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Abstract

For any property P on n-vertex graphs, let C(P) be the minimum number of edges needed to
be examined by any decision tree algorithm for determining P. In 1975 Rivest and Vuillemin
settled the Aanderra-Rosenberg Conjecture, proving that C(P) = (n?) for every nontrivial
monotone graph property P. An intriguing open question is whether the theorem remains true
when randomized algorithms are allowed. In this paper we show that Q(n(log n)'/1%) edges need
to be examined by any randomized algorithm for determining any nontrivial monotone graph

property.
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1 Introduction

Let C(P) be the minimum number of entries that need to be examined in the worst case by
any algorithm for computing an n-vertex graph property P, when the input graph is given as an
adjacency matrix. In 1975 Rivest and Vuillemin [RV] settled the Aanderra-Rosenberg Conjecture
[R], proving that C(P) = Q(n?) for every nontrivial monotone graph property P. An intriguing
open problem (see [Y]) is whether their result remains true when randomized algorithms are
allowed. In fact, Richard Karp conjectured (see [SW]) that R(P) = Q(n?), where R(P) is the
randomized complexity for deciding P. It was known that R(P) = €(n), which follows from a
result of Blum (see [SW]) for general Boolean function evaluations (also follows from observations
made in Kirkpatrick [Kir]) that for some inputs the shortest verification needs (n) entries to be
revealed. In this paper we will prove the following result which cannot be obtained by using lower

bounds on nondeterministic verifications.
Theorem 1 R(P) = Q(n(log n)'/12) for any nontrivial monotone graph property P on n vertices.

We will also define and study a search problem, which seeks to identify all the edges in an input
graph. The results obtained are used to prove Theorem 1, and are of interest by themselves.

It remains an intriguing question how much randomization helps in determining graph prop-
erties. It was observed in Saks and Wigderson [SW] and by Karp (private communication) that
a factor of two can be saved in some case. For the general case of Boolean function evaluation,
there exist examples by Snir [S], Boppana (see [SW]) and Saks and Wigderson [SW], where the
randomized complexity is O(n®),0 < @ < 1, while the deterministic complexity is (n). For a
general discussion of randomized complexity, see Yao [Y]. For a study of the randomized complex-
ity of Boolean function evaluation, see Saks and Wigderson [SW]. Also see Manber and Tompa
[MT], Meyer auf der Heide [M], and Snir [S] for discussions on other randomized decision tree

problems.

2 Preliminaries

A graph G on n vertices is an n X n matrix (a;;) such that a;; = 0 , a;; = a;; € {0,1} for all

1<i,j < n; we sometimes write G = (V, Eg) , where V = {v1,v2,...,v,} and Eg is the edge set
{{wi,vj}|aij = 1}. Two graphs G = (a;;) , G' = (ai;) are isomorphic if there exists a permutation
o on {1,2,...,n} such that af; = 1if and only if @,(;)s(;) = 1. Let Gn denote the set of all G
on n vertices. A graph property (on n-vertex graphs) is a function P : G, — {0,1} such that
P(G) = P(G") if G,G’" are isomorphic. We say P is nontrivial if P is not a constant.

Let G = (ai;) , G' = (al;) € Gn. We write G < G' if a;; < aj; for all 4,j. A graph property P
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on n-vertex graphs is monotone if G < G’ implies P(G) < P(G'). Let P, denote the set of all

nontrivial monotone graph properties on n vertices.

A decision tree algorithm A computes a graph property P for any input G by asking a series
of queries a;;, = 7, @ij, = 7, ... , until P(G) can be determined; the queries are adaptively
chosen depending on the answers to previous queries (see e.g. [RV] for more formal descriptions).
Without loss of generality, we will require that the same query will not be asked twice. Let
cost(A, G) be the number of queries asked by A when G is the input. Let Ap denote the set
of all decision tree algorithms for P. The worst case complezity C(P) is min{cost(A)|A € Ap},
where cost(A) is defined as max{cost(A4,G)|G € Gn}.

A randomized decision tree algorithm is a probability distribution a over Ap. The expected
number of queries asked by e for input G is 3 4c 4, @(A)cost(A,G), denoted by h(a,G). The
cost of a is defined as max{h(c,G)|G € G,}. The randomized complezity R(P) is the minimum

cost of any a. This cost is achieved by some a, as is guaranteed by the Minimax Theorem (see

[YD).

As an intermediate step for proving our theorem, we need to consider bipartite graphs G,
which are m X n matrices (a;;) where a;; € {0,1} for 1 <i<m , 1< j < n. We sometimes write
G = (VxW,Eg) where V = {v1,v2,...,9m}, W = {w;,ws,...,wn} and Eg denotes the edge set
{(v;,w;)|aij = 1}. Two graphs G = (a;;) and G’ = (a;;) are isomorphic if there exist permutations
o,pon {1,2,...,m}, {1,2,...,n} , respectively, such that a}; = 1 if and only if a,(;, ;) = 1. Let
Gm.n denote the set of all bipartite graphs on V' x W. A bipartite graph property is a function
P : G — {0,1} such that P(G) = P(G") if G and G’ are isomorphic.

Let P, denote the set of all nontrivial monotone bipartite graph properties on V' x W, where
the concepts of “nontrivial” and “monotone” are straightforward analogues of the corresponding
ones for graph properties. We can also develop the decision tree model and its randomized version
for bipartite graph properties in a similar manner. Henceforth we will use the same notations,

e.g. cost(A, Q) etc., as in graph properties.

Theorem 1 follows immediately from the next two propositions.
Proposition 1 For every P € Py, R(P) = Q(n(log n)/4).

Proposition 2 Let € > 0 be any fixed constant. If every P € Py, satisfies R(P) = Q(n(log n)¢),
then every P € P, satisfies R(P) = Q(n(logn)*/?).

In Section 3, we present a proof of Proposition 1. We digress in Section 4 to define and study a
family of search problems which seek to identify all the edges in input bipartite graphs. In Section

5, we used the results in Section 4 and an embedding technique from [RV] to prove Proposition 2.



