ON THE COMPLEXITY OF PARTIAL ORDER PRODUCTIONS

Andrew Chi-Chih Yao

CS-TR-136-88

February 1988 -

On The Complexity of Partial Order Productions

Andrew Chi-Chih Yao

Department of Computer Science
Princeton Universitly
Princeton, New Jersey 08544

Abstract

Let P=(<p, Y) be a partial order on a set Y = {y1,%2,...,¥n} of n elements. The problem
of P-production is, given an input of n distinct numbers zy,29,...,2,, find a permutation o
of (1,2,...,n) such that y; <p y; implies ,(;) < Z,(j). Let C(P), C(P) be, respectively, the
minimum number and the minimum average number of binary comparisons z; : z; needed by
any decision-tree algorithm to produce P. We prove that C(P) = ©(C(P)). As an intermediate
result, we show that C(P) = O(logy(n!/u(P)) + n), where u(P) is the number of permutations
consistent with P, proving a conjecture of Saks.

1 Introduction

Sorting and median-finding of a set of n numbers are two of the classical problems in combina-
torial computation. It is well known (see Knuth [Kn, Section 5.3]) that sorting n numbers takes
asymptotically @(nlogn) binary comparisons of the form z; : z;, both in the worst case and
in the average case. For median-finding, it was first proved that the average-case complexity is
O(n) (Floyd and Rivest [FR]), and later it was discovered that the worst-case complexity is also
O(n) (Blum et al [BFPRT]). Thus, in both problems, the worst-case complexity and the average-
case complexity are of the same order of magnitude. Are they special cases of a general class of
problems for which this phenomenon is true? In this paper we will show that this is indeed so.

Let P = (<p,Y) be a partial order on a set Y = {y1,%2,...,%n}. The P-production problem
is the following: Given n distinct numbers z1,23,..., 2y, find a permutation o of (1,2,...,n) such
that y; <p y; implies z,(;y < Z,(;). We are interested in the intrinsic complexity of this problem
in the decision tree model. Clearly, sorting and median-finding are both special cases of the
P-production problem.

A decision tree T' is a binary tree, each of whose internal nodes u contains a comparison of
the form z; : z;, and has two outgoing edges labeled by ”<” and ”>"; associated with each leaf
{ is a permutation oy of (1,2,...,n). Given any input & = (21, 2s,...,2,) of distinct numbers, we
travese a path {(7,%) in T from the root down, making comparisons and branching according to
the outcomes, until a leaf £; is reached. We call T an algorithm for P-production if, for every #,
Yi <p y; implies z,;) < z,(;) Where p = oy. Let cos(T, &) denote the number of comparisons
made by T along the path {(7’, %), and let cost(T") be max; cost(T, Z). Denote by Ap the family
of all algorithms for P-productions. The minimaz complezity C(P) of P-production is defined as
min{ cost(T) | T € Ap}.

Let T',, be the set of all permutations of (1,2,...,n). A permutation p is said to be consistent
with P, if y; <p y; implies p(i) < p(j) for all 4,j. Let A(P) C I', be the set of all permutations
consistent with P, and define u(P) = |A(P)|.

The complexity problem of P-production was formulated and investigated by Schonhage [Sch],
who showed by an information-theoretic argument that C(P) > logy(n!/u(P)). Further results
on this problem were derived in Aigner [Ai]. It was conjectured in Saks [Sa] that Schonhage’s
lower bound can be achieved asymptotically, in the sense that C(P) = O(log,(n!/p(P)) + n).

For any T € Ap, the average cost of T is defined as cost’'(T) = ;‘}izper‘n cost(T,&,), where
£, = (p(1),p(2),...,p(n)). The minimean complexity of P-production is defined as C(P) =
min{cost’(T) | T € Ap}.

A partial order P = (<p,Y) is said to be connectd, if for every two distinct elements y and

y' in Y, there exists a sequence y = y1,%2,...,¥m = ¥’ such that y; <p y;41 or y; >p y;41 for all
t. Every partial order P can be uniquely decomposed into the disjoint union of connected partial
orders P; = (<p,Y;), where the sets ¥; form a partition of Y. Let B(P) denote the number of

connected components in this decomposition.

