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Abstract

Let Vi(n) be the minimax complexity of selecting the k—th largest of n numbers 21,25, ..., z, by
pairwise comparisons z; : ;. It is well known that V3(n) = n— 2+ [lgn]. In this paper we study
V3(n), the minimax complexity of selecting the second largest, when tests of the form “Is z; the
median of {;,z;,z;} ?” are also allowed. It is proved that n—3+ [lgn] < V{(n) < n—2+ [lgn].

Furthermore, both upper and lower bounds are achieved for infinitely many n .

1This research was supported in part by the National Science Foundation under grant number DCR-8308109.



1 Introduction

The problem of finding the k — th largest element of n distinct real numbers, also known as the
tennis tournament problem, has been studied extensively (see e.g. Knuth [Kn]). Let Vi(n) denote
the worst-case complexity in the decision tree model when only comparisons of the form z; : z;
are allowed. It is well known (see [Kn]) that Vi(r) = n—1, V3(n) = n — 2 4 [lgn] (Kislytsyn
[K1]), and, for large n, Vi(n) = n + klgn + O(1) for any fixed k£ > 3 (Yao [Y3], Pratt and Yao
[PY], Hyafil [H], Kirkpatrick [K] ). When comparisons f(z1,z2, ..., &,) : 0 with more general
f are allowed, the corresponding complexity is less understood. It is known that, when linear
functions f are permitted, the corresponding complexity satisfies Vi(n) = n — 1 (Reingold [Re]),
Va(n) = n — 2 + [lgn] (Yao [Y1]), and Vi(n) = n + klgn + O(1) for fixed k > 3 (Fusseneger
and Gabow [FG]). However, when higher degree polynomials f are employed, it is only known
(Rabin [Ra]) that » — 1 comparisons are necessary and sufficient to find the largest element of
n numbers. In particular, it is not even known whether, for some constant ¢, n + ¢ comparisons
f(z1,22, ..., z,) : 0 with quadratic polynomials f are sufficient to determine the second largest

of n real numbers.

In this paper, we study the complexity Vj(n) of finding the second largest of z;,z2, ..., z,
using comparisons z; : z; and a special type of quadratic tests (z; — z;)(z; — z¢) : 0 (i.e. “Is 2;

the median of {z;,z;,2:}?”).

To be precise, an algorithm A for finding the k-th largest element is a binary decision tree in
which each internal node v contains a test of either the form “z; —z; : 0” or “(z; —z;)(z;—z¢) : 07;
the two outgoing branches of v are labeled as “ < ” and “ > ”; each leaf £ of A contains an integer
a¢. Let Ry be the set of & = (21,22, ..., z,) with all z; being distinct real numbers. For any
input & = (21,23, ..., &) € Rf, one can traverse a unique path in A from the root down, testing
and branching at internal nodes encountered, until a leaf £ is reached; for A to be an algorithm,
it is required that z,, must be the k-th largest among 1,23, ..., Z,. Denote by cost(A,) the
number of internal nodes along the path. Let C(A) = maz{cost(A,%)|Z € Rj}. Let A, be
the family of all algorithms for finding the k-th largest of n distinct real numbers. Define the
complezity by Vi(n) = min{C(A)|A € An}.

It is of interest to note that V5(3) = 3 while VJ(3) = 2, since one can determine the second
largest of z,y,z by asking two questions: “ Is z the median of {z,¥,2}?” and “ Is y the median
of {z,y,2}?”. The purpose of this paper is to prove two theorems on V;(n). Recall that Va(n) =
n — 2+ [lgn]. The first theorem states that at most one comparison can be saved by using this
additional primitive.

Theorem 1 Vj(n) > n—3+ [lgn] for alln > 3.

The second theorem shows that the above lower bound and the upper bound provided by VJ(n) <
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Va(n) = n — 2 + [lgn] can be achieved infinitely often.

Theorem 2 Vj(n) = n—3+ [lgn] for n =2F+1, and Vj(n) = n — 2+ [lgn] for n = 2* for all
positive integers k.