3 Proof of Proposition 1

As defined earlier, let G,, , be the set of all bipartite graphs on vertex set V' x W, where V' =

{04, Vage s Ui}y W= {10,108, vyt }

Definition 1 Consider any bipartite graph G € G n. Let d; =degree(w;) for 1 < ¢ < n, then
the degree sequence J(G) is the sequence (d;,,d;,,...,d;,) such that d;; > d;, > ... > d;, and
(i1,%2,-..,%n) is a permutation of (1,2,...,n). For any two G1,G2 € Gy n, We write Gy < - G if
d(G4) is lexicographically strictly smaller than d(G2). Let e(G) denote the number of edges in G.

Definition 2 Let P € Py, n. A bipartite graph G € Gm 5 is a minimal graph for P if P(G) =1
and every proper subgraph G’ of G satisfies P(G') = 0. Let Mp denote the set of all minimal
graphs for P. For any P € Pmn, let Gp denote a lexicographically smallest minimal graph for
P,ie. d(Gp) < - d(G) or d(Gp) = d(G) for all G € Mp. (There may be many possible choices
of Gp; we choose any one once and for all.)

Definition 3 Let P € Pp, . The dual of P is the property @ € Pp.» such that Q(G) = 1if and
only if P(G) = 0, where G is the complement of G.

Definition 4 Let P € P n. We say that P is impartial if P(K[p4),n) = 0.

Remarks. K,,, is the m X n complete bipartite graph, and K, is the complete graph on n
vertices. Later in Section 5, we will also use Kyxw to denote the complete bipartite graph on
V x W, and Ky to denote the complete graph on V.

Lemma 1 Let L and H be non-empty bipartite graphs on V' X W, and H be the family of all
bipartite graphs isomorphic to H. Take a random H', uniformly chosen from H, then

|EL| - |En|
mn

Pr{Egp N EL # ¢} <
Proof. For each edge e € Er, Pr{e € Egp} = |Eg|/mn. Therefore, Pr{Ey N B, # ¢} <
Lscm; Erie€ Eg} = |EL| - |Eg|/mn.0
Lemma 2 Let P € Py, and Q be the dual of P. Then the following statements are true:
(a) If m > 4 and P is not impartial, then @ is impartial;
(b) R(P) = R(Q) ;
(c) e(G) - e(G") > mnforall G € Mp , G’ € Mgq.



Proof. Statements (a) and (b) follow immediately from the definitions. To prove (c), observe
that any H isomorphic to G must satisfy Eg N Eqg # ¢; we now apply Lemma 1 to show that,
if (c) is not true, then a random H isomorphic to G has a nonzero probability of violating that
constraint.O

Definition 5 Let A(n) = (log, n)/4, u(n) = (log, n)l/2,

Definition 6 Let P € Ppn, and A € Ap. Let Cy(A) be the average value of cost(4,G) when G
is distributed according to probability distribution ¢ on G, .

To prove Proposition 1, we will construct a ¢ and prove that, for all A € Ap, Cyi(A) =
Q(n(log, n)'/4). This will prove Proposition 1, as R(P) > C,(A) by a general theorem in [Y]. For
the rest of this section, we let m = n > 4. We assume that P € Py, is impartial; this is done
without loss of generality because of Lemma 2 (a)(b). We now prove Proposition 1 by a series of
lemmas. Each lemma deals with a subclass of bipartite graph properties. The proof of Lemma 6

is perhaps the most interesting part of the proof of Proposition 1.
Lemma 3 If e(Gp) > A(n)n, then R(P) > A(n)n.

Proof: Let g be the probability distribution on Gy, ,, defined as follows: ¢(G) = 1if G = Gp and
0 otherwise. For any A € Ap, cost(4,Gp) > e(Gp) as Gp € Mp. Hence Cy(A) =cost(A,Gp) >
A(n)n. O

Lemma 4 If e(Gp) < %)-, then R(P) > A(n)n.

Proof. Let Q be the dual of P. Then by Lemma 1(c), e(Gg) > mn/e(Gp) > A(n)m. By
Lemma 2, R(Q) > A(n)m. Thus, R(P) = R(Q) > A(n)n by Lemma 3. O

We can thus assume in what follows n/A(n) < e(Gp) < A(n)n. Let dpor = max{d;,ds,...,dn}
where d; = degree (w;) in Gp. (Recall that d(Gp) is the sorted permutation of (dy,ds,...,d,).)
Let No be any fixed integer large enough such that log, No > 8%

Lemma 5 Let n > No. If o < pi(n), then R(P) > %)\(n)n.

Proof. Let s = [m/4] and m' = m — s. Construct Py € Ppy, from P as described below.
For each Gy € G, on vertex set V X W, let G € Gy, n be the graph obtained from Gy by
adding s new vertices to V and sn edges between these vertices and all the vertices in W; define
Py(Gy) = P(G). Clearly, R(P) > R(P,); also P; is monotone. As P is impartial, P1(f) = 0 for
the m’ X n empty bipartite graph H. Since Pi(K s n) = P(Kmn) = 1, we have thus shown P to
be nontrivial and monotone. To prove Lemma 5, we only need to prove R(P;) > -}I/\(n)n.



First we claim that there exists a minimal graph Go € Mp, such that e(Go) < A(n)n and all
vertices in Go have degree < p(n). In Gp, let a; =degree(v;), and let i1,13,...,%, be the indices
of the largest s a;’s. Obtain Gy € Gy, from Gp by deleting v;,,v;,,...,v;, and all the incident
edges. Then Pi(G1) = 1 and e(G1) < ¢(Gp) < A(n)n. Now, min{a; ,ai,,...,a;,} < 4A(n),
since otherwise e(Gp) > A(n)m. Thus all vertices v; in G have degree < 4A(n) < p(n). By
assumption, all the vertices w; in G also have degree < dpqer < p(n). Let Gg be any subgraph
of G such that Go € Mp,. This Go clearly satisfies all the constraints in the claim .

