ANALYSIS OF A SIMPLE YET EFFICIENT
CONVEX HULL ALGORITHM

Mordecai Golin
Robert Sedgewick

CS-TR-130-87

November 1987

Analysis of a Simple Yet Efficient Convex Hull Algorithm

Mordecai Golin?
Department of Computer Science
Princeton University

Robert Sedgewick'
Department of Computer Science
Princeton University

November 1987

Abstract.

This paper is concerned with a simple, rather intuitive preprocessing step that is likely to improve the
average-case performance of any convex hull algorithm. For n points randomly distributed in the unit square,
we show that a simple linear pass through the points can eliminate all but O(+/n) of the points by showing
that a simple superset of the remaining points has size cy/n + o(1/n). We give a full implementation of the
method, which should be useful in any practical application for finding convex hulls. Most of the paper is
concerned with an analysis of the number of points eliminated by the procedure, including derivation of an
exact expression for ¢. Extensions to higher dimensions are also considered.

0. Introduction.

Convex hull algorithms can be seen as performing two separate tasks: The first is identifying those points
actually on the hull, the second is eliminating those inside of it. Alternatively these two tasks can be seen as
representative of two different approaches towards finding convex hulls. As described in [PS], “Giftwrapping”
employs the first approach — it finds just those points that are on the hull and never identifies the rest;
“Quickhull” concentrates on point elimination — finding the hull points is almost peripheral; “Graham’s
Scan” can be seen as balancing the two approaches, now finding a hull point, now eliminating an internal
one.

In this paper we concentrate on point elimination: we present a linear-time preprocessing algorithm
(similar to one step of Quickhull) that identifies and eliminates nearly all the points internal to the hull,
under suitable assumptions. This algorithm is easily programmed and simple to modify for use in space of
any dimension. Its output can then be fed into any convex hull routine. Most convex hull routines will run
much more efficiently on few points than on many, so total running time is reduced. We are able to derive
precise analytic results to substantiate these claims.

Section 1 presents the preprocessing algorithm. A Pascal implementation is given along with a worked
example. In section 2 we analyze the expected number of points remaining after running the algorithm. Our
probabilistic assumption is that the points are uniformly distributed in the unit square. QOur main result is
that E(S) < cy/n where S is the number of points remaining after running the algorithm on n points and
¢ is a small constant less than 8. Section 3 discusses the combined behavior of the preprocessing routine
followed by some standard convex hull algorithms. It also compares actual results to those predicted by the

! This work supported in part by NSF Grant DCR-8605962 and Office of Naval Research Grant N00014-
87-K-0460.

mathematical analysis. In section 4 we discuss how to extend the algorithm and its analysis to space of any
dimension. The result we state is that E(S) = O(n{9-1)/9) where d is the index of the dimension. We finish
by sketching an intuitive approach to understanding the algorithm’s dynamics.

1. The Algorithm.

The problem of finding the convex hull of a set of n points
pi = (zi,¥i) i=1,...,n, inR? has been extensively studied and
many elegant algorithms exist for its solution. In addition to these
there is also a very simple heuristic attributed to to W.F. Eddy and
R.W. Floyd [Ed] [Se] for improving the performance of any such
algorithm. Pick any four points from the p;. These points are the
vertices of a quadrilateral — in the degenerate case a triangle or line
segment — Q. By its definition Q is contained within the convex hull
of p1,...,pn. We can therefore eliminate all points that are inside

Q without discarding any information essential to the construction
of the convex hull (figure 1). Our goal in this section is to identify Figure 1.

a computationally simple method of choosing the four points such

that after the elimination step only a few of the p; will, on average, remain.

Specifically, suppose that p;,...,p, are independent identically distributed random variables each of
which is uniformly distributed in the unit square. In section 2 we will prove that the following choice of
points gives us good average case behavior: Pick the four points that minimize the four functions xz + y.
Equivalently, these are the two points that minimize the functions z+y along with the two that maximize the
same functions. Note that this definition is not well defined since there might be two points that minimize
any of the functions. To correct this we will specify the points with the lowest indices that minimize the
functions. Thus the four points (figure 2a) are

n=i=n k=n:}n{Vi:+xj+yj < +zi + yi}
a=ch¥l=n k= ﬂ'f,_ill{Vi t4z; -y < 4z - i)

3= (z§08)=p k=min{¥i:—z;+y < -2+ vi}

IA

w=(=hl)=m k= mJ_in{Vz' t—zj—y; < —xi—¥i}.

