ANALYSIS OF ALGORITHMS FOR THE CONFIGURATION OF WAFER SCALE
LINEAR ARRAYS IN THE PRESENCE OF DEFECTS

Dimitris A. Doukas
Andrea S. LaPaugh

CS-TR-128-87

December 1987

ANALYSIS OF ALGORITHMS FOR THE CONFIGURATION OF WAFER SCALE
LINEAR ARRAYS

IN THE PRESENCE OF DEFECTSY

Dimitris A. Doukas
Andrea S. Lapaugh

Computer Science Department
Princeton University
Princeton, NJ 08544

Abstract: Wafer Scale Integration(WSI) is a new technology using Very Large Scale
Integration(VLSI). The goal is to implement an entire system in a single silicon wafer con-
taining the equivalent of hundreds of present-day chips. Given the high density and large
number of elements in a wafer scale system, we expect some components to be defective due
to fabrication errors. Methods are needed to configure the good components into a working
system.

In this paper we examine four algorithms to connect the good elements in a linear
WSI systolic array. We present experimental results obtained by simulation of the algo-
rithms. We also present an analysis of performance which is applicable to three of the
algorithms. The analysis is in term of the number of good elements we expect to utilize.

T This work was supported by DARPA Contract N00014-82-K-0549

I. Introduction

Wafer Scale Integration (WSI) is a new fast developing VLSI technology. The goal is to assemble
an entire system on a single wafer, thus avoiding the costs and performance loss associated with
individual packaging of chips because of long wire connections driven outside the chip.

However new problems arise. Since now we have an entire system in a single wafer, there is a high
probability some of the system parts will be defective. A new area of research has developed to deal
with these problems.

We have not yet specified what we mean by “entire system”, what this system includes and how
complicated this system may be. Regular architectures are well suited for implementation using
WSI. The regular structure simplifies implementation. Furthermore they have many applications
such as systolic arrays. Systolic arrays are used to solve algorithmically specialized problems such as
band matrix multiplication, systems of linear equations, LU decomposition [4]. Therefore we will
consider an “entire system” to be a regular array structure; each cell in the array can be considered
as a simple processor or a more complicated structure.

In this report we describe four algorithms for the configuration of wafer scale linear arrays in the
presence of defects. These algorithms are based on algorithms proposed in the literature.

In part Il we give a description of each algorithm .
In part Il we present and analyze the empirical results, comparing the four algorithms.
In part IV we estimate the expected utilization for these algorithms using a probabilistic model of cell

failure, and compare the expected numbers to what we found experimentally.
II. Description of four algorithms applicable in linear systolic arrays

Before describing each algorithm we give some definitions. A wafer is a two-dimensional (2D)
array of identical cells. A cell is dead if it is defective and live otherwise. In Figure II.1 the form of
the array is shown. Since the array is structured in a two dimensional grid, we can refer to each cell
of the array using a pair (i,j). Each cell has four neighbors, and we name them n (north), e (east), s
(south), w (west). Clearly if the cell in the center is the (i ,j) cell then the north, east, south, west
neighbors are respectively the cells (i -1,j), (ij+1), (i+1,), (ij -1). Tracks (wires) are provided
between cells to form the necessary frame to make the connections between them. Signals can be
routed through these tracks using for example laser restructuring techniques [8]. The number of
tracks needed between the cells is dependent on the reconfiguration algorithm we use, as we will see
later. We wish to add connections, using the tracks, to form a linear array out of the good cells.

We define the yield of the array as the percentage of the fault free cells. By saying that the
expected yield is 80% we mean that in a wafer of 100 cells we expect to find 80 live and 20 dead.

i-1,j €—— Tracks
North
i,j-1 i i,j+1
West East
i+1,j
South

Linear array of cells structured in a 2D grid

FigureIl.1

To simulate a given yield in our implementation we use a random number generator of the UNIX
system [5] in the following way. We assign a number n between 1..100 randomly to each cell. If the
desired yield is % (b integer) we call a cell dead if n < band live if n > b (In section III we briefly
discuss the quality of this random number generator.)

An important factor in interconnecting a grid of wafers is the maximum wire length of
connections because long wires cause delays in a circuit. We chose a maximum allowable wire
length. For certain choices of wire length, we do not expect to connect all the live cells in the wafer.
To be able to say how many of the live cells we can connect (utilize) we define utilization in the

following way:

Utilization = (total # of used cells) / (total # of live cells)

The yield, the utilization, and the maximum length of the wires used to connect the live cells are

used to characterize the algorithms.
II 1. The “snake” algorithm

The idea behind the snake algorithm is very simple. It comes from the observation that an
obvious way to trace the whole array is to go in a snake - like movement around the rows of the array.
When the yield of the array is 100%, using this method we can go through all the cells, giving 100%
utilization. Of course in the real world we have to face more complicated situations when some of the
cells are dead. Then we are allowed to skip over bad cells until we find a good one. However, we must
also consider the maximum wire length of connections to be tolerated. We determine a target
distance before the execution of the algorithm. Each time we meet a block of dead cells for which the
total number of dead cells is bigger than the target (assuming unit distance between cells), we do not
allow the connection to be made.

We summarize the algorithm:

We start from the first cell in the first row going east. We connect each cell to the next live cell if the
number of the dead cells we skip is not bigger than the target. When we reach the end of the row we
begin tracing the next row using the opposite direction. Each row has a predetermined direction, east
for the odd numbered rows and west for the even numbered rows. When the connection is not allowed
because a bad block of dead cells is bigger than the target, we try to go to the south neighbor. Ifit is
live we continue the same direction. If it is dead, then we backtrack. This is done with a new
operation, the unmark operation. Since we cannot go anywhere from the cell, we unmark it (in other
words we treat it as a dead cell) and we backtrack to the nearest connected neighbor. From this cell
we again try to find a path to the last row or the last live cell by first going south, calling the above
procedure recursively. If we succeed in building a path to a live cell in the last row or the last live cell
in the array, then we say that we successfully connected the live cells in the wafer and we calculate
the utilization. If we cannot, then we say that our operation has failed and that the utilization is 0%.
In Figure I1.2 we can see how the algorithm works in a 6X6 wafer. Since we build a linear array,
each live cell is connected to the next live cell we meet moving in a certain direction (depending also
on the target distance). We never initiate a second connection, between another pair of live cells,
before the first one is finished. Thus only one track is needed between cells, both vertically and
horizontally, to do the reconfiguration using the snake algorithm. For the perimeter of the wafer we
need one track in each side except the bottom one (Figure 11.2).