If e(Go) < n/A(n)n, then we can prove R(Py) > A(n)m' exactly as done in Lemma 4. We can
thus assume that

€(Go) > 35 ¢

Let M = {(vk,,we, )s (Viy,ws, ), - - - » (Vk,, We, )} be a maximum matching in Go. Then all edges of

G must be incident to some vy, or wy;. Thus

e(Go) < 2 p(n) - . (2)

It follows from (1) and (2) that
M=t 2 s, 3)
Relabeling the vertices if needed, we can assume that G is a bipartite graph on V x W, where V =
{01,025+, Umt }, W = {w1, w2, ..., wy,} such that {(v1,w1),(v2,w2),...,(ve,Ws )} is a matching,
where to = [n/2(A\(n))?]. Let D(Go) be the set of all bipartite graphs on V' X W isomorphic to
Go. We will prove

ID(Go)| > (z—u%)) . (4)

Inequality (4) implies R(Pl) > 2 n(n) by the following argument: Consider the input distri-
bution ¢ defined by ¢(G) = m 1f G € D(Gp) and 0 otherwise. Then, for any A € Ap, , all the
inputs from D(Go) lead to distinct leaves in A. The average distance of these leaves to the root
is at least log, |D(Go)|. Therefore, we have

Cq(4)

v

log, |D(G0)|

v

1
tg(log2 m=3 log, log, n — 1)

v

logy

4(3\( )?

It remains to prove (4). Let I’ be the set of all permutations on V. For any ¢ € I' and
G € Gm' n, let oG denote the resulted graph when each v; € V is relabeled v,(;. Then the group
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I' acts transitively on the set {H | H = 0Gq for some 0 € T'}. Let I'y C T’ be the the set of

permutations ¢ such that oGg = Gy. By elementary group theory,

1Tl
|To|
m'!

[Tl

|D(Go)

As every (v;,w;),1 < i < tg, is still an edge in oGy for all o € Ty, we have

Tl

IA

blbg . --bto . (m' - to)!
(u(n))® - (m’ ~to)!,

IA

where b; = degree (w;) in Go.

From (5) and (6) we obtain

|D(Go)| 'm' —1)...(m' =t + 1)

1
> ———m
~ (u(n))e
(5s)”
2u(n)/)
This proves (4), and completes the proof of Lemma 5. O

Lemma 6 Let n > No. If dpag > p1(n), then R(P) > 55 A(n)n.

(5)

(6)

Proof. As e(Gp) < M(n)n, there are at most |n/2| of vertices w; in Gp with degree > 2A(n).
Therefore, at least n' = [n/2] of the vertices w; in Gp have degree < 2\(n). Without loss of
generality, we can, by relabeling w;’s if needed, assume that by = bpez > p(n) and b; < 2A(n) for

2 < ¢ < n' where b; is the degree of w;.

Let S; be the set of v; such that (v;,w;) are edges in Gp, 1 < i < n. (Clearly b; = |Si]). We
will describe an input distribution of bipartite graphs. Let Ty = 51 — Sp, Tz = §1 — 52, and

T@;=51—(31'_1US,') <<
Algorithm DIST: [comment: generates a random bipartite graph G]
begin

a) Initialize G «— Gp;
b) Add to G edges (vj,w;) for all v; € T; U S;—1 ,2 <4 < '

¢) Randomly pick a T} C T; with |T}| = [4A\(n)] (all such T} are equally likely to be chosen),

and delete all edges (v;,w;) for v; € T}, 2 < i < n';
d) Add to G edges (vj,wy) for all v; € Sur;



e) Randomly pick a T C Ty with |T]| = [4A(n)] (all such 7] are equally likely to be chosen),
and delete all edges (vj,w;) for v; € 17;

end

An output graph G(B) of DIST is specified by the value of B = (17,713,...,T,,). [All other
quantities are fixed by P.] We will need two useful facts. The proof of Fact 1 utilizes the fact
that G'p is a lexicographically smallest minimal graph for P.

Fact 1 Any output G(B) of DIST satisfies P(G(B)) = 0.

Fact 2 Let i € [1,7'] be any integer. In any output G(B), if we add to it the set of edges (v, w;)
for all j € T/, then the resulted graph G;(B) satisfies P(G;(B)) = 1.

To prove Fact 1, we need ony show that G(B) < - Gp, as Gp is by definition a lexicographically
smallest element in Mp. Let b} be the degree of w; in G(B), 1 < ¢ < n. It suffices to prove that
max{b},b,,...,b,} < by. This can be verified easily, as b} < [T;U Si—1|4b; — |T}| < |S1]+[Si-1| +
|85| —4A(n) < |S1| = by for 2 < i < n/2, and b] = |S1USw|—|T]| < [S1]+|Sn|—=4A(n) < [S1] = b1.
This establishes Fact 1.

To prove Fact 2, let Y;; be the set of vertices v; such that (vj,w;) are edges in G;i(B),
Lk < m.

Case 1. fi=1,then Y;, = Sy forn’ + 1 <k <nmand Y;3 2 Spfor L <k < n'. Therefore,
Gp is a subgraph of G;(B). Hence P(Gi(B)) > P(Gp) = 1.

Case 2. f 2 < i < n',then Yjp = S for o' +1 <k < n, Yip 2 Sk for 2 < k < 4, and the

following is true:

Y:i,i :_) Sl:
Yirk D Sp-ifori<k<n,
}/‘;:,1 2 Sﬂ’-

It follows that G;(B) contains a subgraph that is isomorphic to Gp. Thus P(G(B)) > P(Gp) = 1.
This proves Fact 2.

We now complete the proof of Lemma 6. Let A € Ap. For any G(B) as input graph to A, let
L5 be the set of all entries of the incidence matrix of G(B) that are examined by A. Facts 1 and
2 imply that, for each 1 < i < n', {(v;,w;)|v; € T/} N Lp # 0. In other words, A has to discover

at least one of the missing edges in {(v;,w;)|v; € T/} for every 1 < i < n'.