The next step is to eliminate those p; inside Q. In reality the problem of deciding whether a point is inside an
arbitrary quadralateral is nontrivial because of round-off error. For this reason we modify our elimination
criteria somewhat. Instead of disposing of those points inside Q we find a large rectangle R C Q and only
dispose of those inside R. Since these points are also inside Q we lose no essential information. If Q is not
degenerate there is a nice geometric method for finding a good R. Minimizing the function z + y can be
thought of as sweeping in a 45° line from the lower left corner of infinity until it hits some p; which will then
be ¢;. Similarly minimizing z — y sweeps in a line from the upper left hitting g2, —z + y sweeps in from the
upper right hitting ga, and —z — y sweeps in from the lower right hitting ¢4. By this reasoning the leftmost
x-coordinate of R should be max(z{, z$) since these are the points encountered by sweeping in from the left.
The rightmost x-coordinate will be the minimum of the two x-coordinates on the right, min(z§,z) (figure
2b).The y boundaries of R are found in the same way and thus

R ={(z,y): max(z!,z!) <z < min(z},z{) max(y{,vf) <y < min(yf,y9)}.

(If Q is degenerate then R is an empty set (either its x or y range has nonpositive length) and thus none of
the p; are inside of it and the algorithm is still well defined.)

2

-*‘- e ° - -
. . - R) .
e LY} : L |";—
B . H
1 = « |1
sy :
(2a) (2b) (2c)

Figure 2. (2a) shows the sweep lines hitting ¢; = p;, g2 = p2, ¢s = ps, and ¢4 = ps and thus
defining Q. (2b) illustrates how the g; are used to define R. In (2c) we see that R C Q.

Rectangle inclusion is trivial to program and much more numerically stable than the more general
quadrilateral inclusion. Figure 2 illustrates a worked example of the preprocessing algorithm which we
name eliminate. Program 1 is a complete Pascal implementation of eliminate. The procedure assumes the
existence of a predefined data type point. The array p[l...n] contains the set of input points. Eliminate
returns m, the number of points outside of R and rearranges p|. ..] so that its first m locations contain exactly
those m points. The remaining points will be in plm +1...n].

We end this section by pointing out that eliminate has an O(n) running time since all it does is make
two linear passes through the data. The first pass identifies the four vertices of Q and the second disposes
of the points inside R.

2. Analysis.

Let p; = (zi,4:), i=1,...,n be Independent Identically Distributed (I.I.D.) points such that each
point is uniformly distributed in the unit square ([0,1)?)!. Our goal is the analysis of the asymptotic behavior
of E(S), n — oo where S is the random variable defined by

S(p1,p2,-.-,Pn) = The number of points undeleted after running the algorithm on py,ps,...,pn

= The number of points outside R .

Although eliminate is a simple, almost trivial, algorithm the analysis of E(S) is complicated by the
fact that there is extreme probabilistic dependence between the values of ¢; and even more so between
the different boundaries of R. We will overcome this problem by finding the expectation of another simpler
random variable and using it to upper bound E(S). To accomplish this we need to define the the following
functions and regions (figure 3a):

o = min z; + y; Aj(a)={(z,y): 0<z+y<a}
1<i<n

a; =1+ min z; —y; Az(a)={(z,y): =1L z-y< —-(1-a)}
1<i<n

az=1- max z; -y, As(e)={(z,y): 1-a<z-y<1}
Si1sn

a4=2—1r‘!:1g<x Ti+ Y Ag(e)={(z,y): 2—a<z+y<?2}
<i<n

! Henceforth we will refer to the n points as being U[0,1)* .