We have not discussed how the algorithm works at the boundary of a row. When we first
implemented the snake, we did not allow connections over the end of a row, regardless of the length

of the series of bad cells we met. This feature is inherently prohibitive to 100% utilization. So we

Fault free used processors

Fault free but unused processors

. Faulty processors

RENE

s

B
Mipe

T
A0
\

SEEECEEEE EEEES B

Fault free but unmarked processors

Utilization=64.28% - Target distance D=1

Figure I1.2

relaxed the algorithm to allow it to wrap around the ends. In section I1I, we give a graphic plot of the
implementation of both versions of the snake. The plot using the first version of the algorithm is for
different probabilities of failure of the wafer. Observe that we never succeed in a 100% utilization
even when the yield is 90%.

The idea behind the snake algorithm was used in [3] by Coren. However he does not allow
skipping over bad cells and he provides only one step backtracking. Therefore, for low yield this

algorithm gives a very low utilization.

IT1 2. The “adaptive-snake” algorithm

|:| Fault free used processors

Fault free but unused processors

. Faulty processors

;

L]

(]

|

-
JLILIEIE:

4
L e
Utilization=85.7T1% Target distance D=1
Figure I1.3

The adaptive-snake eliminates the restriction that each row has a preassigned direction.
It adapts the direction to be chosen depending on the position in the array, and, more specifically, on
the i coordinate of the cell. If the wafer is an NxN array, then if i > N/2 we go west, otherwise we go
east. This means that each time we choose the direction which enables us to go over more cells in a
row. The details of the algorithm are exactly the same as those of the snake algorithm.

In Figure I1.3 we again use a 6x6 wafer to show how this algorithm differs from the previous one.

II 3. The “partitioning in blocks” algorithm

The idea behind this algorithm is that by using partitioning we can minimize the maximum wire
length we need to connect the live cells of the wafer. The length will depend directly on the size of the
blocks. In our implementation for an NxN wafer, we choose the size of the blocks to be: VNxVN .

The algorithm first partitions the entire wafer into VNxVN blocks. After doing the partitioning,
we apply the snake algorithm to obtain the configuration inside each block. The final step is to
connect the blocks together; we again use the snake algorithm to do this, treating the blocks as cells
where a dead block is a block which failed to be configured using the snake algorithm. Since we use
the snake algorithm for both inside and outside the blocks, again no more than one track is needed
between cells to do the reconfiguration inside each block. To do the connections through the blocks we
need also an extra track (vertical and horizontal) between the blocks. So finally we will have one
track between elements of the same block, horizontally and vertically, and three vertical or two
horizontal tracks between neighbor cells of adjacent blocks (Figure I11.4). In Figure 11.4 we illustrate

the algorithm on our 6x6 wafer. The partitioning algorithm is due to Leighton and Leiserson [1].

I1 4. The “spanning tree” algorithm [2]

This algorithm, due to J.Greene and A.Gamal [2], connects a chain of live cells in a two
dimensional array. It is a good alternative to be compared with the previous three snake-like
algorithms.

We begin again with our two dimensional array of identical cells. We partition the wafer into
square blocks of the same size, which we call sites. We define a vacant site to be a block of cells with a
number of live cells less than some critical number. An occupied site is one that is not vacant. A
connected set of occupied sites, together with all adjacent(vacant) sites define a cluster. If a large
cluster can be found in this wafer then a large fraction of live cells can be connected together, with
moderate interconnecting distances. The analysis in [2] gives a nice algorithm to do the connection of
the live cells.

Starting from the NxN array, construct the array of N2/b square blocks of b elements each. We
choose b so that each block has a high probability of containing at least four live cells. We consider
now a block as a site of the array and if the block has at least four live cells, we consider the site
occupied. The idea is that if we choose b so that the above probability is high enough, then the
probability to find a cluster of occupied sites (blocks) is nearly equal to one, according to Monte Carlo
estimates of percolation probabilities in [6] (for percolation processes see [5]). A tree of maximum
degree four that spans the cluster, with all nonleaf sites occupied, can be constructed (A spanning tree
of blocks). We can form a chain from all the live cells in the cluster by looping around the tree as

shown on Figure IL.5a (taken from Fig. 11 in [2]). In Figure II.5b we show the structure of the

Fault free used processors

Fault free but unused processors =+ =P Interblock path

Faulty processors

Utilization=100% Target distance D=1

Figure I1.4

spanning tree constructed for the wafer of Figure I1.5a after using the spanning tree algorithm. The
critical point is that since all “nonleaf” blocks have at least four live cells, it is never necessary to
connect two cells from nonadjacent blocks, thus keeping the interconnecting distances small. In
Figure II.5a we illustrate the algorithm on a 9x9 wafer partitioned in 3x3 blocks. As we see only two
tracks are needed between adjacent blocks since only two connections are made between the blocks.
Inside the blocks the connection of all live cells requires only one track between cells.

The non-uniform spacing, in terms of the number of tracks between the cells, needed for the
spanning tree algorithm was also needed by the partitioning algorithm of section I1.3. In order to

restructure a wafer using one of the partitioning algorithms, we have to predetermine the size of the

i

1
I
1
1
|
I
I
I
I
| WP A T B

-+

DT

Figure I1.5a I___l Live cell Utilization =86.95%

(Figure 11in[2]) Dead cell

blocks in order to build the necessary number of tracks between the cells. In contrast, using the
simple snake algorithm simplifies the implementation, since uniform spacing can be used.

Another interesting point of comparison between the algorithms is how the length is controlled.
As we saw, for the snake-like algorithms we are interested in the number of consecutive bad cells (bad
block) we must bypass in order to make the connections between the live cells (we defined this

number as the target distance). In the spanning tree algorithm the main factor which determines the

6 9
7 10
5 8
4 13
3 12
14 1
1 2
IN _>
our 44— <
16 15
O Vacant block
Occupied block
Figure I1.5b Spanning tree structure

worst case length is the block size. We pointed out previously that it is never necessary to connect two
cells from nonadjacent blocks. In Figure I1.5a we see that the worst case, in terms of wire length, is
when we need to connect cells a,c. The wire length needed for this case is 6-Vb-3 (Manhattan
distance, where we assume square cells of size 1x1), which is dependent on the block size. In the next
section, in order to compare the algorithms, we relate the above Manhattan distance with the “target
distance” as it is defined for the snake-like algorithms. There is no restriction in terms of length for
connections inside the blocks for the spanning tree algorithm. In [2] Green and Gamal do not
explicitly state a systematic way to connect the cells inside the blocks. We only have to consider that,
for each non-leaf block, two ports (one input and one output) have to be provided in each side. Since
we have at least four active elements inside each occupied block this is always feasible. We can

assume a snake-like connection between the ports and the rest of the cells inside the blocks.