Consider 7! , 1 < i < n', as independent random variables. Each T} is a uniformly chosen
random subset of T;. Note that |T;| > |S1| — 4\(n) > p(n) — 4A(n), and |T]| < 4A(n) + 1. Let
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X; = {(vj,w;)|v; € T;} N Lg. A simple calculation shows that, for £ = [|T;|/(8|T7|)],

Pr{|X:|>¢} = 1- > Pr{lXi|=k||Xi|>k-1}

1<k<2
|77
> 1- Y :
1gkge|Ti[_k+1
5|77
> I hud et A1
T
s B
= 2
It follows that
1
E(|Xi]) > 5*‘3
. Lpm) - 4\m)
16 4A(n)+1
1
B Al i

Thus,

E(Lsl) = >, E(Xi)

1<i<n!

1
> = .
2 TgMnn

This proves that for each A € Ap, Cy(A) > 555 A(n)n. This proves Lemma 6. O

We have completed the proof of Proposition 1.

4 Identification Problems for Graphs

In this section we derive two results for a special type of search problems. These results are of
interest by themselves, and will be used in Section 5 to prove Proposition 2. Let F € G, , be a
family of bipartite graphs. The identification problem for F is to locate and verify, for any given
input G = (a;;) € F, all the edges in G. In our model, an algorithm B is a binary decision tree
with queries of the form ”a;; =?” at its internal nodes, such that any input G = (a;;) € F will
follow in B a path along which all the nonzero a;;’s will be queried. As in the case for algorithms
in Ap, we will use cost(B,G) and Cy(B) to denote the cost and the average cost with respect to
distribution g¢.

We will be interested in two particular classes of identification problems. We first introduce
some notations. Let V = {v; | 1 < ¢ < ml} and W = {w; | 1 < j < ml} be disjoint sets, where



m, { are positive integers. Call the subsets V; = {vi_1ym+s | 1 < 8 <m}, W; = {w(j_1ym4s | 1 £
s < m} the i-th and the j-th blocks of V', W. We will consider bipartite graphs G' = (a;;) on the
vertex set V' x W. Let @;; denote the set of all queries "ag =?" with v; € V;, w; € Wj, where
1<i,j<C.

The first class of problems is parametrized by a triplet (m,{, ), where m,{ are positive
integers and H is an m by m non-empty bipartite graph. Let H be the set of all m by m bipartite
graphs isomorphic to H. Let D(m,{,H) C G, where n = m{, be the set {F; ;|1 < 4,7 <
¢, H' € H}, where F; ;g denote the bipartite graph on the vertex set V' x W such that (a) the
induced subgraph between V; and W; is H', and (b) there are no other edges. Let p = |H|/m?,
and ¢ be the uniform probability distribution over D(m, £, H).

Theorem 2 There exists a constant A > 0 such that any algorithm B which solves the identifi-
cation problem for D(m, £, H) must satisfy Cy(B) > AM?/p.

Proof. For any H' € H, let

1
S(Hl’ — Ei Z COSt(-B-,h E,j,H‘)‘ (7)
1<i,j<4

Clearly, for a random H’ € H, we have E(S(H')) = C,(B). This implies that

Pr{S(II') < 4Co(B)} > 7. (8)

Suppose the graph F; ;g is input to B. Let d(i,7, H')-1 be the number of queries in @;;
having been asked at the time just before the first nonzero entry is discovered. Now take a random
H' € H, and for each 1,7, let Z;; be the event that d(i,j, H') > Tﬁlf)}?' Let Z = 31 <i i<t Zij-

Fact 3 E(Z)> 8¢2.

If p > 1/100, then all events Z;; always happen, and in this case E(Z) =
2.  We can thus assume that p < 1/100. Let k& = |[1/(100p)|, then k£ >
1. Let A be the path in B, when the empty bipartite graph is the input, and let

A1) mepss,(—1)m+ts » Miml)mbsa (j=L)mttz 1+ - - > Cli=T)metsy,(i—1)m+tr be the sequence of queries in
Qi; asked along A. Clearly r > 1. Let ¥’ =min{k,r}, and define an m X m bipartite graph L on

{1,2,...,m} x {1,2,...,m} with edge set {(s1,%1),(s2,%2),..., (8, tx)}-

To prove Fact 3, it suffices to show that E(Z;;) > 63/80 for all ¢,j. Fix 4,5 and take
a random H’' € H. For input F;;ps, the traversed path in B will follow A at least un-
til an edge is discovered. For Z;; not to happen, H’ must contain at least one edge from

{('U(i—l)m-g-slaw(j—l)m+t1),(’U(i—l)m+s21w(j—1}m+t2)a---7(”(z‘—1)m+sk”w(j-l)m+tk,)}- That means
that the probability for Z;; not to happen is at most 7y, which is defined as the probability
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for a random H’ € H to contain at least an edge from L. From Lemma 1, y < k’|H|/m? < 1/100.

This proves that the probability for Z;; to happen is at least 99/100, which is greater than 63/80.
This proves Fact 3.

It follows from Fact 3 that
Pr{Z > —eﬁ} > 4, (9)

since otherwise E(Z) < 3 -£2 4+ 1. 502 < 8¢ Let D denote the set of all pairs of integers (%,
7), where 1 < 7,5 < £. We conclude from (8) and (9) that there exist I’ € H and D' C D with
|D’| > £2/10 such that

Co(B) > 75(H), (10)

and for all (4,7)€ D',

d(i,j, H) > —— 100p" (11)

Choose any such H' and D'.

For any internal node u of B, let us call the outgoing branch labeled by 0 the left branch, and
the other one the right branch. Let (z,7)€ D’ and consider the path traced in B from the root
down, when F;; g is the input bipartite graph. Clearly, this path follows the leftmost branch in
B until, at some node u; j, a query "as =?” in @; ; is asked with an as;; = 1 response. By {11);

at least [ﬁw] queries in @; ; have been asked (counting the one at u; ;).