3

function eliminate(N : integer) : integer;
var i1, 2, i3, i4, j, M : integer;
a1, a2, a3, a4, highx, lowx, highy, lowy :real;
t : point;
begin
i1:m=1 2:=1; i3=1; id:=1;
al=p{1]lx+p{l]ly; a3m=al;
a2:=p{1]x-p{1ly; a4:=az;
for j:=2 to N do
begin
i pfjl.x + pfjl.y < a1 then
begin i1:=j; al=pfjlx+pfjly; end
else If pfjlx +p[jly > a4 then
begin i:=j; ad:=pfjl.x + pfjly; end;
i pli].x - pljl.y < a2 then
begin i2:=j; a2:=pfjl.x-pfjly; end
else if pfjl.x - pfily > a3 then
begin i3:=j; a3:=pfjl.x - pfjl.y; end;
end;
lowx:= MAX(pfi1].x, pfi2].x); highx:= MIN(p(i3].x, p{i4].x);
lowy:= MAX(ofi1].y, p[i3l.y); highy:=MIN(p{i2].y, p[i4].y);
M:=0; j=N;
while j>M do
if lowx <pfjlx and pfjl.x < highx
and lowy <p[jly and pfjly < highy then
j.'-f- 1
else
begin
M:=M+1;
t=pM; pIM]:=pfl; P]=t;
end;
eliminate = M;
end;

Program 1. A full pascal implementation of eliminate. It is called with parameter N; the array
p[1...N] holds the points. After the function initializes the for loop finds the four points that
minimize the functions +r + y. 1 holds the index of ¢;, i2 of g2, etc. while aJ, a2, a8, a4 hold
the respective minimized values of £z + y. The next step calculates lowz, highz, lowy, highy, the
boundaries of R. The while loop rearranges the array so that the non-eliminated points are at its
bottom. When it returns the function has value M, the number of points that weren’t eliminated.

These definitions have very intuitive motivations: a; is the distance from the k-th corner to the inter-
section of its corresponding diagonal with the horizontal (vertical) boundary of the unit square while A(a)
is the right isoceles triangle with base sides o that fits into the k-th corner of the square. As defined above
a; and A; have the following property upon which our probabilistic analysis will strongly depend: Ax(ak)
is empty and its defining hypotenuse has at least the one point g; on it .

We further define

X = max(a;, @2, 03, 4)
BX = {(E',y) : (z!y) € (X,l - X)z}
Z = {pi : pi € Bx}l.

Byx is the open square whose sides are parallel to, and a distance X away from, the sides of the unit
square. Z is the number of points in By, the hollowed out region surrounding Bx (figure 3b). No matter

4

i -

[] " :

s 1ot gaial edob aefmelie — =

° . " ® e :. . :

5 - .c .E. .Bx i-

i .,

® :- l:

¢ :

‘ :

b *

s — LN . Law)

(3a) °" @ e a

Figure 3. (3a) gives some test points with the a; noted and the A;(ax) (shaded areas) drawn.
Note especially that Ag(ai) are all empty with a point (gx) on each of their defining diagonals.
(3b) is (3a) with Bx (dashed box) and R (thin lined box) drawn in. The dotted boxes illustrate
the relationship between the a;-s and X. The g; are all inside the dotted boxes so Bx C R. By
inspection Z = 17 and S = 10.

what the placement of the p;-s we always find that R O Bx. This implies that n — 5§ > n — Z and thus
S < Z. The objective of this section is to show that there exists a k > 0 such that E(Z) ~ k+/n and thus
E(S) < k+/n. Before doing this we prove the following weaker result.

Theorem 2.1: Given n points U[0,1)? and X defined as above then

E(X) ~ % (2.1)

wherec:ﬂ[-"-ﬁg+2\/—2-—3] = 1.9636...

Proof sketch: We split the proof into four parts. In the first we derive a truncated integral representation
for E(X). In the second we derive a closed form for the integrand. In the third we sketch how to use gamma
and beta function techniques to evaluate the general term of this closed form. In the fourth we pull it all
together and prove the theorem.