1 n
n
i 1
II.6a 11.6b
1 through n order
nthrough 1 order
F N
1 through n order
I1.6¢
R et -
i i
: 1 ——
: X :
| [
I bar :
! switch !
1
i n : 1
I 1
B e o o o e |_ 4
cell interface
I1.6d
n n 5
/ £ / .
/ 7 B F i e n process the bits in
/ order 1..n
A
EEE B R
order n..1
I.6e

Figure I1.6

11

I15. Routing Details

Let now take a closer look at the tracks. We use these to do the routing between the live cells.
When the wafer is operating, information (data) flows through the tracks and it is processed
sequentially by each working cell of the linear array. In other words tracks serve as buses where
information is being transmitted. Since information is represented in terms of bits, we may wish to
transmit in parallel a certain number of bits through the tracks. Therefore a track is a collection of
single lines, each of which transmits one bit (Figure I1.6a). The width of the track is determined by
the number of bits transmited in parallel each time. We see in Figure II.6a that there is a virtual
ordering of the single lines of the track. This order represents the order in which bits are entered the
cells for processing. Since we assumed identical cells this ordering should be preserved as we process
the data stream through the linear array. Consider now the case when we snake between two rows of
the wafer, as in Figure I1.6b. Clearly now the ordering of the bits in the second row is reversed and
since we assumed identical cells, the cells of the second row will incorrectly process the entering bits
as if they had the initial ordering. Notice that this problem is not particular to the structuring
algorithm we use, since in any of these we adopt a snake-like movement. However, the solution to
this problem may be dependent on the structuring algorithm.

One solution applicable to all the algorithms is the one we illustrate in Figure I1.6¢c. Here we
double the track width by sending the information in both the original and the reverse order. The
problem with this solution is that we double the complexity of the wiring.

Another solution also applicable to all algorithms is to use crosshar controllable switches at the cell
interfaces, to change accordingly the order of the bits (Figure I1.6d). Since a crossbar for n lines has a
O(n?) complexity, this solution is also expensive. In addition it requires control bits for each switch.

The third solution it is well suited to the snake algorithm. Here we take advantage of the fact that
in the simple snake algorithm we know the direction we are going to move in each row since we adopt
a pure snake movement. In other words, we know that the bit ordering in each odd numbered row
will be the original way, and in each even numbered row will be the reverse way. Instead of using one
kind of cells we use two, say black and white (Figure I1.6e), where all odd rows have white cells and
all even have blacks. If we process a sequence of n bits in a white cell and then we process the same
sequence in the reverse order in a black cell, the output of the two cells will be the same. Clearly this
solution cannot be applied to the adaptive snake algorithm or the spanning tree algorithm since in
these algorithms each row does not have a fixed direction. To use this solution with the partitioning
algorithm, we must know the block size in advance, so we can assign directions to cell rows. However,
since we also need to predetermine the block size in order to build the tracks, this is not an additional

loss of flexibility. The last solution does not add complexity in terms of wiring but does

12

in terms of cell types. Usually for wafer scale implementations the cells are very simple and not so
different processing elements, so we can pay the extra cost of fabricating two kinds of them.

IT1. Analysis of the empirical results

Our experimental work consists actually of two parts. First we ran samples to compare the snake-
like algorithms (snake,adaptive-snake,partitioning) and then we ran samples to compare these
algorithms with the spanning tree algorithm.

For the first part we experimented with wafers of sizes 16x16, 25x25, 81x81, 100x100, 128x128,
256x256, 512x512. We ran 20 samples of each case and we took the average utilization for yield
values 90%, 80%, 70%, 60%, 50%, 40%, 30%. Actually we used as a variable the probability p% to
meet a bad cell which for a wafer of yield y% is p = 100-y%. We started with distance 1 as the target
length and incremented by one until we found the distance where a 100% utilization was achieved.
After these studies, we focused on 50% yield. We experimented with NxN wafers where N is a power
of 2, using wafers of size 16x16, 32x32, 64x64, 128x128, 256x256, 512x512.

Figure III.1, shows how the utilization is dependent on the distance for different wafer sizes, when
the snake algorithm is applied to them. We see that in all cases we achieve 100% utilization for a
certain distance value and this value increases as the size of the wafer is increased. This is because,
the number of the bad blocks we expect to meet in a wafer is proportional to the size of the wafer.
Another interesting point is that for a NxN wafer 100% utilization is achieved at distance 2.IgN,
something we expect theoretically (part IV). So for the 128x128 wafer for all 20 samples, 100%
utilization is achieved after distances 14 or 13, for the 256x256 the results are 15,16,17 and for the
512x512 between 17 and 19.

Figure II1.2, shows the results of the first version of the snake applied on a 81x81 wafer for
different yield values. Even for very high yield (10%) we do not achieve 100% utilization. The reason
is that in this version of the snake we did not allow wrapping around the corners.

Figures I11.3,II1.4 compare the three snake-like algorithms for certain wafer sizes by pairs, and
for 50% yield. In Figure II1.3 the snake and the adaptive-snake are compared and a table gives us the
exact values of the utilization for each target distance. As we see the gain after using the adaptive-
snake is very small. Since we desire simplicity in our implementations, the snake algorithm seems
preferable.

The situation is not the same in Figure I11.4, where we compare the snake and the partitioning in
blocks algorithms. Here the partitioning algorithm is visibly superior to the snake. For this plot we
used samples from 20 121x121 sized wafers and when we applied the partitioning algorithm we
partition the wafer into 11x11 square blocks. Since in each block we apply the snake algorithm, this

plot is nothing more than a comparison of the snake algorithm applied to two different wafers of sizes

13

121x121 and 11x11 for 50% yield. Notice the analogy of the results between this comparison and the
one we made in Figure III.1. Since, as we will discuss later (section IV), the partitioning algorithm
achieves the theoretical lower bound of the interconnection lengths, it turns out to be our first choice
as a candidate, especially when the size of the wafer is big enough and the interconnection distance
length becomes a critical factor.

For the second part, in order to implement the spanning tree algorithm and compare it with the
snake-like algorithms we made our choice of the wafer size depending upon the block size we were
going to use. We ran experiments for blocks of size 2x2, 3x3, 4x4, 5x5. In all these cases our
requirement was to have in each block at least four live cells. For blocks of size 3x3 we ran
experiments on 20 samples of wafers of sizes 12x12, 15x15, 33x33, 63x63, 126x126, 255x255 and we
took the mean value of the utilization. For blocks of size 2x2 and 4x4 we experimented on wafers of
sizes 12x12, 16x16, 32x32, 64x64, 128x128, 256x256. For blocks of size 5x5 we ran experiments on
wafers of sizes 10x10, 15x15, 35x35, 65x65, 130x130, 255x255. In all cases we concentrated on 50%
yield.