In this paper we will prove the following results:

Theorem 1 For all P, C(P) = Q(n — B(P) + log, (%P)))

Theorem 2 For all P, C(P) = 0(n - B(P) +log, (%))

Theorem 3 For all P, C(P) = O(C(P)).
Theorem 2 proves the conjecture of Saks [Sa] mentioned earlier. Since C(P) > C(P) by

definition, Theorem 3 is an immediate consequence of Theorems 1 and 2. The rest of this paper
is devoted to a proof of Theorem 1 and Theorem 2.

2 Proof of Theorem 1

We will prove two lemmas. The first one is an extension of Schoénhage’s lower bound on the
minimax complexity C(P) to the minimean complexity.

Lemma 1 C(P) > log, (-};%)

Proof Let T € Ap. We will prove

cost’(T) > log, (%) i (1)

For each leaf £ of T, let @, be the partial order on X generated by the constraints z; > z;
along the path from the root to £. As T € Ap, each Q; contains an isomorphic copy of P as a
sub-partial order. This implies that u(Q¢) < u(P). Let g, = u(Q¢)/n!. Then

u(P
e)
If we consider a random input #, = (p(1),p(2),...,p(n)), where p is uniformly chosen from I,

then g, is the probability that the traversed path £(T,%,) in T will end in the leaf £. Let d; be
the distance from the root to £. Then,

q <

ZQE = 1, (3)
£

cost'(T) = ZQ‘gdg. (4)
£

It follows from (3) and (4) that cost’(T’) is the expected length of a uniquely decipherable code
for an alphabet with symbol frequencies g¢. It is a well-known fact (see e.g. [Ab, Section 4.1]) in
Information Theory that a lower bound is given by the entropy, that is,

cost’(T) >) qelog, l
y a
Inequality (1) now follows from (2) and (3).0
Lemma 2 C(P) > n— (P).

Proof Suppose the lemma is false. Then there exists T € Ap and an input & = (21, 22,...,25),
such that cost(T', Z)< n — f(P). Let o be the output permutation for . We will derive a
contradiction.

Let W be the sequence of inequalities z; < z; generated along the path &(T,%); then |W| <
n — B(P). Denote by @ the partial order on X imposed by W. Then @ has more than n — (n —
B(P)) = B(P) connected components. Thus, there are integers r,s such that ¥,,y, are in the

same component in P, while z,(,),%,(,) are in different components in ().

Let yr = ¥iy»Yips-- - ¥Yim = Ys be such that, for each j, either y;; <p y;;,, or ;; >p Yijp1- BY
the definition of T' € Ap, every adjacent pairs in the sequence To(r) = To(i)sTo(iz)r -1 Tolim) =
Zs(s) must also be related in (. This contradicts the assumption that z,(,) and x,(, are in

different components in Q.0

Theorem 1 follows immediately from Lemma 1 and Lemma 2.

3 Reduction

In this section, we show that to prove Theorem 2, it suffices to prove the following result:

Theorem 4 There exists a constant A > 0 such that

C(P)< A(n -1+ logz(%)).

Assume that Theorem 4 is true. We will prove Theorem 2. Let ¢ = §(P). By definition, P
can be written as the disjoint union of partial orders P; = (<p,,Y;), 1 < i < ¢, where Y;’s form a
partition of Y. Let |Y;| = n;. Then n; > 0 for all 4, and

Zn; — (5)

WP) = () (PP -+ (P2). (6)

ni'ng!- .o m,!

1

We now describe an algorithm T' for P-production. Let Ng = 0. Define N; = 3~ <1.<; ni, and
Ii={j | Ni-1 <j<N;}forl<i<e Given any input set X = {z; | 1 <1:< n}, consider for
each 1 <i < ¢, the set X; as input to P;-production, where X; = {z; | j € I;}. Apply Theorem
4 to each P;, and let o; : I; — I; be the permutation found for P;-production. Then define the
output permutation o € T'y, by o(j) = 0i(j) if 7 € I;. It is clear that T' € Ap, since the output
permutation o satisfies the constraint that y; <p yx implies z,(;) < @, (1)

Using (5) and (6), we obtain

cost(T) < Aléc(n* — 1+ log, (,u_(l%;—)))

n;!ngl i T!-c!
H(PL)p(Pp)- - -#(Pc)))

n!
-)\(n— c+log2(m)).

