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ABSTRACT

A probabilistic model for the accumulation of clock skew in synchro-
nous systems in presented. Using this model, we derive upper bounds for
expected skew, and its variance, in tree distribution systems with N syn-
chronously clocked processing elements.

We apply these results to two specific models for clock distribution.
In the first, which we call metric-free, the skew in a buffer stage is Gaus-
sian with a variance independent of wire length. In this case the upper
bound on skew grows as ©(logN) for a system with N processing ele-
ments.

The second, metric, model, is intended to reflect VLSI constraints:
the clock skew in a stage is Gaussian with a variance proportional to wire
length, and the distribution tree is an H-tree embedded in the plane. In
this case the upper bound on expected skew is @(VNlogN) for a system
with N processors. Thus the probabilistic model is more optimistic than
the deterministic summation model of Fisher and Kung, which predicts a
clock skew ®(N) in this case, and is also consistent with their lower bound
of Q(W) for planar embeddings.

We have estimates of the constants of proportionality, as well as the
asymptotic behavior, and we have verified the accuracy of our estimates
by simulation.
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1. Introduction

The accumulation of clock skew, the differences in arrival times of signals in a
computing system with a central clock, is one of the factors that limit the speed of such
systems. While some researchers have attempted to describe the underlying physical
causes of skew [2,9], there is little published material describing models of skew accu-
mulation and the asymptotic behavior of skew with increasing system size.

Fisher and Kung in [4] present two models and derive bounds on clock skew under
each. They assume, in each case, that the global clock is distributed via a rooted binary
tree of buffers and wires.

The first of their two models, the ‘‘difference model,”’ specifies that the skew
between two clocked nodes is proportional to the difference in the path lengths from each
clocked node to their nearest common ancestor in the distribution tree. ‘‘Path length’’
means the actual geometric length, not the number of edge traversals in a representative
graph. Under this model, both one and two-dimensional arrays can be clocked without
skew by distributing the global signal via a topology that has equal path length to each
clocked node. An H-tree is just one example of such a topology.

The second model, the ‘‘summation model,”’ is less optimistic. It states that the
skew between two clocked nodes is proportional to the sum of the path lengths from each
node to their nearest common ancestor. Using this model, Fisher and Kung were able to
show that one-dimensional arrays of processors can be clocked with a constant amount of
skew, whereas two-dimensional arrays cannot. They establish a lower bound of Q(ﬁ),
and this model leads to a skew of @(N) for an H-tree.

"This work was supported by NSF Grant MIP-8705454, U. S. Army Research Office-Durham Contract DAAG29-85-K-
0191, and DARPA Contract N00014-82-K-0549.
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Both of these models ignore what we consider to be a fundamental property of
skew, namely, its roots in the random variations of propagation time through buffers and
wires.

Others [5] have developed equations that relate skew to system performance and
stability, in terms of simple timing parameters such as the propagation time and the set-
tling time of the components of the processing elements. The equations specify bounds
on the skew for proper operation in terms of other system timing parameters. No attempt
is made to address the nature of the origin of skew, nor to relate its rate of growth with
system size.

This paper presents and analyzes a probabilistic model for the accumulation of skew
in a globally distributed signal. We determine upper bounds for the expected clock skew
between processing elements in a processor array, and show that under the assumption
that the delay is the same at each stage of the clock distribution tree, any array can be
clocked with expected skew that is O(logN) where N is the number of processing ele-
ments.

The organization of the papers is as follows. In Section 2 we present our formal
model of global signal distribution and skew accumulation. Section 3 presents an
analysis of the model and derives upper bounds for the expected skew in a global signal.
Section 4 applies the results to two examples, and we conclude by comparing our results
to previously published results and by discussing the implications of these upper bounds
on the construction of large synchronous systems.

2. A General Model of Signal Distribution

A global signal, such as a clock, is distributed throughout a processing system by a
signal distribution system. The distribution system is composed of a number of buffers
(amplifiers) and wires which may be organized in a number of different ways. Two com-
mon structures are a bus and a tree.