A critical point for our comparison is how the interconnection distance between two live cells is
defined in [2]. Here the distance is defined as the Manhattan distance between the two cells, taken
into consideration that one track is required between cells in the same block and two tracks are
required between blocks to do the reconfiguration. If we partition the wafer in blocks of size Vbx Vb
the maximum Manhattan distance d required in order to form the chain is d=6-Vb-3 (We assume
square cells of size 1x1). On the other hand when we talked about target distances in the snake-like
algorithms, we meant how many bad cells we have to bypass in order to connect the live cells to form
a linear array. In order to compare these algorithms in terms of the utilization and the
interconnection distance we have to somehow find a relation between them. This can be done if we
look at the worst case. The maximum Manhattan distance given above is required when we have to
connect, say, cells a,c in Figure [1.5a. Speaking in terms of how many bad cells we need to bypass this
gives us that we need to bypass 3-V'b-3 dead cells. Finally we have to take into consideration the fact
that in order to implement the spanning tree algorithm we need two tracks between the blocks,
instead of the three vertical and two horizontal tracks we need when implementing the partitioning
in blocks algorithm, and the one track (horizontal and vertical) needed between cells in the
implementation of the simple snake algorithm. But assuming that cells are considerably bigger than
tracks, we can omit the length penalty of the extra tracks and take the distance 3.-Vb-3 as a fair
comparison measure between these algorithms.

Figure II1.5, just gives the various values of the utilization after applying the spanning tree
algorithm to wafers of different sizes in terms of the target distance (not the Manhattan distance).
We see that started with distance 4 (2x2) blocks the utilization is 0%. The reason is because we ask,

in a wafer with 50% yield, to have 2x2 blocks with four live cells, which is very unlike.

Snake algorithm for 50% yield

100 25x25 | ——
Uti

liza 36x36| +-----
tion 81x81 [wrvveevrees
128x128 —————
75 256x256 | = ——
512x512 | «s===-

50

25

0

0 4 8 12 16 20
target distance

Figure I11.1

15

First version of the snake algorithm for a 81x81 wafer

81x81i

100 R IR R R R T N e e e e
9o |
Uti I
liza 88 £
tion § 4
72 : :
64 i :
56 i :
8 El :
40 Ei: :
32 E :
24 Bl :
N :
16 E:/ I .
il :
8E/| I :
) .-
0 SESRERESET S SR AR SR NAREN
0

4 8 12 16 20

target distance

Figure I11.2

yield %

90% | ——
80% | =-----
1] [R—

60%| ----—
50%| =—
40%| —=——
300 | essas =

24 27

16

Uti
liza
tion

100

Yb

88

80

72

64

56

438

40

32

24

16

R R LR R LR LR

256x256

snake

adaptive-snake

(O O O N AT N

o

4 8 12

Figure I11.3

16

20

target distance

17

Target Snake adaptive-snake
distance for a
256x256 wafer | Utiliza | Deviat | Utiliza | Deviat

tion ion tion ion
1 0.00 | 0.00 | 0.00 } 0.00
2 402 | 2.65 | 0.51 1.52
3 10.28 | 3.45 | 859 | 433
4 20.89 | 1.12 | 2287 | 1.56
5 3438 | 1.40 | 3899 | 1.87
6 50.31 1235 L3O | 1.77
7 67.49 | 2.38 | 73.35| 1.67
8 80.75§ 178185131 1.13
9 88.64 | 2.08 | 9196 | 1.23
10 94.74 | 1.59 196.12| 1.18
1 97031 121 19797] 083
12 98.35] 1.38 | 98.98 | 0.88
13 98.97 | 1.08 |99.41| 0.59
14 99.52 | 0.65 | 99.69 | 0.42
1 99.79 | 0.41 | 99.86 | 0.29
16 9990 | 0.22 | 99.93 | 0.15
17 100.0 | 0.00 | 100.0 | 0.00
18 100.0 | 0.00 | 100.0 |} 0.00
19 100.0} 0.00 | 100.0 } 0.00
20 100.0 | 0.00 | 100.0 | 0.00

Table I11.1

The curves rise very sharply at the next distance where 3x3 blocks are defined and now it is very
likely to find blocks with at least four live cells. Going one step further to 4x4,5x5 blocks we achieve
100% utilization for all the sizes. Of course as we increment the size of the block the interconnecting

distances inside the block are increased but not more than the target distance.

18

121x121
100 . -t Snake - -
block | — - —
Uti . .
liza / :'
tion . .
[i
75 + . .
I .
[
I
I e
50 - 4 !
P
! i
- 1
I :
25 F 1 -
'
|-
5
0"'||||l|||||||l||||ll
0 4 8 12 16 20
Figure I11.4 target distance

Tables II1.3 and II1.4 give analytical results for the snake,partitioning and spanning tree
algorithms for different wafer sizes and target distances 3,6,9,12. Finally Figures II1.6 II1.7 give us
some interesting results. In Figure II1.6 we compare the snake and the partitioning with the
spanning tree algorithm for wafers of size 126x126 (for distances 3,6), 128x128 (for distance 9) and
130x130 (for distance 12). For distances less than 4 where the spanning tree algorithm gives 0%
utilization the snake-like algorithms give a low but not zero utilization. After that distance the
spanning tree algorithm, does better and achieves faster 100% utilization. The comparison is made

clearer if we look also Figure II1.7. Here we keep constant the target distance (here 6) and we

19

Target Snake partitioning
;izii:s;r;(;e“f;:;ear Utiliza | Deviat | Utiliza | Deviat
tion ion tion ion
. 9.19 | 462 |3192| 484
3 19.20 | 6.68 | 60.55 | 2.21
4 3457 | 2.31 | 78.44 | 2.01
5 50.98 | 2.55 | 88.32| 1.45
6 67.20 | 4.81 |93.22| 1.44
F i 80.36 | 461 | 9598 | 1.27
8 90.01| 296 | 9764 | 1.14
9 94.80 | 2.45 | 98.50 | 0.93
10 97.25] 2.02 | 99.14 | 0.91
11 98.74 | 1.28 | 99.60 | 0.49
12 99.31] 0.78 | 99.76 | 0.34
13 9980 | 0.36 | 99.83| 0.33
14 99.89 | 0.09 | 9993 | 0.22
1h 99.89 | 0.09 | 99.93| 0.22
16 99.89 | 0.09 | 99.93]| 0.22
17 100.0 | 0.00 | 100.0 | 0.00
18 100.0 | 0.00 | 100.0 | 0.00
19 100.0 | 0.00 | 100.0 | 0.00
20 100.0 | 0.00 | 100.0 | 0.00
Table I11.2

change the wafer size. As we expect the curve for the snake-like algorithms is falling because as we

increase the size of the wafer we meet more and bigger bad blocks, and since we keep the target

Wafer sizes

100 ~ 117 b2 G ——
152,162 | -----
Uti 322,332,352 «ooeoeee
liza
2642652 | «mm.a
o 75 L. 632,642,65
1262,1282,1302 | = — =
25522562 | e-esa
50
25 +
0 A Y N T I AR Ot O (O 5 1]

0 4 8 { O

target distance

Figure I11.5: Spanning tree algorithm for different sizes of wafer.
126x126 for distances 3,6, 128x128 for distance 9, 130x130 for dist-

ance 12. Our basis to pick the above sizes was the wafers with sizes
growing as powers of two (16x16,32x32,64x6,128x128,256x256).