(i) All of the o range between O (there is a point at the k-th corner) and 2 (all of the points are clustered
at the corner diagonally across from the k-th one). Thus 0 < X < 2 and we can write

2

2
E’(X):jo afx(a)daz./; Pr(X > a)da. (2.2)

where fx(a) is the probability density function of X. Now X > a if and only if 3k such that a3 > o which
in turn is true if and only if at least one of the four isoceles right triangles Ax(a) is empty, thus

X>aé& V{A;(a) is empty} (2.3)

(V indicates the union of events). If @ < 1 then Ax(a) C [0,1])* and thus by the independence of the points

Pr(Ai(a) is empty) = (1 — Area(Ax(2)))” = (1 — a?/2)". (2.4)

5

We will use the inclusion-exclusion principle [GS, p. 6] to evaluate Pr(\/, {Ai(a) is empty}). This will
require taking the probability of the intersection of all possible combinations of one, two, three and four
of the events {Ai(e) is empty} which we can do by using area arguments similar to the type needed to
derive (2.4). If the Ax(a) are pairwise disjoint then this is very simple. If not the calculations can get very
complicated. Our first step then is to show that we can asymptotically neglect these bad cases. The Ax(a)
are pairwise disjoint iff o < i- so what we really want to prove is that Pr(X > a) = o(n‘i‘) fora > 1/2.
But by (2.3) and (2.4)

Pr(X > o) < 4(1 - a?/2)". (2.5)

In the special case that 1/2 < a < 2 this shows that Pr(X > a) < 4-(7/8)". Actually 2.5 lets us show
that a much larger range of X is asymptotically negligible. Suppose that %ﬁ < a < 2. Then

n
In’n

—) =0(n" ") (2.6)

Pr(X>a)<4-(1-

and therefore we can restrict the range of (2.2) to yield
% - ~%Inn
E(X) = Pr(X > a)da + O(n) (2.7)
0

For the sake of simplicity during the remainder of this proof we will assume that n > 75 and thus %nﬂ <1/2.
(ii) For o < 1/2 the Ay () are pairwise disjoint regions and thus the inclusion exclusion principle applied
to (2.3) taken together with the same type of area argument used to derive (2.4) shows that

Pr(X > o) =4(1-a?/2)" = 6(1 — 222/2)" + 4(1 - 3¢°/2)" — (1 — 4a?/2)". (2.8)

(iii) Plugging (2.8) into (2.7) reveals that the calculation of E(Z) involves the evaluation of four integrals
each of which has an integrand of the form (1 — ka?)". This type of integral can be evaluated by transforming
it into a beta function [Ru] and using Stirling’s formula. Doing this we find that

fowu —ka?)"da ~ %ﬂn'lm + O(n~%?). (2.9)

(iv) Using (2.8) and (2.9) to evaluate (2.7) we derive

E(X) = ? [4\/5— 6+ 4\@— \/g] n~Y2 £ O(n~3¥?) = en~V? 4 O(n~¥?) (2.10)

where we evaluate ¢ = 1.9636. ..

Q.E.D.

The content of Theorem 2.1 is that E(X) is O(n~%/2). By definition By, the hollowed out region
surrounding Bx, is composed of four strips each of average area O(n"*) and so it also has an area of
O(n=%/?). Since there are n points this would lead us to guess that E(Z), the expected number of points in
By (figure 4), is n- O(n~Y/2) = O(n!/?). It happens that this is true; what follows is a rigorous proof of the
fact.

Theorem 2.2: Given n points U[0,1)? , Z and ¢ as defined above, then
E(Z) ~ 4ev/n. (2.11)

6

Figure 4. Fixing the a; implies that all of the points (aside

from the g;) are independently uniformly distributed outside
of U Ap(ai)-s (the grey areas). Thus the probability that a
point is not in By (crosshatched region) is

_area of white region

" area of non gray region

_ 1— Area(Bx) — Area(Ur Ax(ax))
. 1 — Area(Ur Ax(ar)).

a, oy

Proof sketch: We prove this in three steps. In the first step we express E(Z) as a truncated integral of the
form [E(Z|X = a)fx(a)da. In the second we derive an asymptotic expresion for E(Z|X = a) as a function
of a. In the third we prove (2.11).
(i) We start this proof in the same manner as we did the proof of Theorem 2.1. We write E(Z) as an
Inn

integral restricted to the region [0, 7;] plus an asymptotically small remainder. Notice that no matter what
the value of X it is always the case that Z < n. Therefore by (2.7)

E(Z) = /0% E(Z|X = a)fx(a)da + O(nl=%nm), (2.12)

(ii) To evaluate the conditional expectation E(Z|X = a) we remember that X = max(e,, a2, a3,04)
and see that we have to integrate E(Z|a1, a2, as, a4) over ay, az, a3, ay conditioned on X = a. Formally

E(ZlX == C!) - /E(Zlal y g, 3, a4)ga(a;, g, 3, 34) da1 daz dcra da4 (2.13)

where gq(a;, a2, a3, a4) is the appropriate conditional probability density function for the case that X = a.

