Again, this
would generalize our result quite a bit, and would probably lay to rest the question of whether or not

Shellsort could be O(Nlog N) for some increment sequence.
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