The clock distribution system can be represented by a graph. It has a single dis-
tinguished vertex which is called the source. This is where the origin of the global signal
is located, and it is the only input to the distribution system. The distribution system can
have multiple destinations, but for practical reasons, there is exactly one path from the
source to each destination. We assume that a destination is a processing element (PE)
which may have its own internal signal distribution system. Using the tools which are
developed below, the internal system can be modeled in a similar manner to the global
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signal distribution system. For our purposes, however, we can think of it as hidden; we
concern ourselves only with the global signal system.

There is a second graph superimposed on the clock distribution graph. It is a com-
munication graph which specifies the PE-to-PE connectivity. It can take any topology:
linear list, mesh, complete, bipartite, etc, and forms connections only among the PEs.
The PEs use the global clock to synchronize their communication along the communica-

tion graph.

Each buffer and wire in the clock distribution system propagates and delays its
incoming signal. Therefore, it is natural to associate every delay element in the signal
distribution system, whether a buffer or a wire, with a real random variable, d ;. The value
of the random variable gives the delay contribution of that element. The delay at any
stage of the clock distribution system is the sum of the delays from the signal source to
that point. An equivalent process takes place in the model. The delay at any point is a
real random variable which is the sum of all the random variables along the path from the
source to that point.

These definitions constitute the essence of the model. They make it very simple,
but extremely general, and allow one to model any clock distribution system. Geometry
can be incorporated into the model by attaching an appropriate probability density func-
tion to wire delays. There is also the freedom to analyze as much or as little as desired
by creating simplified models, in which buffer delays or wire delays can be ignored
entirely.

Our primary interest is skew, the distribution of arrival times of a particular clock
pulse to all of the PEs that communicate. Since the model is probabilistic, it is not possi-
ble to give an expression for the worst-case skew. Rather, we derive an expression for
the expected maximum skew by assuming that the two PEs which exhibit the largest pos-
sible clock skew do indeed communicate.

So far, we have made no mention of any particular probability density functions.
The total delay through the distribution system, i.e., the arrival time of a clock pulse to a
PE, is the sum of a number of random variables. In many cases, it quickly converges to a
normal distribution, by the Central Limit Theorem [1, 3, 8]. Thus, in the case of the skew
computations, the actual distributions attached to buffers and wires are usually relatively
unimportant.

The arrival times of a signal to the N PEs constitute a random sample of size N.
From this sample, find the difference between the largest of them, A ,,, and smallest,
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A nin- The random variable R = A,y —Anmin is called the range of the sample. The
range is equivalent to the skew in the signal distribution system. The maximum clocking
frequency clearly can be no faster than 1/R.

3. Analysis and Upper Bounds

The literature contains techniques to compute the expected range of a set of
independent identically distributed (iid) random variables. However, little is described
about the case when the variables are dependent, as they are in the clock tree. For-
tunately, it is possible to use the statistics of iid variates as an upper bound on the statis-
tics of the dependent variates of the clock tree. The relationship is given by Theorem 1,
which can be paraphrased in the following informal way:

The expected range of a set of random variables, which are dependent
because they are the sums of overlapping variables, is no greater than
the expected range of the corresponding set of independent random
variables.

Let y;, i =1, 2, ..., N be independent identically distributed (iid) real random vari-
ables, with N =kn, and let the sets 0; j =1, 2, ..., n be n disjoint subsets of distinct y;,
each of cardinality k. Let the T; be similarly defined, with k distinct elements each,
except that they are not necessarily pairwise disjoint. Define the corresponding sums of

the y; by
5= BY
yGO’i
and
=57
yETj

We want to show that the expected range of the s; dominates the expected range of the #;,
and so any upper bound for the former also holds for the latter. First we need two lem-
mas.