Then for a chosen distance d such that d=3Vb-3, we picked up wafers

of sizes NxN where N is divisible by V'b and N is the closest such number,
from above or below, to one of the previously stated powers of two.

21

Uti 100 snake | ——
ii:zi partitioning | -----
spanning [-
75 +
50
25 +
0 || i_ S O I

0 4 8 12509

target distance

Figure I1I1.6 : Comparison of the three algorithms for different target
distances and for wafers of size: 126x126 (distances 3,6), 128x128 (dist-
ance 9), 130x130 (distance 12).

distance constant the utilization is decreasing. The opposite thing happens for the spanning tree
algorithm. Theoretically for a wafer of infinite size and depending on the value of b, a cluster

containing all but a finite number of the good elements, can be found [5] with high probability. So as

22

e L snake p ey

liza S

ton partitioning | +-----
spanning | e

75

50

25 |-

o JL I [I N I
0 40 80 120 160 200 260

Wafer sizes

Figure II1.7: Comparison of the three algorithms for different sizes of wafer
12x12, 15x15, 33x33, 63x63, 126x126, 2552255 and for target distance: d=6.

cluster and therefore a higher utilization.

we increase the size of the wafer in our simulation, we expect to find, for the same distance d, a bigger

Partitioning the wafer into the same size blocks, as we did for the spanning tree algorithm, and

use the same maximum allowable distance. Since this distance is 3-Vb-3, it dominates every

applying the partitioning algorithm, we obtain 100% utilization for all the different wafer sizes if we

23

Snake Partitionin Span. Tree
Wafer sizes g P

distance d=6 | Utiliza | Deviat | Utiliza | Deviat | Utiliza | Deviat
tion ion tion ion tion ion
“

12x12 87.25]29.41 | 100.0 | 0.00 | 81.10 | 22.86
15x15 91.57 | 3.33 | 100.0 | 0.00 |89.30 | 15.10
33x33 88.18 | 3.97 | 100.0 | 0.00 | 93.42 | 8.2
63x63 84.47 | 3.49 | 100.0 | 0.00 | 98.11| 2.1
126x126 68.52 | 3.70 | 100.0 | 0.00 | 98.50 | 1.83
255x255 50.40 | 2.70 | 100.0 | 0.00 | 99.20 | 0.52

Snake Partitionin Span. Tree
Wafer sizes g P

distance d=3 | Utiliza | Deviat | Utiliza | Deviat | Utiliza | Deviat
tion ion tion ion tion ion

12x12 70.09 | 24.87 | 100.0 | 0.00 | 0.00 | 0.00

15x15 26.90 | 34.94 | 100.0 | 0.00 | 0.00 | 0.00
33x33 47.48 | 16.39 | 100.0 | 0.00 | 0.00 | 0.00
63x63 27.03 113951000 0.00 { 0.00 | 0.00
126x126 20.16 | 0.96 | 100.0 | 0.00 | 0.00 | 0.00
255x255 10.88 | 0.76 | 100.0 | 0.00 | 0.00 | 0.00

Table I11.3: Comparison of the three algorithms for target distances d=6,3

interconnection distance inside the VbxVb size blocks. So in both algorithms which partition the
array, we expect to utilize every live cell inside the blocks. The small difference in the utilization we
get is because of the different way we connect the blocks. Using the partitioning algorithm we snake
around the good blocks to do the configuration. Using the spanning tree algorithm we apply the

spanning tree method. In the first case we characterize a block as good if even has only one good cell

24

. Snake Partitioning | Span. Tree
Wafer sizes

distance d=12 | Utiliza | Deviat | Utiliza | Deviat | Utiliza | Deviat

tion ion tion ion tion ion
12x12 100.0] 0.00 | 100.0 | 0.00 10001 0.00
16x16 100.0 1 0.00 | 100.0} 0.00 100.0 | 0.00
32x32 100.0} 0.00 | 100.0 | 0.00 | 100.0} 0.00

64x64 100.0 | 0.00 | 100.0 | 0.00 | 100.0 | 0.00
128x128 99.35) 0.58 | 100.0 | 0.00 | 100.0 | 0.00
256x256 98.64 | 0.39 | 100.0 | 0.00 | 100.0 | 0.00

) Snake Partitioning | Span.Tree
Wafer sizes

distance d=9 Utiliza | Deviat | Utiliza | Deviat | Utiliza | Deviat
tion ion tion ion tion ion
16x16 99.69 | 0.93 | 100.0 | 0.00 | 100.0 | 0.00
32x32 98.98 | 1.70 | 100.0 | 0.00 | 100.0 | 0.00
64x64 98.70 | 1.92 | 100.0 | 0.00 | 100.0 | 0.00

128x128 9433} 2.12 | 100.0 | 0.00 | 100.0 | 0.00
256x256 89.24 1 1.79 | 100.0 | 0.00 | 100.0 } 0.00

Table I11.4: Comparison of the three algorithms for target distances d=12,9

inside. In the second case we require at least four active elements. For small sizes blocks (2x2,3x3)
the second algorithm gives a lot (2x2) or some (3x3) dead(vacant) blocks, and this is the reason why
we do not obtain a 100% utilization.

Until now, all our comparisons in terms of interconnection length refer to worst case connections.
Figures II1.8,II11.9 give us an idea of how the algorithms compare, in terms of average connection

length. We simulated the snake,partitioning and the spanning tree algorithms for different worst

25

case distances, namely 3,6,9,12,15,18,21,24,27,30 (Figure II1.8). We ran samples on wafer of sizes
256x256(distances 3,9,21), 255x255(distances 6,12), 252x252(distances 15,18,24), 250x250(distance
27), and 253x253(distance 30). In Figure II1.9 we present runs for the same algorithms but for bigger
target distances. We choose the worst case target distance d, to correspond to block sizes (for the
partitioning algorithms) growing as powers of two, namely 2x2, 4x4, 8x8, 16x16, 32x32, 64x64,
128x128, 256x256 and we experimented on 256x256 wafers. For the snake algorithm we achieve
the best average length. The reason why the snake algorithm is better than the partitioning
algorithms is that when we use a partitioning algorithm, the interconnections between the blocks
contribute a significant fraction on the average length, proportional to the block size. The curve for
the snake algorithm is rising as d increases until we reach average length one and then it becomes
constant independently of the d value. The reason is that as we increase the target distance, we are
allowed to bypass longer bad blocks, increasing the average connection length. When the target
distance d becomes bigger than the longest bad block then 100% utilization is achieved and further
increase of d does not result in an increase of the average length, since there are not any longer bad
blocks to bypass. In section IV we will prove that when 100% utilization is achieved using the snake
algorithm, then the expected average connection length is one. Both the partitioning and the
spanning tree algorithms start well above one for small size blocks, and eventually reach one when
the wafer becomes a block itself (Figure I11.9). In Figure II1.10a we explain why increasing the block
size in a partitioning algorithm results in lower average connection length. We show the same part of
a wafer structured with blocks A and with blocks B, so that the area of A is two times the area of B.
Structuring the same part for the two different partitions clearly favors the larger one. The major
overhead for the smaller partition is the block to block connections. Figure III.10b explain the
curious zig-zag curve of the partitioning algorithm.