= A(n—c+log2(

We have proved Theorem 2, assuming that Theorem 4 is true. In the next two sections we

will prove Theorem 4.

4 An Algorithm

4.1 Preliminaries

Let P = (<p,Y) be a partial order. A subset A CY is an independent set of P,if y £p 1 is
true for all distinct y,y" € A. The width of P, denoted by width(P), is the maximum size of any
independent set of P. We associate with each P an independent set Yp of maximum size. (Pick
any one if there are several choices.)

Let k£ > 2 be any integer. A k-partition of P is a k-tuple (Ay, Asg,. .., Ay), where the A;’s are
disjoint subsets of ¥ whose union equals Y, such that y <p 3/, y € A; and ¥’ € A; imply i < j.
We are interested in two special k-partitions. Let Bp = (Bp1, Bpg, Bps), where Bpy = {y |
y <p y for some y’' € Yp}, Bp2 = Yp, and Bp3 = Y — Yp — Bp;. Clearly, Bp is a 3-partition.
Note that some Bp; may be empty. To describe the second partition, let Mp be the set of all
2-partitions (A;, A2) of P such that [A;| = [n/2] and |A2| = |n/2]. Let Dp = (Dp1,Dp2) be a
member of Mp such that u(P;)p(P,;) is maximum over all possible (A, A;) € Mp, where P; is
the partial order P restricted to A;.

Notations For the rest of the paper, P = (<p,Y) will denote a partial order on ¥ =
{¥1,¥2,-..,yn}, and X will denote the input set {z;,z2,...,2,}. For any J C {1,2,...,n},
we will use Y to denote the set {y; | j € J}, and P; to denote the partial order induced by
P on Yy; we agree that u(Py) = 1 when J = (. Similarly, for any I C {1,2,...,n}, we use X;

5

to denote the set {z; | i € I}. For any two sets of numbers A, B, we write A < B if y < z for
all y € A and z € B. We adopt the convention that 0! = 1, and we will employ two constants
cg = 40 and c3 = 80.

Lemma 3 Let k£ € {2,3}. Let I be a nonempty subset of {1,2,...,n}, and ny,ns,...,n; be
nonnegative integers satisfying >, <;<x 7i = |I|]. Then there is a decision tree T' of height ci|I|
such that, given any input of n di—st-i—nct numbers X = {z1,22,...,2n}, T determines disjoint
I, I,..., I satisfying (a) U;I; = I, (b) |I;| = n; for all ¢, and (¢) Xj, < X, < --- < X,.

Proof If k¥ = 2, the decision tree first finds the (n; + 1)-st smallest element z; in X, and
then determines I1 = {¢ | 2; < «;} and I = {i | z; > z;}. This can be done in less than
40n comparisons using the selection algorithm in [BFPRT]. Similarly, if k¥ = 3, we can find the
(ny + 1)-st smallest and the (ny + na + 1)-st smallest elements in X7, by applying the selection
algorithm in [BFPRT] twice, and then find I, I, I3.0

4.2 Procedure POPROD

The algorithm can be described as a recursive procedure. Depending on the width of P, we
will either use comparisons to divide X into three parts Xy, satisfying X; < X5 < X, or
use comparisons to divide X into two parts X, satisfying X < X,. In the first case, we can
match the elements y; € Bpg with elements in X7, in any fashion, and then recursively solve two
subproblems: X7, as input to the production problem of P restricted to Bp;, and X, as input to
the production problem of P restricted to Bpgs. This gives a valid final output, because Bp is an
independent set in P and (Bp;1, Bpz2, Bp3) is a 3-partition. In the other case, we will simply solve
recursively two subproblems: X7y, as input to the production problem of P restricted to Dp;, and
X7, as input to the production problem of P restricted to Dpy. Of course, the cardinality of the
sets I; need to be chosen to match those of the 3-partitions and 2-partitions.

The criterion for deciding which case to use is whether the width of P is greater than a fraction
of n. Intuitively, the first case is more like the median-finding problem and the second case is more
like the sorting problem. In the first case, we would like to get immediately a large indepenent
subset of the elements y; in Y assigned, while in the second case, we rely on the technique of
divide-and-conquer, and try to divide the problems into two subproblems of nearly equal size.