Arrange the set of nodes u; ; for all (¢,5)€ D' in increasing distance from the root of B, say,
Uiy 1 s Wigsis - -+ » Uiy g, Where 7 > [¢2/10]. Clearly, for each k > [£?/20], the total number of

queries asked from the root to (and including) u;, ;, is at least 55€2 - 1010p That is,

ﬁf2
cost(B, Fy, Tk H’) Z p’ (12)

where 8 = 1/2000. Now the number of such ’s is at least [+£%] — [55£%] + 1 > 55¢2. Thus, from
(7) and (12), we have

2
S(H') > gﬁp (13)

It follows from (10) and (13) that

£2
Co(B) 2 g

This completes the proof of Theorem 2.0
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Before discussing the second class of identification problems, we will prove an auxiliary result.
Let H be an m X m bipartite graph with r > 0 edges, and H be the family of all bipartite graphs
isomorphic to H. Let ¢ = |[m?/(10007)]|. Let A be a decision-tree procedure that tries to locate
at least one edge of any input H' € H, by asking an adaptive series of ¢ queries "a; ; =77,
"aiyiy, =170, "ai,j, =17. Now, consider a random input H’ uniformly chosen from . Let £4 be
the probability that A succeeds in receiving at least one positive answer, i.e. some query receives

an answer "a;,;, =1".
Lemma 7 &4 < 1/500.

Proof. If 7 > m?/1000, then ¢t = 0 and £4 = 1. We can thus assume that 0 < p < 1/1000, where
p=r/m?. For 1 <k <t,let Xj be the event that a;,;, = 0 for all 1 < s < k; let Y be the event
that a;,j, = 1. Let ay = Pr{X;} and v = Pr{¥} | X1} for 1 < k < ¢, where we interpret v, as
Pr{Y1}. We will prove inductively that, for 1 < k <,

ay, > 499/500, and v < 2p. (14)

For k = 1, observe that the choice of the first query is uniquely determined. Using Lemma 1
with |Er| = 1, we have v; = Pr{a; ; =1} < r/m? < 2p, and a; = 1 — 1 > 499/500.

Let 1 < k < ¢, and assume that we have proved (14) for all values less that k. We will prove
(14) for the value k. When X;_; occurs, the next query is uniquely determined, say, "a;;;="7".

Utilizing Lemma 1 and the inductive hypothesis oy > 499/500, we have
PI‘{II}c A Xk—l}

= PI'{Xk_]_}
o Prlay=1)
Qp—1
P
5
- mlag
< 2p.
Also, we have
dp = 1- PI‘{Y]} - PI‘{X1 A Yz} = PI‘{X2 A Y3} " S5 PI‘{X};_l A Yk}
= 1-— PI‘{Y]} = PI‘{Xl}PI‘{Yg | X]_} - PI‘{XQ}PI‘{Y;; ] Xz} WA PI‘{Xk_._l}PI‘{Yk | Xk—l}
Z 1- PI‘{Yl} - PI‘{Yz | Xl} e PI‘{YE; [ Xz} e PI‘{Yk I Xk-_]_}
= 1-(m+nt-+n
> 1-2pk
> 499/500.

This completes the inductive proof of (14). Lemma 7 follows immediately from (14), since {4 =
1- Olt.L_.]
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The second class of identification problems is parametrized by a triplet (m, £, ), where m, £ >
0 are integers and H =(Hy, Hs,...,H;) is a sequence of m by m non-empty bipartite graphs. Let
H; be the set of all m by m bipartite graphs isomorphic to H;, and let H = Hy X Hg X - -+ X Ha.
Let T' be the set of all permutations on (1,2,...,£). For each 2 =(o, H'), where ¢ € T' and
B (B By Hp)E H, let Fs be the bipartite graph on V x W such that, for every i, the
induced subgraph between V; and W, ;) is H;, and that there are no other edges in F;. Let
E(m,L,H) = {F; | 2 € (T,H)}. Let p = maxl{|H |/m?}, and ¢ be the uniform probability
distribution over £(m, £, H).

Theorem 3. There exists a constant A’ > 0 such that any algorithm B which solves the identi-
fication problem for &(m, £, H) satisfies C,(B) > XN'€2/p.

Proof. The proof has the same general outline as that of Theorem 2. For any H’' € H, let
Clearly, for a random H' € H, we have E(.S'(I;r ")) = Cy(B). This implies that

Pr{S(I") < 4Cy(B)} > <. (16)

For any internal node u of B, we will say that u is of type (4, 7), if the query at u is contained
in Qi;. Let H' = (ﬁ-_’l,ffé,...,ﬂé) be any fixed element in 7. For any internal node u of B, if
its type is (i,5), let L(u) be the set of queries in @;; that are asked along the path from the root
down to and including u; suppose that the query at u is "a, g=?", then we call u a critical node
(with respect to H'), if (a)(H;)a.e = 1 where l1<de<manda=im+d, = jm+e,and
(b) (H;)s+=0 for all queries "@im4s jmtt=" in L(u) other than the query "a,=7". When u is
critical, we will call u a primary node if |L(u)| > m, and a secondary node otherwise. In the
above definitions, a critical node u will also be called a o-critical node (with respect to H'), for
any ¢ € T satisfying o(i) = j; similarly we will use the terms primary and secondary o-critical

nodes. Note that a node may be o-critical for several different o’s.

Now, consider the path A(c, ') in B traversed for input F, iy-Let Ny(o,H"), Na(a,H') be
the number of primary and secondary critical nodes (with respect to H') on path A(e, H'). Let
r1(o, H'), r2(o, H') be the number of primary and secondary o-critical nodes (with respect to H")
on path A(c, H").

Fact 4 Along the path A(s, H'), no two critical nodes with respect to H' are of the same type.
Furthermore, there are exactly £ o-critical nodes with respect to H', one of type (i,0(i)) for each
1<i<d
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Fact 5 Ni(o, H') + Na(o, H') < £2, and r1(o, H") + ro(o, H') = L.

Fact 4 is an elementary consequence of the definition of critical nodes. Fact 5 follows from
Fact 4.

Now, take a random HI’ € H, and for each o € T', let Z, denote the event that (o, fI") > 1_90%5-
Let Z =3 ,er Zo-

Fact 6 E(Z) > 8&|T|.