2 A Geometric Theorem

We prove in this section a result (Theorem 3 below) with a geometric flavor, which will be needed
to prove Theorems 1 and 2. For any set of real-valued functions G in R™, let Sg = {&|g(Z) >
0V g € G};let Sg = R™ when G = 0. Let H be a set of real-valued functions in R™. We will say
that G is a certificate for H if SgNRf # 0 and SgN RF C Sy. Thus, if a point & € RY is known
to satisfy the constraints g(#) > 0 for all g € G, then & must satisfy the constraints h(Z) > 0 for
allh € H.

Let L,, denote the set of all functions of the form EISiSﬂ Ai z;, where all A; are real and at least
one J; is nonzero. For any H C Ly, let rank (H) be the maximum number of linearly independent
functions in H. Let L,(rf') denote the set of all functions of the form p; (%) - p2(%) ... p;(&), where
pi(Z) € Ly, for all i.

Theorem 3 Let GC L, U ng} and H C L, be two finite sets of functions, where n > 2. If G is
a certificate for H, then |G| > rank (H).

The rest of this section is devoted to a proof of Theorem 3. We will consider R™ as a vector
space over the reals. For any 0 < £ < n, let V, ¢ denote the set of all linear subspaces of R™ with
dimension £. For any J C LY, let N; = {Z|g(2) = 0 for some g € J};let Ny =0 when J = 0. It
is clear that S;N Ny = 0.

Lemma 1l Let0<m<n, JC L,(f) with |J| = m. If §j € S, then there ezists V € V;, y_m such
that § € V and V — Ny C Sj.

Proof of Lemma 1

We prove the lemma by induction on m > 0. If m = 0, we can satisfy the lemma by taking
V = R". In the inductive step, let 0 < mg < n, and assume that we have proved the lemma for
all m < mgy. We will prove it for m = my.

Let J = {f1,f2, .-+, fmo}. By the induction hypothesis, there exists Vi € Vy n_m,41 such
that 7 € V; and V; — NJ1 c SJU where J; = {flvf% ceey fmo—l}'

Write fm,(Z) = p(%)-¢(£), where p,q € Ly,. Let @ = {Z|p(8) =0, ¢(Z) = 0},and T = Vi NQ.
Then T is a linear space of dimension at least (n —mg+1)—2 = n—mg— 1. Let W C T by any

3



linear subspace of T' of dimension n — mg — 1. Define V={Z + A§|Z € W, —00 < A < o0}. We
need to verify that V satisfies the requirements as stated in the lemma.

As §j € Sy, we have § ¢ Q and hence § ¢ W. This implies V € V,_,. Also it is clear that
% € V. It remains to show that V- N; C S;. First, V—N; CV; - Nj C S . Secondly, for every
ZeV—-Nj,wehave 2€e V-Q CV-TCV—-W,and thus 2=+ Aj where € W and A £ 0,
which in turn implies that fi,(2) = p(2)-¢(2) = A*p(§)q(§) > 0; therefore V — Ny C {&|fm, (&) >
0}. From the above discussions, we conclude that V — Ny C Sy, N {Z|fm, () > 0} = ;. This
completes the inductive step of the proof. O

Lemma 2 Let X C L,, H C Ly, be two finite sets of linear functions. Let V € V,,, and
Y = Uici<t Y; where Y; € Vo, with 0 < £; < £, 0 < £ < n and t any non-negative integer. If
SxN(V-=Y)#0 and Sx N(V —Y) C Sy, then rank(X) + (n — £) > rank(H).

Proof of Lemma 2

Let V = {Z|pi(Z) = 0 1 < i < n—{} where p; € L,. For any set B C R", let B
denote the closure of B under the standard topology on R™ (induced by e.g. the Euclidean
metric). It is elementary that V —Y = V and that Sy = {h(Z) > 0|h € H}. It follows that
SxNV =8xN(V-Y)C 8y ={h(%) > 0|h € H}. By the well-known Farkas’ Lemma (see e.g.
[SW]), we can write for each h € H, h = Y tex Ar+f+ Yicicn—s pipi for some constants As > 0
and arbitrary p;. This immediately implies rank(H) < rank(X)+ (n —£). O

We will now prove Theorem 3. We can assume that |G| < n, as otherwise rank(H) < n < |G|
is obviously true. Suppose G = {g1,92,--.,9|g|} With g; € Lf) for 0 < ¢ < m and g; € L, for
m < j < |G|, where 0 < m < |G|. Let J = {¢1,92,...,9m}. Choose any § € Sg N R?. Then
7 € Sy, and by Lemma 1, there exists a V € V, n—p, such that § € V and V — Ny C ;. Define
Yi =V n{&|gi(&) =0} for 1 <i <m. Let t = m+(3); let Yy, m < £ < 1, be the (}) linear spaces
of the form V' N {& = (24,22, ..., z,)|zi = z;} where i < j. Then each Y;, 1 < i < ¢, is a linear
space of dimension one less than the dimension of V,since j € V —-Y;. Let Y = Uici<t Yi. Then
N;CY.