As an example, consider the partial order P shown in Figure 1. The width of P is
relatively large, and we have the first case. For this partial order, Bp1 = {y1,¥2,¥3,%4},
Bpa = {ys,ys,%10,¥11}, Brs = {¥e,¥7, Y9, Y12,Y13}. We thus use comparisons to divide X into
three parts X, satisfying X5 < X5, < Xp,, where |I;| = 4, |I3| = 4, and |I3] = 5. The elements
in Bpy can be assigned in a 1-1 way to the z’s in X, without further comparisons. Of the two
subproblems to be solved recursively, we will examine just the first one. To match the elements in
Bp, with X, , we observe that @), the partial order P restricted to Bps,is y1 <g y2 <@ ¥s <@ Y4,

nhe

V2 @

y3f

Ya

y Y10 s Ys

Yo yr

® N2

® 113

Figure 1 A partial order P ; smaller elements on top, e.g. y2 <p ¥4.

which has width equal to 1. This means we have the second case for this subproblem. Clearly,
Dqa = {y1,92} and Dg 3 = {y3,y4}. Therefore, we use comparisons to divide Xy, into two parts
A and A’ with A < A’. Now we need to solve two subproblems: matching Dg to A, and Dg
to A'.

We now specify the algorithm formally. Given an input set X = {z,,22,...,2,}, the algorithm
will output a permutation ¢ in the form of a set {(i,0(i)) | 1 < ¢ < n}; the correctness
requirement is that y; <p y; implies To() < Ty(j)- We will give a recursive algorithm that takes
as additional input arguments two sets J C {1,2,...,n} and I C {1,2,...,n} of equal size, and
returns a matching between J and I, i.e. aset V C J X I such that each j € J appears exactly in
one element (j,k) € V, and each ¢ € I appears exactly in one element (m,i) € V. We will later
prove that the matching produced satisfies the condition that, for (j,m) € V and (j',m') € V,
yi <p yj implies £y, < Zpy. Thus, if we let J = I = {1,2,...,n}, we obtain the required
permutation o in the output.

Procedure POPROD(X, J, I);
CASE 1. |J] < 1:
if J = I = (), then return 0;
if J = {3}, I = {i}, then return {(7,:)};
CASE 2. (|J] > 1) A (width(Py) > [|J]/100]):
(a) Use c3|I| or less comparisons to divide I into disjoint Iy, I, I3
such that X;, < X, < X, and || = |Bp,;| for 1 < i < 3;
[Comments: This can be done, by Lemma 3.]
(b) Suppose Bp,; ={y; |j € J;},for 1 <i< 3;
let Vo « {(ks,is) | 1 < s < |Jz|}, where k, and i, are
the s-th smallest elements in J, and 1.
[Comments: No comparisons are used here.]
(¢c) Vi — POPROD(X, J3, Iy);
Vs «— POPROD(X, J3, I3) ;
(d) return V — VU V5 U Va;
CASE 3. (|J]| > 1) A (width(Py) < [|J]/100]):
(a) Use ¢3|I] or less comparisons to divide I into disjoint Iy, I
such that X, < Xp,, |1] = [n/2], and || = |n/2] ;
[Comments: This can be done, by Lemma 3.]
(b) Suppose Dp,; = {y; | j € Ji}, for 1 <i < 2;
(c) Vi — POPROD(X, Jy,5h);
V2 « POPROD(X, Jy,13) ;
(d) return V « V; U Vq;

4.3 Correctness
Lemma 4 In Procedure POPROD, the returned value V is a matching between J and I.

Proof We prove by induction on the size of J. The base case |J| < 1 is obvious. Inductively,
suppose |J| > 1, and that the first recursive call results in CASE 2. Then V; constructed in step
(b) is clearly a matching between J; and I,. In step (c), by induction hypothesis, V; is a matching
between J; and I; for ¢ € {1,3}. Thus, V is a matching between J and I. A similar argument
can be given when the first recursive call results in CASE 3.0

Lemma 5 Let V be the returned value in Procedure POPROD, when X,J,I are the input
arguments. If (k, k") € V, (m,m') € V and y; <p Ym, then zp < 2.