Lemma 1. Let F4(x) and Fp(x) be probability distribution functions for random vari-
ables A and B respectively, and suppose further that F4 and Fp are differentiable and A
and B have finite means and variances. If F4(x) 2 Fp(x) for all x, then E(A) £ E(B).
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Proof. Integrating x dF (x) by parts from a to b for Fp and F4 and subtracting, we get

b
EB)-E(A) = lim | bAF(b)—aAF(a) - [AF (x) dx

b—+eo

where AF = Fp —F, <0. To show that the first two terms go to zero as a and b
approach —ee and +eo respectively, we apply 1’Hospital’s Rule:

d

~—1 AF

dq[ (‘”] _AFQ) _ _2pprg
afd —s
dq| q QZ

F4 and Fp are differentiable and have finite variances, so the integral
oo
| x2F (x) dx ™*)

is finite. This implies that the integrand of (*) must go to zero as x approaches +e and
—oo, Therefore

oo

EB)-EA) = —[AF(x)dx 2 0
O

The next lemma expresses the intuition that the pre-condition y <3 can only make y <
more probable, no matter what o and P are.

Lemma 2. For any o and B, and any continuous probability density P,
Py<aly<P) 2Py<ao)
Proof. For convenience write
Py<o) = G(o)
Py<aly<P) =G(lB)
Py<a,y<P) = G, P)

so that we want to show

G(alp) = %‘% > G(o)



First, consider the case o < 3. Since
G (o, B) = G(min[a, B])
we have

Gl p) = %—% > G(0)
When o > B we have simply
G(a|[3)=%%=1zc(a)

O

Lemma 2 is easily generalized for any number of conditions to
GlBy, )2 G (**)

and in fact to the probability distribution of sums of variables, conditioned on other sums,
so long as the inequalities in the conditions all go the same way. That is, write any

dyi<xasy,<x-— )Yy for some k and apply Lemma 2. There are no restrictions on o
i#k

and B.

Theorem 1. The expected range of the s; is no smaller than the expected range of the ;.

Proof. Note first that because E[ range ] = E[ max — min ] = E[ max ] — E[ min ], it
suffices to show that the expected max of the 5; cannot be less than the expected max of
the 7;; the appropriate inequality for the min follows by a symmetric argument.

Let S and T be the maximum of the sums si,j=1,2,.,nand ¢, j=1,2,..,n
respectively, and Fg and Fy their distribution functions. By Lemma 1, it suffices to show
that Fr(x) = Fg(x) for every x.

To simplify notation, let S; denote the event s;= Y y <x and T; the event

YEO;
t; = Y,y <x. The distribution function Fg(x) can then be written as
YET
Fs(x) = P(Sl, S2, ey Sﬂ)
= P(S1)P(S7) - - - P(S,) because the S; are independent.
The distribution of T is

FT(x) = P(TI, TZ’ seey Tn)
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= P(T)P(Ty | T)P(T3 | Ty, To)P(T4 | Ty, Ta, T3), ...

by iterated Bayes’ rule. Each factor in this product is
P(t; <x 111 €x,t28x, ***, ti-1 $X)

All the conditioning is of the form Xy < x and so we can apply the generalized version of
Lemma 2 to show that each factor is = P(T;). The result F = Fs follows from the fact
that the s; and #; are identically distributed, each being the sum of & iid variables. [J

Now that we have established this theorem, any bound that we show for iid variates
is an upper bound for the variates that arise in the clock distribution system model.

At this point we are going to assume that the arrival times are Gaussian, motivated
by the Central Limit Theorem. Although no closed-form expression is known for the
expected value and the variance of the range of N iid Gaussian distributed random vari-
ables, it is possible to obtain asymptotic expressions. We present these as Theorem 2, the
proof of which is due to Cramér.

Theorem 2. [1] Let x;, i = 1,...,N be random samples from an n(u,62 ) distribution,* and
let R =Xpax —Xmin be the difference of the largest and smallest x;. Then the expected
4logN-loglogN—logdn+2C +0

1
(2logN)* logN ” i

where C = 0.5772... is Euler’s constant. The variance of R is given by

_ o = !
VarlR] = (25 +0[ = gzN] @

Equation (1) is therefore an asymptotic upper bound on the expected skew in a clock dis-
tribution tree with N leaves. Note that ¢ will in general be a function of N.

value of R is asymptotically:

E[R] = o

4. Examples

We now analyze two examples of global signal distribution systems. This is meant
to clarify how a model is developed for a real problem. The examples represent what we
consider to be common, typical clock distribution systems, but they are not intended to
represent the full scope of all possibilities.