To prove Fact 6, it suffices to show that E(Z,) > £ for all o. It follows from Fact 4 that,
for any input F, (o, A7) the path A(o, H') in B will contain exactly £ o-critical nodes, one of type
(i,0(4)) for each 1 < ¢ < n, with respect to H'; let u;(o, H') denote the o-critical node of type
(i,0(%)), i.e. the node at which the first edge between V; and W, ;) is discovered. For any fixed
o, take a random H’, and let Z,; be the event that u;(c, H') is primary. By Lemma 7, if we fix
the values of all components H; of H' with j # ¢ and pick a random H!, then the probability of
discovering an edge between the i-th block of V' and the o(7)-th block of W in no more than l_ﬁ.gpj

queries in @;; is at most 1/500. This shows that Pr{-Z,;} < 1/500. Thus, Pr{Z,;} > 499/500.

Let To = Y1<i<t Zoyi- Then E(T,) > 4294  Observe that E(Z,) = Pr{T, > 5¢}. We
conclude that E(Z,) > £, since otherwise

807
99 99 99
< e Y. 4 a8
E(T,) < Pr{T, >0} £+ Pr{T, < 15t} - 705t
63 17 99
& — el oaa—
< %0 %0 100
< 9,
500 "

This proves Fact 6.

In the same way that (9) follows from Fact 3, it follows from Fact 6 that
1 3
> — ==
Pr{z> S0y > 2 (a7

From (16) and (17), we conclude that there exist A’ € H and I C T with || > 15/T| such that

Cy(B) 2 7S(I), (18)
and for all o € T,
~ 99
’!‘1(0‘, H’) > mﬁ (19)

Choose any such H’ and I".

14



To complete the proof of Theorem 3, our strategy is to use (19) to show that there exists a
large subset I'" C T' such that, for all o € I'/, we have cost(B, I, g,))zﬂ(lep); the theorem
then follows from (15) and (18).

Consider the set of paths {A(o, H') | o € I"}. Clearly Ao, H') # A(o’, H'") if 0 # ¢'. To each
A(Ua E’): we associate an (’E + 1)—tuple 5(0’, ﬁ’) = (kailai% s 7"ik7jlaj25 v ajf—k) as described
below. In what follows, "critical nodes” will mean critical nodes with respect to H’; the same is

true for o-critical nodes, primary critical nodes, etc.

Let Y15 Y25+ 5 YNy (o,17) be the sequence of primary critical nodes along A(a,ﬁ’), and
215225+ + 3 2Ny (0, ) be the sequence of secondary critical nodes along A(o, H'); let 4iy, ¥iny -+ - » Yix
be the subsequence comnsisting of all the primary o-critical nodes, and zj,z5,...,2j,_,
be the subsequence conmsisting of all the secondary o-critical nodes. Define &(o, b/ i Al =
(K, 31,825+« y8ky J1s 2+ - »je—k)- Note that 0 < k < ¢, 1 < is < Ny(o, H'), and 1 < j; < No(o, H')

for all s,t. Let I = {0 | o € IV, N1(o, H') > £2/5000}.
Fact 7 If o and o’ are distinct, then £(o, H') # &(o', H').

Given the value of £(o, H') = (k, 1,42, ,%ks J15 42, - -« , Je—k), We show that there is a unique
path in B that gives rise to £(o, yig ). Starting from the root, whenever we encounter an internal
node u, the only possible path giving rise to £(o, H') is clearly determined by the following rules:
(a) if u is a critical node, §(o, ﬁ”) = (kyi1,92,- - %k J1,J25 - - - » Jo—k) tells us whether u is o-critical,
since we can count how many primary and secondary critical nodes have been seen along the path
so far; we will take the branch labeled by 1 if and only if u is o-critical; (b) if u is not critical,
and suppose the query at u is in Q;;, then either we have so far not seen a critical node of type
(i,7), in which case we should take the 0-branch, or we have already seen a critical node of type
(i,7), in which case we know that the induced subgraph of input between the i-th block of V' and
the j-th block of W is H;, and we can decide from H; which branch to take. This determines the
path and thus the o uniquely. This proves Fact 7.

Fact 8 |I| > $|T"|.

From Fact 7, we can find an upper bound to |I'—TI"| by counting the number of possible values
of E(a,ﬂ’) = (k,i1,92, .., 9k, 51,52, - - -5 J2—k)- Let a = [99£/100] and b = [£2/5000]. Inequality
(19) says that k > a, Fact 5 says that j; < €2 for all ¢, and the constraint that Ny(o, ﬂ”) < £%2/5000
for such ¢’s says that iy < b for all s. It follows that

AV
agg B/ \e—k
% e?(f—k)
= U=
a<k<t ™ J
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bk EZ(E k)

14
a<k<t (k) (5000)’“3'

b

IA

¢
k (5000)@12'

IA

IA

ey
o (k (2000)%¢!

< S
= (2000)%
Now, (£1)2 > (£/e)* for all £ > 1. That means £2¢/(£!) < e*{!. Noting that |IY| > |T'|/10, we have

2
2e ) |
2000

1
=T
257 |

|:[\f_l‘|”| S (

IA

IA

1
=|1.
51T
This proves Fact 8.

Now, preceding each primary critical node of type (4, ), there are at least [1/1000p] — 1 nodes
with queries in Q;; along the path A(o, H'). Fact 4 guarantees that there are Ny(o, H') primary
critical nodes of distinctly different types. This proves the next fact.

Fact 9 For all o € I'”, cost(B, Fiy. 7)) Is at least Ny(o, H')/(1000p).

From Facts 8 and 9, we have, with 3/ = 1077,
L & 1

U;; cost(B,F(aﬁ,)) B Ei o F 5960". 10008"
_ pre

p

As || > &|T|, we obtain from (15),
1p2
S(H" > 00" (20)
It follows from (18) and (20) that ) -
cum) 2 5

This proves Theorem 3.0

16



5 Proof of Proposition 2

The proof uses results from the last section and a technique of finding embedded bipartite graph
properties from graph properties used by Rivest and Vuillemin [RV]. As in [RV], we use the
notation A+ B+ C for the graph obtained from taking the disjoint union of graphs A, B, C (with
disjoint vertex sets); for any integer j, jA means A+ A+ ---+ A j times. Let Nj be any fixed
integer that satisfies log, N} > 13 + [10%/€]. Thus, (log, n)¢/3 > 10 for all n > N}/8.