Referring to figure 4 we see that the analysis of (2.13) is much simpler than it would first appear from
its lengthy equation. The n points are uniformly distributed in [0, 1)%. Conditioning on ay,as,as, a4 is
equivalent to conditioning on the fact that the Ar(ax) are empty and that there are four points, the g,
on their boundaries. Thus the remaining n — 4 points are uniformly distributed in the remaining region
[0,1)* = UAi(ax). This implies that each of the n — 4 points has probability p of being in Bx where p is the
probability that a point will not be in Bx conditioned on the event that UA(ax) is empty so

_ 1— Area(Bx) — Area(UpAr(en)) _ 1-(1— 2a)’ - 3" o?

1- Area(UgA;,(ak)) 1~ %Ea?

(2.14)

By the independence of the points Z|a;, @2, @3, a4 is a random variable that has the same distribution
as 4+ W where W(a1, a2, a3, a4) is a B(n — 4, p) (Binomial) variable. All of the a; are less than a because
max(ay, s, as, a3) = X = a and thus, p = 4a + O(a?) as a — 0.

Since we are only interested in a < l":'l we find

E(Z|ay, a2, a3, a4) = 4+ E(W) = 4na + O(In® n).

7

Using this and the fact that fg,,(al,a--_», a3, a4)da; dag dazday = 1 we integrate (2.13) and find
E(Z|X = a) = 4na + O(In n). (2.15)

(ii1) Taking (2.15) in (2.12) together with (2.1) and (2.7) we find

E(Z) = 4n f i afx(a)da + O(In? n) = 4nE(X) + O(In® n)
0
and thus
E(Z) = 4en'/? 4+ O(In’ n) (2.16)
Q.E.D.

We close this section by noting that it is not difficult to modify the techniques used in the proofs of
Theorems 2.1 and 2.2 to prove

Theorem 2.3: Given n points U[0,1)? , Z and ¢’ as defined above, then

(a) Var(Z)~16c'n (2.17)
) E(Z?)~ 3;-,1 (2.18)

where ¢’ = %5- —¢2=0.13109...

3. Uses and Actual Performance.

In the introduction we stated that eliminafe is meant to be used as a preprocessing step preceeding
a standard convex hull algorithm. The logical question then is, for an arbitrary convex hull algorithm A,
how fast does the eliminate /A pair run compared to A alone? The answer obviously depends on the choice
of A. In the paragraphs that follow we’ll answer this question for two standard convex hull algorithms:
gift-wrapping and Graham’s scan. (For a description of these algorithms and their worst and expected case
running times see [PS].) Our assumptions are the same ones we’ve had all through this paper; the n points
are U[0,1)% .

Theorem 3.1: The combined eliminate/gift-wrapping pair has an expected O(n) running time.
Proof: The eliminate/gift-wrap pair has two stages. The eliminate stage is O(n) worst case and discards
all but S points. When run on m points gift-wrapping has an O(m?) worst case running time. The gift-
wrapping stage will therefore require at most O(5?) < O(Z?) time and the combined expected running time
of the pair will be O(n) + O(E(Z?)) which, by theorem 2.3(b), is O(n).

Q.E.D.