S
We use the notation n(j1,62) to denote a normal distribution with mean 1 and variance 2.



4.1. Metric-Free Tree

The first example is a metric-free tree. This type of topology could be used to
implement a large-scale distribution system which would provide a clock to chips on a
board or to boards in a system. It does not constrain the circuit to be planar, so it is pos-
sible to equalize the lengths of all wires in the tree. Therefore, every wire has the same
probability distribution for delay, which can be lumped with the delay of the buffer that
follows it. This results in a model of a tree of buffers without wires.

Assume that the global clock signal is distributed via a binary tree of buffers and
wires. The root of the tree is the source of the signal, the PEs are placed at the leaves,
and the intervening levels consist of buffers and wires. See Figure 1 for a schematic
representation of the tree.

Figure 1: Clock Distribution Tree

In the figure, internal nodes, represented by small circles, are buffers which
retransmit the clock signal. The leaf nodes of the tree, represented by squares, are the
PEs that perform the actual computation and that communicate among themselves. Lines
connecting nodes of the clock tree represent wires that conduct the clock signal to all the
PEs.

Let the delay through a buffer of the clock distribution tree be a real random vari-
able, d;. The arrival time of a clock signal to any PE is the sum of the delays along the
path from the root of the tree to the PE. Remember that all the delay is caused by the
buffers; the effect of a wire is absorbed by the effect of the buffer that follows it. The
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arrival time at leaf i, A;, is therefore the random variable
A; =3, d; where the d; lie on the path from the root to i.
In order to apply Theorem 2, we must estimate the underlying distribution of the A;.

Assuming that there are N PEs, each A; is the sum of logN d;’s, and that each d; has
variance O3. By our Gaussian assumption, the A; have the distribution

n(uylogN, oilogN). Applying Theorem 2 with this distribution, we find that the

expected skew is
1
3
logN ]j| )

E[Skew] = Gb\’IOgN_ 410gN—ltz;ij_z§NN)—iog4n+2C w

=0p %logN + lower order terms

= B(logN)

The variance of the skew is

) 12
Var[skew] = 63—+ O

6

1
logzN
which goes to a constant as N — oo,

Computer simulations corroborate the asymptotic skew results. Figure 2 shows the
asymptotic curve, Equation (3), along with data gathered from simulation of the range of
arrival times in a binary clock tree and the range of N iid n(0,logN) random variables.
Both simulations present the average behavior from 100 trials. The simulations confirm
that the range of the iid variates is an upper bound for the range of the dependent vari-
ables of the clock distribution tree, as predicted by Theorem 1.

To check the result when the component delays are not Gaussian, we simulated a
clock tree where the buffer delays were uniform over [-.5,+.5]. These data were com-
pared to the results from a similar computation when the buffer delay was normally dis-
tributed with mean 0 and variance 1/12 (The sum of k uniform [-.5,+.5] variates con-
verges to n(0, k/12)). Figure 3 presents the results. Even for trees of small depth, the
expected range in both cases is nearly identical. This is due to the rapid convergence of
the sums of random variables to a normal distribution.
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Figure 2: Range / Skew of Random Variables (Metric Free)

solid = n(0,1/12) buffer delay
5 ld = Uniform [-.5,+.5] buffer delay
-
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5
=
| | I
10 100 1000
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N

Figure 3: Skew in Tree with Uniform and Gaussian Delay

The explicit inclusion of wire delays into the model does not significantly alter the
results. Wires can be considered to contribute an additional random delay at each level
of the tree. Assuming that wire delays are distributed similarly to the buffer delays, the
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effect is to increase the variance of the distribution of arrival times by a constant factor.
This does not alter the asymptotic behavior of skew.

4.2. Metric Tree

The second example is a metric tree. This is the type of system that is discussed in
[4] and is typical of systems described for VLSI. The central assumption of this topology
is that the circuit must be embedded in the plane. If the embedding is to be area-efficient
[7], then the wires that connect buffers cannot be the same length everywhere. The delay
through a wire therefore depends on the its location in the tree, and cannot be lumped
with a buffer delay.

A common tree of this type is the H-tree [6]. We choose to model it here because it
is well known, it is feasible to implement in VLSI, and it the focus of the analysis in [4]
$O we may compare our results with theirs.