Now, let X = {g;lm < i < |G|}. Clearly, SxN(V-Y)#0,as § € SxN(V-Y). Furthermore,
SxN(V-Y)C SxN(V-N;)C SxnNS;= Syg. By Lemma 2, rank(X)+n—(n—m) > rank(H),
which implies | X| + m > rank(H), i.e. |G| > rank(H). This proves Theorem 3.

3 Proof of Theorem 1

Let G and H be finite sets of functions on R". The next lemma states that any certificate for z;
being the maximum of #1,29, ... , 2z, must have cardinality at least n — 1. Let n > 3.



Lemma 3 Let G C L, UL be a certificate for H = {z1 — z;|2 < i < n}. Then |G| > n— 1.
Corollary 1 Any A € A, must have at least 271 leques.

Proof: The lemma follows from Theorem 3, since rank(H) = n — 1. We now prove the
corollary. Let A € A, ;. Without loss of generality, we can assume that each branch of any
internal node is traversed by some input & € Rj. By the lemma, each node at a distance
Jj £ n—2 from the root is an internal node, and hence has two descendants. It follows that there
are 2”2 internal nodes at a distance n — 2 from the root, and each has at least two leaves as its
descendants. This proves the corollary. O

Definition 1. For any set G of functions on R", let Mg denote the set of all § for which there
exist (z1,%2, ..., n) € Sg N R} with z; = maz{z;|1 < i < n}.

Definition 2. Let D,, denote the set of (z1,22, ..., ,) € R} for which z, is the second largest
of the z;’s.

Lemma 4 Let G C L, UL such that § # Sg N R} C D,,. Then 1< |Mg| < 2.

Proof:  Clearly |[Mg| > 1. We need to prove |Mg| < 2. Let G' C G be the subset of
functions with a dependency on z;,. We partition G’ into Jo, J1, J2,J3. Let Jo = {i|z; — 21 € G'},
J1 = {ilz1 — z; € G’} , Jo = {i|(z1 — z;)(z1 — 2;) € G’ for some j # 1,1}, J3 = {i|(z; — z1)(z1 —
zj) € G' for some j # 1,i}. If |Jo| # 0, then clearly |Jo| = 1 and Mg = Jo ; in this case
|Mg| = 1. We can thus assume that |Jp| = 0.

Claim: Mg C Js.

To prove the claim, we first note that ¢ € Mg must be in J; U J3 U Ja3; otherwise take a
point (y1,¥2, ..., ¥n) € S N RY with y; > y1 > y; for all j # 1, and let & = (21,22, ..., Tn)
with 2y =9, ,2i =y ,2; =y; forallj # 1,i, then £ € Sg N RY, but & ¢ D,,. If i € Jy,
then for all & = (21,22, ..., z,) € Sg N R}, 21 > z;; hence i € Mg. If i € J,, then for all
# = (21,22, ..., Tn) € Sg N RY, (z1 — zi)(z1 — z;) > 0 for some j # 1,4; that implies z; > z;
and z; > z;, as otherwise 1 < #; , 1 < z; which would contradict # € D,,. Thus, i € J; also
implies i € Mg. This proves Mg C Ja.