We first prove R(P) = Q(n(logn)/?) when n = 2F with integral k and n > N§/8. Let
L; = 257K, for 0 < i < k. Since P € P,, there exists 0 < ip < k such that P(L;,) = 0 and
P(L;y41) = 1. (Such a sequence was employed in [RV].) We consider two cases depending on the
value of 2%,

Suppose 2% > n/((logy n)*/3). Let Hj = jKqig+1 +(2F% —2§) Ky for j = 0,1,2,...,2F 01,
Thus Hg = Lj,, and Hak-ig-1 = Lj,41. Since P € P, there exists 0 < jp < 2k=io—1 gych that
P(H;))=0and P(Hj,41) = 1. Write Hj, = J+ I, + I, Hj 41 = J + I3, where Iy, I; are complete
graphs on disjoint vertex sets Vi, V3 with V| = |Va| = 2%, and I5 is the complete graph on V3 U V5.

Let @) be the bipartite graph property on the vertex set V3 X V; obtained from P by setting all
the edges as present or absent exactly as H, ezcept for the ones in Vi X V3. Clearly, R(P) > R(Q).
As Q is nontrivial and monotone, we have by assumption R(Q) = Q(2% (log 2 )¢) = Q(n(log n)*/?).

‘We now consider the case

n
_— 21
< (log, n)%/3 B

Ay

Let V denote the disjoint union of sets V;, 1 < i < £ = 2F—%~1 where |V;| = 2; similarly let

W = Ui<i<eWi. Let z;;4 be Boolean variables, where 1 <4,j < fand 1 < a,b < 2% . Consider

the sequence (z;;q5) of £o variables x;;,, arranged in increasing lexicographical order of their

indices (4, j,a,b), where £y = £22%%, For any truth assignment € {0,1}% to (z;; ), let Gz € Gy

denote the graph on the vertex set V U W defined as follows: each V; is a clique and each W; is a

clique for 1 < i < ¢; if @545 = 1 then there is an edge (v, wq) for ¢ = il + a and d = j{ + b; there
are no other edges.

We will later construct a probabiliity distribution ¢ over G,, with ¢(G) = 0 unless G = G;
for some Z, and prove that C,(4) = Q(n(logy n)¢/?) for all A € Ap, To help describing ¢, we first
construct a Gy satisfying P(Gy) = 1 with a certain minimality property.

Let #©) denote the truth assignment to (z;;,p) with all z;;, = 0. Let (1) be the truth
assignment where z;; 5 = 1if ¢ = 7, and z;; 05 = 0 otherwise. Then G0y = L;, and Gza) = Lig41;
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hence P(Gxo) = 0 and P(Gyay) = 1. Let X = {# | # € {0,1}%,% < U, P(G3) = 1, and
P(G;) =0 for all 2 < &}. Each Gz, where & € X, is called an induced minimal graph for P. Let

#(&) denote the number of 1’s in . The next statement is clearly true.
Fact 10 If there is an # € X with #(&) > n(logy n)/3, then R(P) = Q(n(log, n)/3).
We can thus assume that, for all # € X,

#(&) < n(log, n)e/s. (22)

For each & = (z;jm) € X, let Ji(Z) = {(a,D) | ziiap = 1} for 1 < i < L. Let a(Z) =
(e1,Q2,...,0ap) denote the multi-set {|J1(&)|,|J2(Z)],...,|Je(Z)|} sorted into decreasing order;
say a1 > @2 > ... > @z > 0, and @; = 0 for s(2) < i < L. Let § = (yij,ap) € X be chosen such
that a(§) < a(Z) lexicographically for all Z € X. We can choose § so that we have o; = |J;()|
for 1 <14 < £ where (a1, as,...,az) = a(f). Clearly,

#(J) =1tz t+...+ayg- (23)
Let m = 2%, and
_ #@)
=) (24)

We will choose our distribution ¢ in several different ways depending on the value of p and m.
Lemma 8 If p > 4m(log, n)/?, then R(P) = Q(n(log, n)/3).
Proof. From (22) and (24),
g 1
s(y) < -2-£ (25)
From (23) and (24),
a1 > 4m(log, n)>. (26)

We now define a probability distribution ¢ on G, by generating a random G € G,. Let
% = (2zij ) be defined as follows for all a,b: 2ijap = Y11,06 for i € {1,s(7) + 1,8(F) + 2,...,4},
Ziiab = Yiiap for 2 < 4 < s(§), and 24 = 0 otherwise. Now pick a random sequence
¢ = (a1,b1), (@s(z)+15 Vs(@)+1)> (@s(g)+25 Os(g)+2)s - - - » (@2,¢), where each (ai,b;) is uniformly and
independently chosen from J;(§). Let 2({) be obtained from Z = (z;; o) by setting z; 5, = 0 for
i € {1,s(§) +1,8(7) +2,...,£}. Let the graph Gj(¢) be the random G € G,,. This defines g.

Let A € Ap. Then at each leaf p of A, the sequence of queries asked along the path from
the root to p must include " z;; 4.5, =?” for every i € {1,s(%) +1,5(§) + 2,...,£}. This is because
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P(G3(¢)) = 0 for all ¢ (since § is a lexicographically smallest element of X'), while for any #’ that
differs from Z(¢) only in some zj; q;5,, one has P(Gy) = 1. Clearly, for a random G distributed
according to g, we have C,(A) > > s(g)<i<¢ (D), where D; is the random variable denoting the
number of queries of the type "z;; . =7” that have been asked before the query "z 4,5, =77 is
asked. Clearly,

a;—35 1
ED)z ¥ 2= (1+a)
: « 2
0<j<m

Thus, Cy(A) > (£ — s(§))3(1 + 1) = Q(n(log, n)/?) by (25) and (26). This proves Lemma 8.0
Lemma 9 If u < 4m(logy, n)/3, then R(P) = Q(n(log, n)/?).