Proof We prove inductively on the size of the set J. The base case |J| < 1is obvious. Inductively,
suppose |J| > 1, and that the first recursive call results in CASE 2. Suppose that (k, k') € V;
and (m,m’) € V;. As yx <p Ym, we have i < j (since (Bp, 1,Bp,2,Bp,3) is a 3-partition of Py
by definition). If i < j, then 2p < @y, as zp € Xy, 2 € Xp;, and Xy, < Xy, If i = j € {1,
3}, then the lemma holds by the induction hypothsis. The case i = j = 2 does not arise, since
no two distinct y; and y., in Bp, 2 are comparable in P;. A similar argument can be given when
the first recursive call results in CASE 3.0

This proves that Procedure POPROD defines a decision tree algorithm for P-production,
when we set J = I = {1,2,...,n} in the input arguments. To complete the proof of Theorem 4,
it remains to analyze the number of comparisons used in this procedure. This will be done in the
next section.

5 Analysis of POPROD

Let fp(J) be the maximum number of comparisons used in POPROD(X, J, I) for any I and any
relative ordering of the elements in X. Let Ay = 5000¢;, and A3 =100c3. In this section, we will
prove

fP(J) < An + A3 1°g2(”|é;|.i))' (7)

This will complete the proof of Theorem 4.
5.1 Two Lemmas

We digress to prove two auxiliary lemmas before proving (7). We need a classical theorem
due to Dilworth [D].

Dilworth’s Theorem [D]. Let P = (<p, W) be any partial order, and width(P)=m > 0. Then
W can be written as the disjoint union of m nonempty sets W; = {w; 1, w;2,...,wi }, 1 <i < m,

such that w;y <p wi2 <p -+ <p wjy for all ¢.
Proof See [D].O

Let P = (<p,Y) be any partial order on a nonempty set Y = {y1,¥2,...,yn}. Let Bp =
(Bpa,Bpg,Bpgz) and Dp = (Dp1,Dp2) be the two special k-partitions defined in Section 4.1.
Suppose that K, K’ C {1,2,...,n} are two nonempty sets of equal cardinality. Let W = {w; |
Jj € K}, and Q = (<g,W) be a partial order on W. A matching V between K and K’ is said
to be consistent with Q, if ((k,k") € V) A ((m,m') € V) A (wy <g wn) implies k' < m’. Let
A(Q, K, K') be the set of matchings between K and K’ that are consistent with Q. Clearly,

|A(Q, K, K')| = u(Q). (8)
Lemma 6 Let Jq,J2,J3 be such that Bp; = {y; | j € J;} for i € {1,2,3}. Then

#(P) p(Prs) uP)
|[Alt el =Y

Proof We first discuss the case when both J; and J5 are nonempty. Let o € A(P). For each
i €{1,2,3},let I; = {a(j) | j € Ji}, and define a mapping o; : J; — I; by 0i(j) = o(j) for all
J € J;. It is easy to verify that o; € A(Py,, Ji, I;).

In this way, each o € A(P) is associated with a 6-tuple (I3, I3, [3,01,02,03), where I1,I2, I3
form a partition of {1,2,...,n} with |[I;| = |J;|, and o; € A(Py,, Ji, I;). Furthermore, as can be
easily verified, o is uniquely determined by the 6-tuple. Counting the number of such 6-tuples,
we obtain

v)!
mp(PJl)u(PJg)ﬂ(PJg)

|Y|' #(PJ1) :u'(PJs)

|t s

w(P) <

This proves the lemma for the case when both J; and J3 are nonempty.

The lemma is obviously true when both J; and J3 are empty. For the case when exactly one
Ji is empty, i € {1,3}, we can easily modify the above proof to prove the lemma, by omitting all
the references to the quantities o, I;. This completes the proof of Lemma 6.0

Lemma 7 Let Ji,J; be such that Dp; = {y; | j € J;} for i € {1,2}. If B(P) < [n/100], then

p(Py) ”(PJz) [¥] E@
Al a2 BT

Proof Let m = 3(P) > 1. Then m < [n/100] and thus n > 100. Clearly, both J; are nonempty.
By Dilworth’s Theorem, P can be covered by m chains of lengths, say, £1,%2,...,£, > 0. Thus,
each 2-partition (A1, A2) € Mp can be specified by integers ki, ks,. .., k,, where k; is the number
of elements of A; on the i-th chain. After standard manipulations for optimizing expressions, we
obtain

|IMp|

IA

H (1+£;)