This result is much better than the expected O(n logn) running time for the stand-alone giftwrapping
algorithm with n points U[[),l]:II . It even compares favorably with more sophisticated algorithms such as
Quickhull. Quickhull also has an O(n) expected and O(n?) worst case running time [OL] but has to employ a
complicated nested recursion with high overhead and constants to achieve this. This is only to be expected.
Eliminate is very much like the first step of Quickhull (eliminating some points) but we are are tailoring our
choice of points to a particular distribution. Thus one elimination suffices and the algorithm is much simpler.
We can extend this idea further. Quickhull runs in expected linear time over a number of distributions, ie.
those where the points are uniformly distributed in a convex bounded polygon. If this distribution is known
in advance then we can modify eliminate to work well: Find the points that are “closest” to the corners
of the convex polygon (where closeness of a point is measured by the length of the projection of the line
between it and the corner on the perpendicular bisector of the angle at that corner) and eliminate all of the

8

n VX, Za/Vm Sn/Vn

1000 1.874 7.025 3.410
2000 2.042 7.759 3.699
3000 1.996 7.714 3.645
4000 2.033 7.839 3.765
5000 1.849 7.235 3.386
6000 1.983 7.693 3.669
7000 1.966 7.675 3.558
8000 2.009 7.863 3.710
9000 1.966 7.696 3.645
10000 1.965 7.698 3.435

Table 1. For each value of n we chose 100 sets of n random points. For each of these sets we found X,
Z, and S and then averaged over all the sets to calculate X,,, Z,,, and S,,. Normalizing (multiplying/dividing
by +/n) yielded the values in the table.

points inside the convex hull of the “close” points. It is not difficult to modify our analysis of eliminate to
show that only O(1/n) points will be left on average.
For Graham’s scan we achieve the following stronger result.

Theorem 3.2: The combined eliminate/Graham’s-scan pair has an expected O(n) running time. Further-
more eliminate’s running time strongly dominates (in an average sense) that of Graham’s scan.

Proof: As in the proof of theorem 3.1 the eliminate stage discards all but S < Z points. When run on m
points Graham’s scan has an O(m log, m) worst case running time. Thus the expected running time of the
Graham’s scan is upper bounded by

E(Z log, Z) < E(Z)log, n ~ 4cy/nlogy n

which is dominated by eliminate’s O(n) running time.
Q.E.D.

This states that the eliminate /Graham’s-scan pair has an O(n logn) worst case time and O(n) expected
time, the best possible results that can be achieved by any convex hull algorithm. This is an extremely
attractive result from a computational point of view especially because these bounds were achieved through
an extremely simple process; The bulk of the running time is devoted to eliminate’s two straightfoward linear
passes through the data.

In table 1 we present the results of test runs on random points. Each row contains the values \/n X, !,
Zn/V/n, and S, /+/n. These are the normalized values of the respective random variables averaged over 100
sets of n random points (n fixed). Theorems 2.1 and 2.3 predict that for large enough n

VRE(X,)~1964 and EB(Z,)/vn =~ 7.854

and we do see this behavior.

4. Extensions to higher dimensions and conclusion.

! Until now we only implicitly noted the fact that E(X), E(Z), and E(S) are functions of n. In order
to avoid confusion in the next paragraph we will extend our notation so that X,, Z,, and S, will now be
the random variables for the case of n points.

It is not difficult to extend eliminate to d dimensions. In 2 dimensions we started by finding the four
points ¢;, g2, ¢s, g4 that minimized the functions £z + y (sweep lines); In d dimensions we start by finding
the 29 points q;, ..., gos that minimize the functions £z, £ zo % -+ & 4 (sweeping hyperplanes). We then
use these points to find a rectangular d-prism R and eliminate all of the points inside it. The range of the
i-th coordinate in R will be defined analogously to the £ and y ranges in two dimensions. The minimum
value of an ith coordinate in the range will be the maximum value of the i-th coordinate over all of the g;
that were found by hyperplanes swept in with “increasing” i-th coordinate values. Similarly the maximum
value of the i-th coordinate in the range will be the minimum value over all of the ¢; found by hyperplanes
swept in with “decreasing” i-th coordinate values. Altough the idea is not difficult the notation involved
in formal definitions is extremely cumbersome and so we will not include it. We can also extend the two
dimensional analysis to the multidimensional case by redefining Bx as a specific d-cube (in place of a square)
that satisfies Bx C R. If we let S be the number of points remaining after running eliminate and Z the
number of points outside of Bx then S < Z. Our major result, which we state without proof, is

Theorem 4.1: Given n independent identically uniformly distributed points in the unit d-cube and Z as
defined above then there exists a constant ¢4 > 0 (dependent on the dimension) such that

E(Z) ~ cgnld-V)/4,

It immediately follows that E(S) < ¢gn(9-1)/4, In three dimensions this means that E(S) = O(n?/) and
thus feeding eliminate’s output into an O(n logn) worst case algorithm such as Benley and Shamos’ Divide
and Conguer [BS] gives us a simple linear expected time convex hull algorithm where most of the work is
done by the first step.