If |Js] < 2, then [Mg| < 2, and the lemma is clearly valid. If |Js| > 2, then there exist
two distinct (z; — z1)(z1 — 2j), (2, — z1)(z1 — 2¢) € G'. If {i,5} N {s,t} = O, then, for all
& = (x1,%2, ..., Tp) € Sg N R}, z1 < maz{z;,z;} and z; < maz{z,,2}, and hence z; cannot
be the second largest of #1,23, ..., @, contradicting & € D,,. If {i,5} N {s,t} # 0, then without
loss of generality, we can assume that s = j and ¢ # 4. Thus, forall # = (24,22, ..., z,) € S¢NRE,
either z;,7; < 21 < zj or z¢,z; > &1 > zj; as & € D, we can only have z;,2; < 71 < z;, which
implies that M = {j}, and hence |[Mg| = 1. We have thus proved |Mg| < 2 in all cases. O



To prove Theorem 1, let A € A, 2. We need to prove that C(A4) > n — 3 + [lgn]. Without
loss of generality, we assume that each leaf can be reached by some input Z € R}. Let §(A) be

the number of leaves. For any leaf £ in A, let the constraints along the path from the root of A
to £ be {f > 0|f € Gy}, where G; C L, UL?). By Lemma 4, 1 < |Mg,| < 2.

Let us make one further comparison z; — z; : 0 at each leaf £ with Mg, = {i,j} and i # j,
which clearly determines the t € Mg, with z; = maez{z1,22, ..., z,}. This gives an algorithm
A" € Ay 2 such that

§(A") <2§(4) , (1)
and each leaf ¢’ in A" has [Mg,, | = 1. Let L; = {¢'| Mg, = {i}}. Clearly,
A= > ILi (2)
1<i<n
We will now prove, for each 1 < i < n,

|Lil 2 277% . (3)
This will complete the proof of Theorem 1, since (1), (2) and (3) imply
1
(4) > i) (@
2 %n : 2n—2 ’

and hence C(A4) > [lg §(A)] = n — 3+ [lgn].

It remains to prove (3). Without loss of generality, assume ¢ = 1. We will trim the branches of
A’ to make it an algorithm A” in A,_1; and with §(A”) < |L1|. But by the corollary to Lemma
3, #(A") > 22, and thus |L;| > 272,

For any internal node v € A’, if the comparison is #; — z; : 0, or (z; — z1)(z1 — z;) : 0, we
delete the “ >” branch outgoing from v, and then remove v; if the comparison is z, — z; : 0,
we delete the “ <” branch, and then remove v; if the comparison is (zq — 2;)(z; — 2;) : 0, or
(zj — z;)(z; — #1) : 0, we replace the comparison by z; — z; : 0. At each leaf ' € A’, the
output j remains the same. It is easy to see that this gives an algorithm B € A,,_;; for input
§ = (22,28 +.v5 Zn) E Rg"l, since the path traversed by ¢ in B is the same path as traversed
by (o0,22,23, ..., z,) in A’. Now delete from B all nodes, branches and leaves that are not
traversed by any such (23,23, ..., 2,), and call the resulted algorithm A”. Clearly, all leaves not
in L are deleted, and we have §(A”) < |L;|. This completes the proof of (3), and Theorem 1.

4 Proof of Theorem 2

A. Let n = 2¥ + 1. To prove Vj(n) = n — 3 + [lgn], we only need, in view of Theorem 1,
to give an algorithm A € A,2 with C(A) = n — 2 + k. First perform a knockout balanced
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tournament using comparisons of the form z; — z; : 0 for each of the groups {z1,z2, ..., Zok-1}
and {Tgk-1, ..., Tp_1}. This takes 2(2F~1 — 1) = n — 3 tests. Now let the largest elements
of the two groups be z;,z; and let S1,5; be the set of z;’s directly defeated by z;,z;; clearly
|1 = |52 = k - 1.

Now make one test “(z; — z,,)(zn — z;) : 0.”

Case 1: If the answer is “ >.” then make one further test “z, — z; : 0;” this tells us whether
z; < &p < zj or Tj < T < x;. Without loss of generality, assume z; < z, < z; to be the case.
We perform k — 1 tests to find the largest of S3 U {2,}, which clearly is the second largest of all
z¢’s. The total number of tests is (n —3) + 2+ (k+1)=n—-2+Fk.

Case 2: If the answer is “ <,” then make one further test “(z; — z;)(z; — ,) : 0;” this tells
us whether z; or z; is the median of {z;,z;,2,}. Without loss of generality, assume the case z;
is median of {z;,z;,2,}. It is easy to check that the maximum of the elements in Sy U {z;} must
be the second largest of all z;’s. Thus, in k — 1 further tests, we can find the desired output. The
total number of testsis (n —3)+ 2+ (k—1)=n -2+ k.