1<i<m
2n . ..
2

(200)/1001, (9)

IA

IA

Let h ={j|1<j< [nf2]}and [, = {j | 1< j < |n/2]}. For each 0 € A(P), let
Ji={jle(j) € L} and V; = {(j,0(5)) | j € Ji} for i € {1,2}. Then, (Yj;,Yy) € Mp. Also, for
each ¢, V; is a matching between J! and I;, and is consistent with Pj. In this way, each o € A(P)
is associated with a quadruple (J{,J},V3,V3), where Yy, Yy) € Mp,and V; € A(PJ‘;,J;’,I,-) for
i € {1,2}. Furthermore, it is easy to see that ¢ is uniquely determined by the quadruple. From
(8), we obtain

u(P) < Y. w(Py)u(Py)
(¥ ¥ g eMp
< [Mp|p(Py)u(Pyr,). (10)

From (9) and (10) and the fact » > 100, we obtain

w(P) < (200)/1% Py \u(Ps,)

5 '('1_'01—]35 (l—n";z-l) F(PJl)”(PJz)

Rearranging terms in the above expression gives the inequality to be proved in the lemma.D

IA

5.2 The Analysis

Given P,J, where J # (), we construct a cost tree Vpj. Each node v will be associated
with a triplet n(v) = (6(v), a(v), S(v)), where §(v) € {0,2,3}, a(v) is a nonnegative integer, and
S(v) CY. We will say that v is of type 6(v) and weight a(v).

The cost trees are recursively constructed. If |J| = 1 with, say, J = {j}, then Vp s consists of
a single node v with n(v) = (0,0, {y;}).

If (|J| e 1) A (width(Py) > [|J|/100]), then the root v of Vp,s has n(v) = (3,c3|J|, Bp,,),
and for each nonempty Bp,,, i € {1, 3}, there is a son v; of the root such that the subtree rooted
at v; is Vp,j;, where J; is the set of j with y; € Bp, ;.

10

1f (17] > 1) A (width(Py) < [|J]/1001), then the root v of Vp,s has 7(v) = (2,¢2|J|,0), and
for each i € {1,2}, there is a son v; of the root such that the subtree rooted at v; is Vp j,, where
J; is the set of j with y; € Dp,,. (Note that in this case both J; are nonempty.)

We have defined the cost tree Vp ;. An example of a cost tree is shown in Figure 2; square
nodes are of type 0, oval nodes with ¢z besides them are of type 2, and those with ¢3 besides them
are of type 3.

We now relate fp(J) to the cost tree. Let a;(P,J) be the total weight of type-i nodes in Vp ;.
That is, let a;(P,J) = 32, p(y)=i @(v) for i € {2,3}.

Lemma 8 fp(J) < az(P,J) + as(P,J).

Proof We prove by induction on the size of |J|. If |J| = 1, then fp(J) = az(P,J) = a3(P,J) =0,
and the lemma holds. Inductively, assume that |J| = m > 1, and that we have proved the lemma
for all J with size less than m. If width(P;) > [|J]|/100], then in the execution of Procedure
POPROD, for any I and X, CASE 2 occurs at the top level, and thus

fe(D)<eld|+ > fe(d),
i€{1,3},J; #0

where J; are the sets of j such that y; € Bp,,. Applying the induction hypothesis, we have
) < alll+ Y (aa(P) + as(P,)
1e{1,3},Ji#0
= ao(P,J)+ ag(P,J).

A similar argument works when width(Py) < [|J]|/100]. This completes the inductive step of
the proof.O0

We now analyze a;(P,J).
Lemma 9 a3(P,J) < 100c3|J|.

Proof We first state two facts which can be easily verified inductively. For all type-3 internal

nodes v,

15(v)] > [a(v)/(100¢3)], (11)

For any two distinct internal nodes v and ',

S(v)n S(v') =0 (12)

11

262

4c9

{v2}

Figure 2 Vp ; with the P in Figure 1 and J = {1,2,...,13}; 8(v) are
shown inside the nodes v, and a(v) are shown just outside v.

{3}

{Ys, ¥s, ¥10, 11}

262

{va}] ©

13c3

{yﬁs y?}

{ve}

5C3

{‘9'12

2(:2

1113}

It follows from (11) and (12) that
a3(P,J) = 3 av)
v,b(v)=3

100cs 3 |S())

v,b(v)=3
10063 IYJI

= 100cs|J|.