Proof. We will construct probability distributions ¢ over G,, and show that any algorithms A
for determining P must have Co(A) = Q(n(logy n)*/®). We distinguish two cases. First consider
the case s(§) < £/2. Let H = (hgp) be the m by m bipartite graph corresponding to the edge set
Jo)(9); 1-e. hap = Ys(g)s(g),ap for 1 < a,b < m. Let H be the set of all m by m bipartite graphs
H' isomorphic to H. For each { = (s,t, H'), where s(§) < s,t < £ and H' = (h!;) € H, define
() = (wijap) € {0,1} as follows:

Ziiab = Yii,ab for 1<i<s(§), 1<La,b<m
Tst,ab = gy for 1<a,b<m
Zijab =0 otherwise.

The distribution g over G, is generated by taking a random ( = (s,t, H'), where each of s,t, H’
is uniformly and independently chosen from its domain, and let Gz be the random G to be
generated. If we restrict our attention to the variables ;4 with s(7) < 4,7 <fand 1 < a,b < m,
the problem for determining P now becomes the identification problem for D(m, (£—s(§)+1), ).
In fact, any algorithm A € Ap naturally induces an algorithm B for the identification problem
D(m, (£ — s(§) + 1), H) such that Cq(B) < C,(A), where o is the uniform distribution for D

discussed in Section 4. By Theorem 2, we have
Co(B) = (€~ s(§)+1)*m?/|H])
= Q*m?/p)
= Qn?/(m(logn)?)).
Since m = O(n/(log n)*/?), we have proved Lemma 9 for this case.

Now consider the case s(§) > £/2. Let s = [s(§)/2]. For each so < i < s(7), let H; denote
the m by m bipartite graph corresponding to the edge set J;(§); clearly, |H;| < p. Let H; be
the set of all m by m bipartite graphs isomorphic to H;. Let I' be the set of all permutations of
(s0,50 + 1,...,5(§)). For each { = (0, Hy, Hyy1y---, Hyg), where o € T' and HJ € H;, define
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%) = (wi,05) € {0,1}% as follows:

Tiiab = Yiioh for 1<i<sy, 1<a,b<m
Tio(i)ab = (H])ab for sp<i<s(§), 1<a,b<m
Zijab =0 otherwise.

The distribution g over G, is generated by taking a random (, where each component of ( is
uniformly and independently chosen from its domain, and let Gz be the random G to be
generated. If we restrict our attention to the variables ;0 with so < 4,7 < s(§) and 1 <
a,b < m, the problem for determining P now becomes the identification problem for £(m, (s(%) —
S0 + 1)aH§D=H;D+1=---7H;(g)) with the uniform distribution discussed in Section 4. Let p =
max;{|H;|/m?|}. Then p < p/m?. It follows then from Theorem 3 that, for every algorithm
A € Ap, we have

Co(4) = Q(s() = 50+ 1)*/p)
= Q*m?/p)
= Q(n?/(m(logn)"?)).

Since m = O(n/(log n)?/?), we have proved Lemma 9 for this last case. This completes the proof
of Lemma 9.0

We have proved that, when n > N}/8 is a power of 2, R(P) = Q(n(log, n)/%). We now prove

it for all integers n > Nj. We divide the discussion into two cases.

First, suppose n = 2k 4 2t 4 ¢ where 0 <t< 2¢ and £ < k— 2. Let V be the disjoint union of
Vi, Va, Vs with |Vi| = |Va| = 2571, |V3| = 2° + t. Let P be a nontrivial monotone graph property
on the vertex set V. Consider the following sequence of graphs on vertex set V: Gy is the empty
graph, Gy = Ky, Gy = Kv,UG1, G3 = Ky, UG3, G4 = Kv;x1, UG3, Gs = Ky, xy, UGy, G = Ky
(Here union and equality on graphs only refer to their edge sets.) Let ¢ be the minimum ¢ such
that P(G;) = 1.

If = 1, then by monotonicity P(G}) = 1 where G} = {Kv;,}. Let Q be the property induced
on the vertex set V5 defined by Q((V2, £)) = P((V, E)). Then @ is nontrivial and monotone on
|Va| = 251 > N//8 vertices. Thus, R(P) > R(Q) = Q(2F(log 2F~1)¢/3) = Q(n(logn)¢/?). The

same argument applies when ¢ = 2 or 3.

If i« = 4, then the property ) induced on the bipartite graph V5 x V;, defined by Q((V2 x
V1, E)) = P((V, E")) where E' is the union of E and all edges in G, is nontrivial and monotone.
Thus by Theorem 1, R(P) = R(Q) = 2(2¥1(log2¥-1)¢) = Q(n(logn)¢). A similar argument
works for 7 = 5 and 7 = 6.

The only other case is n = 2% + 251 4+ ¢ where 0 < t < 251, Let V be the disjoint union of
Vi, Va, V3 with |V3| = [Va| = 28714, V3| = 281 — ¢. Consider the sequence of graphs: Gp is the
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empty graph, G1 = Ky, G2 = Ky,uw, UG1, G3 = Ky, xv; UG2, G4 = Ky. Let 1 be the minimum
i such that P(G;) = 1. An analysis similar to that for the previous case n = 2F 4+ 2¢ 4 ¢ then leads
to R(P) = Q(n(logn)¥/?). This completes the proof of Proposition 2.

6 Remarks

We feel that the determination of randomized complexity for Booean properties is a major topic
in complexity theory with many interesting unresolved questions. We will mention just a few that

have a direct bearing on the present discussion.

1. It remains a tantalizing question whether the randomoized complexity of every nontrivial
monotone graph property is of order Q(n?). Recently, King [Kin] has improved our bound from
Q(n(log n)'/12) to Q(n5/*). Perhaps the next step is to prove an Q(n?) lower bound to the
randomized complexity for monotone bipartite graph properties.

2. By how much can the randomized complexity r = R(f) be smaller than the deterministic
omplexity m = D(f) for any Boolean function f? Saks and Wigderson [SW] conjectured that
r = Q(m™3). Could one prove at least a nonlinear bound, i.e. r = Q(y/mh(m)) with h(m) —

oo? Such a result would be very exciting even just for monotone functions.

3. How much can randomization help in the determination of any (monotone and non-monotone)
graph property? As mentioned in the introduction, we know that r = Q(y/m), in the notation of
the last paragraph, and that there are examples in which » < (1/2 — ¢)m. Can one prove that

r = Q(y/mh(m)) with h(m) — co?
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