To review, the purpose of this paper was to prove that, given n points uniformly distributed in the unit
square, eliminate eliminates all but O(y/n) of the the original pointset without destroying any information
essential to the construction of the convex hull. If the n points are distributed in the unit d-cube then
eliminate eliminates all but O(n(4-1)/4) of them. Therefore, following eliminate with an O(nlogn) worst
case convex hull algorithm (such as exist for 2 and 3 dimensional space) yields a pair that constructs a convex
hull with a linear expected running time. Furthermore the expected running time of the actual convex hull
algorithm will be sublinear. This yields a further benefit from the computational point of view because
eliminate only performs simple comparisons (is z > a) while most convex hull algorithms perform more
complicated geometric ones (is point P above line I). For extremely large random point sets, it is actually
the case that the convex hull can be found in about the time it takes to access each point twice (once to
participate in various comparisons to compute R and once to be eliminated).

In particular, for random point sets, the method we describe certainly outperforms “Quickhull” and is
substantially easier to program. Often, the points used for the first stage of “Quickhull” are chosen to make
the implementation of the recursive step more convenient: our results show that a proper choice makes the
recursive step unnecessary.

It should be made clear that our choice of the unit square (d-cube) as the rectangular support of the
point distribution was purely expository; The analysis of eliminate in section two (four) works just as well
(after scaling) if the points are uniformly distributed in any rectangle (rectangular d-prism) oriented so that
its sides are parallel to the Cartesian axes.

A final point that should be made is that there is another classic perspective on convex hulls which,
while not yielding an analysis of eliminate, does provide some intuitive rationale as to why it performs as well
as it does. If we are given n points uniformly identically distributed in a bounded convex polygon P then,
as n — 0o, the convex hull of the points will approach the perimeter of P very closely. An alternative way
of expressing this is that P is a very close approximation to the convex hull. This suggests that the number

10

of points on the hull will be comparatively small (and the number distributed inside will be relatively large).
In fact this is the content of a famous theorem due to Rényi and Sulanke [RS]: If A signifies the number of
points on the hull then E(k) ~ clogn, where c is a function of the number of edges of P.

In our case P is the unit square. Since the rectangle R constructed by eliminate is defined by the four
points “closest” to the corners we can see R as a very close approximation of the square and therefore of the
convex hull (and X can be seen as a measure of this closeness). The points that are left will are squeezed
between the perimeter of the hull and the perimeter of R and therefore, intuitively, should be few in number.

6. REFERENCES.

[BS] J.L. Bentley and M.1. Shamos, “Divide and Conquer for Linear Expected Time,” Information Processing
Letters T(2) (Feb. 1978) 87-91.

[Ed] W.F. Eddy, “A new convex hull algorithm for planar sets,” ACM Transactions on Mathematical Sofi-
ware, 3 (1977).

[GS] G.R. Grimmet and D.R. Stirzaker, Probability and Random Processes, Clarendon Press, Oxford. (1985).

[OL] M.H. Overmars and J. van Leeuwen, “Further Comments on Bykat’s Convex Hull Algorithm,” Infor-
mation Processing Letters, 10(4,5) (July 1980) 209-212.

[PS] F.P. Preparata and M.I. Shamos, Computational Geomeiry: An Introduction, Springer-Verlag, New
York. (1985).

[RS] A. Rényiand R. Sulanke, “Ueber die konvexe Hulle von n zufallig gewahlten Punkten, 1,” Z. Wahrschien,
2 (1963) 75-84.

[Ru] W. Rudin, Principles of Mathematical Analysis, 3d ed., McGraw Hill, New York. (1976).

[Se] R. Sedgewick, Algorithms, Addison-Wesley, Reading Mass. (1983).

11