IA

IA

This proves the lemma.O
Lemma 10 a3(P,J) < 5000cz log, (|J!/u(P2)).

Proof We prove the lemma inductively on the size of J. If |J| = 1, then as(P,J) = 0, |J| =
p(Py) = 1, and the lemma is valid. Inductively, suppose that |/| = m > 1 and that we have
proved the lemma for all J, P with |J| < m.

If width(Py) > [|J]/100], then in the execution of Procedure POPROD, for any I and X,
CASE 2 occurs at the top level. Let J; is the set of j with y; € Bp,;. Applying the induction
hypothesis to each son v;, and keeping in mind that we employ the convention that 0! = u(Py) = 1,
we obtain

GQ(P,J) = Z az(P, Jg)
i€{1,3},Ji#0

| Ji]!
5000 1 b
. ‘iE%T;} - (H(PJI))

|/4]!]J5]!)
”(PJI)lu’(PJa) -

IA

5000¢; log, (

Applying Lemma 6 to the partial order Py, we then have

!
as(P,J) < 5000¢, 10g2(#|é1' 0.
i 4

If width(Py) < [|J]/100], CASE 3 occurs in the execution of POPROD. Let J; be the set of
J with y; € Dp, ;. Both J; are nonempty in this case. We have

|]! | J2]!
az(P,J) < e3|J| + 5000¢; 10 + 5000¢2 1o
2PJ) <)| 2o (25 5) 2logs (42)
| J1 ! J2|!
= eom + 5000¢; logy | ———————).
; %t nrn)

Applying Lemma 7 to Py, we obtain

m! 1
ag(P,J) < Cgm+50006210g2(mw).

!
< 5000c; log, (%) s

12

This completes the inductive step of the proof.0

Inequality (7), and hence Theorem 4, follows immediately from the preceding three lemmas.
This comlpletes the proof of Theorem 2.

6 Remarks

In this paper we have determined up to a constant factor the complexity of a class of problems
involving partial orders, in terms of a familiar combinatorial quantity p(P). It is of interest to
explore the complexity of other classes of problems involving partial orders. An excellent survey
of this topic can be found in Saks [Sa]. We list below some open problems directly related to our

present discussion.

(a) Can we charaterize the complexity of producing o that satisfies more general constraints than
a single partial order P? For example, let P, P;,..., P, be partial orderson Y = {y1,92,...,¥n}-
What is the complexity of producing, for any input X = {z1,23,...,2,}, a o such that for some
i, Y; <p; Yr implies Zo(j) < To(k) for all j,k?

(b) The results in this paper imply that the randomized decision tree complexity for P-production
is asymptotically of the same order of magnitude as the worst-case complexity. Is this true for
more general class of production problems, such as the one mentioned in (a)? It is also of interest

to study the question of whether randomization helps for other types of partial order problems.

(c) The present paper gives an existence proof of a near-optimal height decision tree for P-
production. If the partial order itself is also given as an input, is there a polynomial time algo-
rithm (counting all the book-keeping steps) that uses a near-optimal number of comparisons for
producing a partial order?

References

[Ab] N. Abramson, Information Theory and Coding, McGraw Hill, 1963.
[Ai] M. Aigner, “Producing posets,” Discrete Mathematics, 35 (1981), pp. 1-15.

[BFPRT] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, “Time bounds for selection,”
Journal of Computer and System Sciences, T (1973), pp. 448-461.

[D] R. P. Dilworth, ”A decomposition theorem for partially ordered set,” Annals of Mathe-
matics, 2 (1950), pp. 161-166.

[FR] R. W. Floyd and R. L. Rivest, "Expected time bounds for selection,” Communications
of ACM, 18 (1975), pp. 165-172.

13

[Kn] D. E. Knuth, The Art of Computer Programming, Vol 3: Searching and Sorting,
Addison-Wesley, 1973.

[Sa] M. E. Saks, “The information theoretic bound for problems on ordered sets and graphs”
in Graphs and Order, edited by 1. Rival, D. Reidel Publishing Company, 1985, pp. 137-
168.

[Sch] A. Schonhage, “The production of partial orders,” Astérisque 38-39 (1976), pp. 229-246.

14