Our main conclusion for the average length is that the snake algorithm is the best candidate. If
we want to use a partitioning algorithm then it is better to partition the wafer in bigger blocks. The
opposite is true if we are interested in keeping low the worst case length. This is obviously one trade-
off we have to face in our implementation, choosing the right algorithm.

We now briefly discuss the random number generator we used. We used the functions random
and srandom of the UNIX system. Random uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive pseudo-random
numbers in the range from 0 to (2##31)-1. The period of this random number generator is very large
approximately 16%((2*#31)-1). Comparing random, srandom with the rand, srand which are also
UNIX random number generators, random produces a much more random sequence without

generating a cyclic pattern. In the UNIX Programmer’s Manual, [7] random is characterized as a

26

Average
length

2

snake | ——

partitioning | -----

Spanning 1 ofl T

l | | |]

16 24 32

Target distance d

Figure I11.8: Average length comparison between the snake, the
partitioning and the spanning tree algorithm in relation with the

worst case distance. The above results are for target distances
d=3,6,9,12,15,18,21,24,27,30 and for wafers of size 256x256(distances 3,9,21)
255x255(distances 6,12), 252x252(distances 15,18,24), 250x250(distance 27),

and 253x253(distance 30).

27

2r snake SR
Average —
length partitioning| -----
spanning tr.| oo
F'.
I
\‘-.
4
\
\
AR
A
b bt PR
1 S ——
0 |] | |

3 194.25 385.5 576.75 768

Target distance d

Figure I11.9: Average length comparison between the snake, the
partitioning and the spanning tree algorithm in relation with the
worst case distance. The above results are for target distances
d,which correspond to block sizes: 2x2 4x4,8x8,16x16,32x32,64x64,
128x128,256x256 and for wafer size 256x256.

better random number generator. We believe that this random number generator is quite acceptable

for obtaining our experimental results.

Block B Block B
>
d ") &

Total connection length

L="Ta

Fs

Block A

Total connection length

L=6a

When we partition the wafer in B blocks instead of A we pay an extra
overhead equal to the block size a, to connect the two B blocks

I11.10a

Evenly sized blocks
Y =
¢ o
s 1 1EX

overhead

I11.10b

0dd sized blocks

When we have a block with even sized side and we apply the snake
algorithm to structure it, then the last element of the linear array
inside the block will be near the left side of the block. So in order to
connect it with the first live element of the next block we have to
retraverse the bottom side of the block. In the case of an odd sized
block, the last element of the linear array inside the block it will be
near the right side of the block and it fits nicely with the first element
of the next block. Because of the above overhead (in the case of the
evenly sized blocks) we expect that structuring in odd sized blocks

results to lower average length connections.

Figure I11.10

29

IV. The expected utilization

In this section we analyze the expected utilization of the snake algorithm using a probabilistic
model defined below. The analysis for the adaptive-snake and the partitioning algorithm are quite
similar since both are snake-like algorithms. The analysis for the spanning tree algorithm has been
presented in [2] and we will outline the main results.

In the following analysis we consider a 50% yield, so a cell in the wafer has 1/2 probability to be
live or dead. The question of what is the maximum length required to connect all the live cells is the
same as asking what is the probability of having more than a fixed number of dead cells in series to
skip over. Since the event of a cell being dead is independent of the status of the other cells, if p is the
probability of a cell being dead, then the probability of n consecutive cells being dead is P = p-p...p =
pr. For yield p = 1/2 we have that P = (1/2)n. If we choose n = [gzN, where N is the size of one
side of the wafer (for simplicity we will use [gN instead of lgaN), then P = I/N. If we pick n=2.IgN,
then obviously P = 1/N2. Since we have NxN = N2 cells in the wafer, we have N2 positions to start a
bad block of 2-IgN dead cells (more precisely we have less than N2 positions available : N2 -2.[gN +1).
Therefore, we do not expect to meet a bad block with length longer than 2-[gN and expect to meet one
with length 2-[gN.

Leighton and Leiserson [1] proved that for the linear case, the optimal length for which we expect
100% utilization is O(sqrt (IgN)), and they present a partitioning algorithm which achieves this
bound. In our case, both the snake and the heuristic use O (Ign) length to achieve 100% utilization,
but the partitioning algorithm can achieve the optimal bound if we partition in blocks of sizes

O(sqrt(lgN)) as Leighton and Leiserson didin [1] .

IV 1. The expected utilization of the snake algorithm

Our main purpose is to find a simple tool to predict our experimental results. The following
analysis gives us such a tool and is based on the assumption that in each row of the wafer we can have
at most one bad block. Obviously this assumption cannot hold when we expect a lot of bad blocks on
the wafer. But as this number is decreased the assumption becomes more reasonable and actually
gives satisfying results.

We focus our analysis on the cases where we have lengths IgN-1, and IgN since for these we
begin to have considerable utilization. The analysis is the same for every length and we present it
here for length [gN.

As we can see in section I1I, experimentally we found approximately the following values:

30

Target distance D Expected utilization U
IgN-1 66.5%
lgN 80%

These values are almost the same for all the wafers with size larger than 64x64, but differ for smaller
sizes. This happens because in the case of the small wafers the standard deviation of the average

utilization is higher .

IV 1.1 A Markov chain based model

As we saw earlier we expect approximately one bad block of size 2./gN. To be more rigorous, we
must take into consideration the boundary cells of a bad block, which are two live cells. The
probability to meet a bad block of size exactly 2-IgN is (1/2)2lgN times the probability to have two live
cells, one in each side of the bad block, which gives finally a probability p=(1/2)2lgN+2 How many
blocks of size exactly 2./gN do we expect ? Since we have N2 cells we expect to meet E = p- N2 bad
blocks of size 2-igN. Since E = 1 /4 we expect one bad block of size 2igN in four samples of NxN
wafers.