We have proved V§(n) = n — 3 + [lgn] for n = 2¥F + 1.

B. Let n = 2%, and A € Ay 2. We will prove C(A) > n — 2 + k by modifying the arguments used
in the proof of Theorem 1. This will establish VJ(n) > n — 2 + [lgn].

Case 1: The comparison at the root is z; — z; : 0. In the proof of Theorem 1, if we can show
that inequality (1) can be replaced by

1(4') < 24(4) , (5)

then the derivation gives instead of (4),

f(A) > % n P

which implies that
C(A) > [lg (—;-n2""2)'| —n—3+k.

This would prove C(A) > n — 2 + k. It remains to prove (5). It suffices to prove that there is
at least one leaf £ in A with |[Mg,| = 1. Consider any input Z = (21,22, ..., z,) € R} with
xz; > 25 > x4 V1i+#14,7, and let £ be the leaf # reaches. Since the output a; must be j, and the
comparison at the root forces z; > z;, we have |[Mg,| = [{i}| = 1.

Case 2: The comparison at the root is (z; — 2;)(2; — z¢) : 0. Again, define A’ obtained from
A exactly as in the proof of Theorem 1. Now, consider only the left branch at the root of A (the
branch corresponding to (z; — z;)(z; —z:) < 0), and let L, denote the set of leaves £ in this branch



that have Mg, = {s}. Then,

C(A)>C(4A) -1, (6)
and
C(A) 21+ Tlg( > L) - (7)
1<s<n
We will now prove that
> L > (n4 )22 ®)
1<s<n

It would then follow then from (6), (7), and (8) that

C(A) > n-3+[lg(n+1)]
= n-2+k.

To prove (8), first we obtain |L;| > 2"~2 by pruning A’ to produce B and A”, as in the proof
of Theorem 1, and observing that there is no leaf of L; in the right branch of A’. For s # i, we will
produce from A’ an algorithm A with §(AY) < |L,| that computes the largest of n — 2 distinct
input numbers {z,|r # 4,s}. This then implies by the Corollary for Lemma 3 that |L,| > 2"3.
To obtain A}, we set z; = 400, 2; = —00, and prune away from A’ all branches, nodes, and leaves
not reachable by any input of n — 2 distinct real numbers {z,|r # i,s}. In particular, the entire
right branch of A’ is removed. This gives A}, with only leaves in L, left. This proves (8).

We have proved Vj(n) > n — 2 + [Ign] for n = 2%, The upper bound VJ(n) < Vi(n) =
n — 2+ [lgn] is obviously true. This completes the proof of Theorem 2.

5 Conclusions

There are many interesting unresolved questions on this subject. The traditional region-counting
technique for algebraic decision trees (e.g. Steele and Yao [SY], Ben-Or [B]) does not seem to
yield nontrivial results to these problems. We will list below a few open problems.

(a) Determine V(n) for all n.

(b) What is the complexity of finding the second largest, when tests f : 0 with f € Lg') are
allowed?

(c) Let Vk(z)(n) be the complexity of finding the k-th largest of n numbers, when polynomial tests
of degree at most £ are allowed. Is there a constant A > 0 and a function N(k,£) such that
Vk(f)(n) —n 2> Aklogn for all n > N(k,£)? We conjecture that this is true at least for k = £ = 2.



The method used in Yao [Y2] for deriving lower bounds for the convex hull problem may be of

some use in this special case.

(d) Let W3(n) be the minimum number of comparisons z; : z; needed to identify individually
both the largest and the second largest among n numbers zq,22, ..., Z,. It is well known
that Wa(n) = n — 2 + [lgn] (see [Kn]). Let W(n) be the analogous complexity, when median
tests discussed here are allowed. It is easy to modify the arguments in this paper to show that
Wj(n) = Wy(n) = n— 2+ [lgn]. Is it true that we still need n — 2 + [Ign] tests even if we allow
any polynomial tests?

(e) Does Theorem 3 generalize to the case G C L, U 1P u...uLf for ji>2?

(f) Is there purely combinatorial proof of Lemma 37 The present proof involves geometric argu-

ments, since it employs Theorem 3.
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