There are two distinct views of the effects of increasing system size (number of
PEs) under the metric assumption. The first is to assume that a tree with an arbitrary
number of leaves can be embedded in the fixed area of the integrated circuit. The alter-
native to this view sets a lower limit on the size of the smallest feature; in this case the
size of a wire at the tree’s leaves. Each preceding level is progressively larger and the
area of the entire clock tree grows with increasing system size. This view ignores the
effect of shrinking feature size but is compatible with increases in chip die size. We will
adapt the second model, as did Fisher and Kung.

Refer again to Figure 1, keeping in mind that in the metric case the wires are not all
of the same length. Assume that every buffer delay, d;, is n(ub,cs%). For this analysis,
we will also assume that a wire delay, wj, is Gaussian distributed with a mean value and
a variance proportional to its length. The linear relationship for the variance can be
justified by considering a long wire to be equivalent to two shorter wires placed end to
end. The propagation delay of the long wire is equal to the sum of the propagation
delays of the two shorter wires. The expected values add, as do the variances because the
delays of the short wires are independent.

The wire delay at the leaves of the tree is n(uw,c,zv) distributed. Because wire
length doubles at each higher level of the tree, the distribution of w; can be written as a

function of the level number, d, of the wire. We find that w; is n(W, iv—d, 0'3,, 2%) where

1<d <logN.
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The total delay, A;, is the sum of logN buffer delays and the sum of wire delays
from each level of the tree. The wire delays form the geometric series

(14+2+4+ - --+%V-) =N-1. The total delay, A;, therefore has the distribution

n(uplogh+u,, (N-1), c%logN+o‘%(N—1)). As N— oo, the linear (wire) term dominates.
The expected skew is therefore

Il

E[skew] = 6, VN AlogN—loglogN—logdn+2C
V2logN

1
o

T'\/ NlogN + lower order terms

Il

I

O(Nlogh)

and the variance is given by

2N | 2 1
Var[skew] = 7 gN[ ] +O[ logN]

Figure 4 shows the results of computer simulations. The dotted curve is the asymp-

totic formula, Equation (4), the solid curve is the range of iid variates, and the dashed
curve shows the range of tree-dependent variates. The simulated cases represent the
average behavior from 100 trials. The discrepancy is greater in this case because the
shared variates, representing deviation from the independence assumption, are near the
root of the tree, where the wire lengths are longer. Thus, this bound is not very tight, and
a more detailed analysis might improve it.

5. Discussion

It is now possible to give an estimate on the probability that the sample value of the
skew is outside a certain range. Assume that X is a random variable with mean p and
variance 6. Then the one-sided Chebyshev inequality [8] yields an upper bound on the
probability of exceeding the mean skew by an amount a:

2

P(X > (u+a)) < 020 :

+a

Now let a = atj; that is, o is the fractional deviation from the expected value of skew.
Then, using our estimate, in both the metric and the metric-free case, we have an esti-
mate of an upper bound as N — co:



e

Asymptote—Eqn. 4

of iid variates
200 —
150 —

Expected )

Range 100 . dependent variates
50 —
0-
| I I
10 . 1000
Sample Size
N

Figure 4: Range / Skew of Random Variables (Metric)

il
6
PX > (u+a)) < =
=k 8(logN)% o2

6. Conclusions

As long as VLSI offers a finite resource, large systems must be constructed from
many chips. The clock distribution system can then be non-planar, since it is not res-
tricted to a single VLSI integrated circuit. We therefore consider our metric-free results
to be important in answering the question of the ultimate limit of synchronous computa-
tion. Qur finding that skew grows as the logarithm of the system size encourages us to
believe that very large synchronous systems are feasible. It appears that this estimate is
new.

It is informative to compare our results for the metric tree with those of Fisher and
Kung. Their summation model yielded a lower bound of Q(W) for the skew in a pro-
cessor array with N PEs. The worst case performance of the H-tree under their summa-
tion model is ©(N), whereas we show that expected skew is only @(VNlogN). This
places our result between their summation model bound and their graph-theoretic lower
bound.
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