We can make the following table showing how many blocks of a specified length we expect to

meet.
target distance D expected number of bad blocks
N2/23 = N2/8

2 N2/24 = N2/16
lgN-2 N2/2gN =N
lgN-1 N2/2igN+1 = N/2
lgN N2/2igN+2 = N/4
2.lgN-2 N2/ 22igN =1
2.lgN-1 N2/22gN+1 =1/2

2.IgN N2/22eN+2 = 1/4

31

As you can see from the above table, the expected number of bad blocks with size (length) bigger
than 2.lgN-2 is a number smaller than one. If we continue calculating in the same way, we can
increment by one the target distance D and each time the expected number of bad blocks is divided by
two, giving a geometric series. This procedure will stop when the target distance becomes N2. We
first, use the expectations to prove that the expected average connection length will be one when
100% utilization has been achieved. In the 100% utilization case, we bypass every bad block we meet
to make a connection between two live cells. Since we know the number of the expected bad blocks,
and each time we bypass one bad block of length L we contribute L to the average length, then one
can easily find the expected average length. The only thing we need further to find is the expected
number of zero length connections. In other words connections we make between live cells without
having to bypass a bad block. The probability to meet two consecutive live cells is 1/22. So the

expected number of zero length conections is N2/22. The expected average connection length is given
by:

@

i g
S iw
expected average length = —————— = 2 Z - =
=N —t
=0
02i+2
i=

We approximated the above sum as an infinite geometric series assumung N2 to be large enough.

Now we can go on to analyze the expected utilization. We wish to compute the expectation of
the sum of bad blocks longer than a given target distance. Assuming that the event to meet a bad
block of size exactly i is independent from the event to meet a bad block of size exactly j (i#j), then the
previous sum is equal to the sum of the expected number of bad blocks longer than a target distance.
We approximate this sum of a finite geometric series by summing the infinite geometric series.

If the target is IgN, then during the routing of the wafer we expect to meet S bad blocks with
lengths from I[gN + 1 to infinite, where S is given as the following sum:
S =N2.(1/21gN+3 +1/2igN+4 +) =N2.(1/2igN+3)/(1-1/2) =N2.(1/4N) = N/4.
So we expect to find N/4 bad blocks when the target is [gN. Since the wafer is of size NxN it is very
reasonable to consider that in a uniform distribution of these bad blocks we will have at most one bad
block in each row of the wafer. Based on this assumption we build the following probabilistic model.
Call a row bad if it contains a bad block and free if it does not. The probability of a row to be bad for a

given target distance, is equal to:

32

_ Expected number of bad blocks longer than the target distance
a Total number of rows N of the wafer

p

The event of a row to be bad or free is independent of the status of the other rows. Now we can treat a
row in the way we treated a block. To be more specific, we saw that for target distance [gN we expect
N /4 bad blocks. Since we assumed that a row has at most one bad block, we expect N /4 bad rows.
We model this by assigning the probability of having a bad row as 25%. Then, since the events are
independent, the probability to have two consecutive bad rowsis p = (1/4).(1/4) = 1/16 and generally
the probability to have n consecutive bad rowsisp = (1/4)». The probability to meet a bad row
bounded by two good rows is p= (1/4) -(3/4) - (3/4) since the probability to meet a good row (without a
bad block) is 3/4. Now, as we did for the lengths of the bad blocks, we can make the following table

indicating how many times we expect to meet sets of 1,2,...,n bad rows.

sets of bad rows expected number

N x ((9/16)(1/4))

2 N x ((9/16)(1/42))
[lgN/2]-2 N x((9/16)-(1/4(1gNi2]-2))
[lgN/2]-1 N x((9/16)-(1/4l1gNi2]-1))
[lgN/2] N x((9/16)-(1/4[1gNi21))

The probability to meet exactly [IgN/2] consecutive bad rows is ((9/16)-(1/4/1gN/2])) =0(1/N), and
since we have N rows we do not expect to meet more than Nx((9/16)-(1/4[l1gN/2])) <1 sets of [IgN/2]
consecutive bad rows. Even if we let the size of the set of bad rows to go to infinity (practically, to N),
we do not expect to meet more than:

= (9N/16)-(1/4l1gNi2] + 1/4(1gNi2]+1+) = (9N/16)(1/4[1gN2]) / (1-1/4) = (3N/4)(1/4[1gN2]) < |
sets, of [IgN/2] or more consecutive bad rows. It is reasonable to say, for our simulation purposes,
that we do not expect to meet a set of bad rows with size bigger than [IgN/2].

Under our assumptions we know the expected number of bad sets in our wafer for the given target
distance. If we could also find the expected utilization for each set of a certain size, then we would be
able to find the expected utilization of the wafer. To compute the expected utilization of each set we
have to compute the expected utilization of each row of the set. When we start moving on a row
having a bad block, there is a probability p to meet the bad block depending on the position of the

block and the direction we are moving. So with probability p we utilize the portion of the row between

33

the starting point and the bad block. With probability I-p we do not meet the bad block and we utilize
the portion of the row from the starting point to the end of the row. A systematic way to explore all
the possible ways to utilize certain portions of a row is using a Markov Chain model. States of the
system are all the possible positions in a row. Since in the snake algorithm each row has a
predetermined direction (left to right , or right to left) we also characterize each position in a row by
the direction in which we are going to move. For a wafer with N elements in a row this model gives
2N states.

We will now consider all the possible transitions between the 2N states. Figure VI.1 illustrates
these transitions. We have two sets of N states each, and to each set is assigned a direction. A
transition between i in the first set and j in the second is characterized by the transition probability
plijJ; this is the probability to go from position i in a bad row, with a fixed direction, to position jon
next row with the opposite direction. In some cases this transition probability may be equal to zero.

In a bad row with direction from left to right (right to left) there are N possible positions to start a
bad block, assuming that the bad blocks at the right corner (left corner) are wrapped around to the
next row. If the next row is also a bad row then there may be an overlap at the right boundary (left
boundary) between the two bad blocks of the consecutive bad rows. In our model we do not allow that
kind of overlapping; in some cases, this leads us to a situation where we expect fewer than N starting
positions for a bad block in a bad row. We included this fact in the calculated probabilities p.

If we are interested in multiple rows, the meaning of the above model is the following: If we have
a set of K consecutive bad rows and we want to compute the probability p(i,j] to go from position i at
the first row to position j at row K’ (K’ < K), we have to explore all the possible paths of length K’
from i toj. This is actually needed to compute the utilization of the K’th bad row in a set of K bad rows
(where i is a position at the first bad row). Furthermore, as discussed below, we are considering the
block size.

We saw earlier that if the target distance is [gN then we expect N/4 blocks of size (length)
b>IgN. Using these results we can also see how many blocks of an exact size we expect. If we weight
each block of expected size b with the expected number of blocks of that size and take the average, we

obtain something we call the average length of a bad block, by,.For target distance [gN we have:

IgNINY2! N *3) L (2igNyN%22eN+3) 4
W NYENt L NY@YEN+Y)

=I[gN+2

We want to use this length as a uniform length for all the bad blocks of size b, so that we can compute

values to use as probabilities p(i,j].

34

In Figure IV.2 we show all the possible ways to go from a position i in a row (with direction left to
right) to position j in the next row (with direction right to left) if at least the first row contains a bad
block of size b,,. The same transitions with the same transition probabilities exist for the mirror case,
when we go from position N-i+1 in a row with direction from right to left, to position N-j+1 in the
next row with direction from left to right.

In the case 2.a after hitting a bad block, we go down to a position j not occupied by a bad block. In
the case 2.b, we see the effect of taking into consideration the block size. In calculating the
utilization of the first row we do not consider the segment x as utilized because of the backtracking.
This becomes more clear in case 2.¢, where the utilization of the first row due to the transition (i) is

Zero.

left to right right to left

2 2
3 3
N-2 -
N-1 -
N N

pIN,N-1]

Figure IV.1 : 2N states with some transitions

35

The last case is when the bad block is behind the position we start moving (2.d). Then, since we
assume only one bad block per row, we will not meet another bad block in the same row. If the bad
block in the second row (if it contains one) does not start at position N, we will visit position N of the
next row, else we will visit position N-bg,, of the next row, since the bad block in the second row is

seated between N-b,,+1 and N.

IV.2a IV.2b

IV 2¢ IvV.2d

position

- bad block

FigureIV.2

Because of the backtracking operation, the utilization of the Kt® row in a set of K’ bad rows

where K’ > K is a little a bit less than the utilization of the same row in a set of K bad rows. We

36

denote as Ug the utilization of the Ktk row for the first case, and as Uk’ the utilization of the Ktk row
for the second case. We use By to denote the utilization for the free row after a set of K bad rows. We
have as many free rows of these kinds as we have bad sets, so totally we have:
S=N/24+N/25+...4+1+1/2+...=N/8 free rows not fully utilized. Since N/4 rows contain a bad block,

the remaining N/8 free rows are fully utilized. The expected utilization for the whole wafer is :

U=(100/N2){(N/4)1 +...N/2igN+3Bgn + 1) +((N/25+..N/2IeN+2)U3 + .. (N/2IgN+3)U\gn) +
(N/23Uy’ + NI24Ug’ + ... + NI2BN+3U 1gn 4 1)].

To obtain the values of Uy, Uk and By, we simulated the Markov chain model for wafers of size up to
64x64. We did not simulate larger wafers because the computational time needed for larger wafers
was too large. In the following table we present the results for target distance [gN-1 computed with

this model, in addition to the results for target distance [gN.

target distance D expected values of U experimental values of U
IgN-1 62.5% 66.5%
IgN 78.5% 80%

As you can see, the expected results estimated for the cases [gN-1 and IgN are more pessimistic than
the experimental values. The reason, as we said, it is that we considered only the case where there is
only one bad block in a row. In reality, since we expect more than one bad blocks in a row, we expect
more rows to be free of bad blocks. Therefore we expect an increase in the utilization of the wafer. In
the case we examined, where the probability of meeting a bad block in a row is 1/4 (small), this
assumption is quite reasonable and gives good results. Since the assumption may not hold, the
obtained results are not a rigorous approximation, but help explain the utilization. On the other
hand, for length l[gN-1, where the same probability is 1/2, the expected value of U deviates more from

the experimental.

IV 2. The expected utilization of the spanning tree algorithm

The main result of the analysis in [2] is the following theorem:

37

THEOREM. For arbitrarily large N and any R <p, a chain of length K=RN? can be connected from

an NxN array with yield 1-O(N-2) and maximum connection length

2y

for some constant ¢ >1. No more than two tracks are required in any channel.

This theorem is the final step of the analysis made in [2]. In previous lemmas they proved that if the
probability g of a block to be vacant is ¢ <1/5 then with high probability all the blocks of the wafer
except some negligible fraction belong to a single cluster. Clearly the above probability q depends on

the block size. Since we require at least four live cells in an occupied block, g is equal to:

3
q=> Oa-pip*
In our experiments for blocks of size bigge; _t?lan 3x3, the probability q is less than 1/5 and 100%
utilization is obtained; all the occupied blocks belong to a single cluster and we are able to utilize all
of them. For blocks of size 2x2, the probability q is equal to 15/16, which is almost one; the probabilty
to find a cluster of occupied blocks is almost zero. This is verified by the experimental analysis since
we obtained 0% utilization. Finally, for blocks of size 3x3 the probability q=0.25 > 1/5, meaning that
we do not expect all the occupied blocks to belong to single cluster; thus we expect to loose some of

them. As you can see from the experimental results, reasonable yields are obtained for this case but

we do not achieve 100% utilization.

V. Concluding remarks

In this paper, we studied four algorithms for the reconfiguration of linear regular arrays in the
presence of defects. We found the expected utilization depending on the maximum allowable length
of connections and we verified, for certain values of distance length, that the expected values are very
close to what we found experimentally.

The snake and the adaptive-snake algorithm obtain a 100% utilization with target distance
O(IgN), but the partitioning algorithm achieves the lower bound O(sqrt(IgN)) as has been proved in
[11,[2]. Partition-like algorithms (partitioning in blocks,spanning tree) are the optimum in the linear
case, achieving 100% utilization at moderate interconnection distances. They have the disadvantage
that the spacing of tracks between the cells is not uniform. Thus we need to know the block size in
advance in order to make the tracks. Comparing the two partitioning algorithms alone, the

partitioning in blocks algorithm seems superior to the spanning tree algorithm since it achieves

38

almost 100% utilization even for small size blocks, where the spanning tree algorithm fails to make a
linear connection, for the same worst case wire length. Comparing the snake with the partitioning

algorithms in terms of average length connections, the snake is clearly superior.

VI. Acknowlegements

We would like to thank Richard Lipton and Ken Steiglitz for helpful discussions. We would especially
like to thank Richard Lipton for raising the issues of bus routing (Section II.5) and pointing out the

doubling solution.

VII. References.

1. Broadbent, S. R. and Hammersley, J. M.: “Percolation processes”, I. Proc. Cambridge Phil. Soc.
53(1957), pp: 629-641.

2. E. T. Cohen: RANDOM(3), UNIX Programmer’s Manual, September 29, 1985.

3. Frisch, H., Hammersley, J M., and Welsh, D.: “Monte Carlo estimates of percolation probabilities
for various lattices”. Phys. Rev. 126, 3(May 1, 1962), pp: 949-951.

4. J.Greene and A. Gamal: “ Area and Delay penalties in Restructurable Wafer Scale Arrays ”
Journal of the ACM, Vol 31 No 4, October 1984, pp: 694-717.

?

5. 1. Koren: “ A Reconfigurable and Fault-tolerant VLSI multiprocessor array ”, in Proc. Eighth Int.
Symp. Comp. Architecture, 1981.

6. H. T. Kung: “Why Systolic Architectures ”, Computer, Vol. 15, No 1, January 1982, pp: 37-46.

7. F.Leighton and C. Leiserson: * Wafer Scale Integration of Systelic Arrays ”. IEEE Transactions on
Computers, Vol C-34, No 5 May 1985,

8. J. I. Raffel and al.: “"A Wafer-Scale Digital Integrator Using Restructurable VLSI”, IEEE
Transactions on Electron Devices, Vol. ED-32, No. 2, February 1985.

