A DENSITY THEOREM FOR PURELY ITERATIVE
ZERO FINDING METHODS

Joel Friedman
CS-TR-115-87

November 1987



A Density Theorem for Purely Iterative
Zero Finding Methods

Joel Friedman
Princeton University

November 12, 1987

Contents

1 Introduction 1
2 Some Preliminary Results 3
3 Successive Normalizations i

1 Introduction

The goal of this paper is to prove a theorem about the density of points for
which a purely iterative root finding method converges to a root.
For z € C and f(z) = % a;2* consider a map
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where P and Q are polynomials over C. For each f, Ty is a map from
CU{oo} to itself which we think of as an iteration in a root finding method.
We require that
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where P, and @, are homogeneous polynomials of the same degree.

2. Ty(z) depends only on z and the roots ry,...,rq of f, and
A(Ty(2)) = Tag(Az)
for any linear map A:z — az + b, where
Af(2) = aq(z — Ary)...(z — Ara)
for
f(2) = ag(z —r1)...(2 — rq).

3. Ty(r) =r, |T§(r)| < 1 for any root r of f.
4. Ty(c0) = o0, |Tj(co)| > 1 for any f of degree > 1.

To measure the density of convergent points for Ty, let P; denote the
polynomials of degree d with roots in the unit ball. For a polynomial f, let

Trs={z:T}(z) = arootof fasn— oo}

where T is the n-th iterate of T (i.e. T'r is the set of points converging
to a root of f under the iteration T7y). Let

AT,f == |FT,f n B2(0)| .

Then Ar ;/4n is the probability that a random point in B,(0) converges to
a root.

Theorem 1.1 Let T' satisfy (1)-(4). Then for any d there is a ¢ > 0 such
that
AT’J! >c Vf e Py

The above density theorem was conjectured to hold for Newton’s method
by Smale in [Sma85]. This conjecture was proven in [Fri86); the proof used
some special properties of Newton’s method and explicit bounds on the
constants as a function of d were given. The above theorem applies to a
much larger class of root finding methods, though no explicit bounds on ¢
are given.

Examples of T satisfying (1)-(4) are
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1. Newton’s method, T¢(z) = z — 3{7

2. Modified Newton’s method, T(z) = z — h-}fT with a constant k, 0 <
% & 1.

3. Taylor’s Method

L dz 2
Ti(z) == —|—Z = (‘152(' ))
where ¢4(z) solves

dslz) __ f(2)

dt f(z)’
with k a positive integer and h a positive number sufficiently small
(depending on k).

hi

=0

do(2) = 2

4. Incremental Euler’s Method

hf( )

Ty(z) ==+ E gP(f(2))

=1

with ¢ = f~!, k a positive integer, and h positive and sufficiently
small.
2 Some Preliminary Results

One of the main tools used will be the Fatou-Julia theory of iterations of
rational maps; see [Bla84] for an exposition. We shall use the following
consequence of their theory— let g:C U {00} — C U {co} be a rational
map. Let z be a repelling fixed point, i.e. g(z) = z and |¢’ (2}] > 1.

Lemma 2.1 For any € > 0 we have
Ug"{B(z)}=C—-4
n=0

where A consists of at most two points.

3



Proof See [Bla84].

For our maps T, we have that co is a repelling fixed point so the lemma
can be applied.

From condition (1)-(4) on T it is easy to see that

’ _ _ Q(ladad(d_l)"”)
THoo) = ¢(d) = P(1,d,d(d —1),...)

is a rational funciton of d independent of f, and that if r is a k-tuple root,

then
o P(Lkk(E=1),..) 1
T = Q@ kG =1),.) — a(B)’

For any f we have that in a neighborhood of oo,

Ty(z) = q—('jl—) +0(1)

1 1
Tz)=——=+0 (-—)
=@ Oz
and T'; ! is defined locally. We have
Ty(z) 1 ( 1 )
z q(d) |2]

and so for |z| sufficiently large, we have zo = 2, 2_1,2_2, ... given by Ti(z) =
z_iy1 has |z_,| growing like (¢(d) — €)" for any € > 0 depending on how
large |z| is, and thus

< - fo())w
- rofe-o(z%)
- cufi-of2))

since the sum of a geometric progression is bounded by a constant times
its largest term. The mean value theorem yields for, say, r < |2|/2,

T} {Bu(5-0)} C Bi(2)

and
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with

Thus, if we let

we have that for any r < |z|/2 we have

T3 { B,gnay2 (24"(d)) } C Br(2) (2.1)

for n sufficiently large (depending on r).
Next we would like to obtain a version of equation 2.1 for polynomials
close to f in a certain sense. Fix D and consider the set ¢ sp of polynomials

9(2) = (2 = 51)...(z — sa+D)
with s; € Bs(r;) for 1 <i < d and |s;| > 1/6 for : > d.

Lemma 2.2 For any sufficiently large z and r < |z|/2 there is a ¢, 6o and
no such that if § < & and n > ng we have

Iy {BW”(d)fz(?qn(d))} C B,(2)
if
2l¢"(d) < =
)
for all g € Fys5,D-

Proof Dividing both numerator and denominator by z*~1gdee(P) in con-
dition (1) on T yields

zPy(1, z-5'- 29— ;5 8)

Qo(1, ZE‘ 223‘ g

Ty(z) =



For |z| sufficiently large and, say, < 5z we have

fl g.r d 1 d+D 1
7gl S ZH reen (Ll T P
=1 1 (3 Jd‘l‘l 7

- Z z—r)z—s)

)
- O(W”)

ey

Similarly we have

f g 1<i1 S <d (z—ri)...(z—ri) (2—8i)...(z2— 83)
1
..+,
1< <. <1§d+D ix>d ( - Siz) £ ¥ (Z - Sik)
5 § 52 .

=9 (|z]k+1 T |z|k Tt || = g paries )

= 0 (|z|k+1 2]F- 1)
Pz *) *) 5

ka 49— 0 (m n 5|z|>

and so

T(z) = Tyz) (1+o (] |+5|z|)) (2.2)
T/(z) = TYz) (1 +0 (% + 5]2])) .

Now fix a z sufficiently large and a small € so that zo = 2z,2-1,2-2,...
defined as before grow like a geometric series. Then, using equation 2.2, we
see that for § sufficiently small we have that yo = 2,¥-1,Y—2, .., Y—n glven
by T,(y_;) = y—it1 grows like a geometric series, as long as ly="| < ¢/é for



c sufficiently small. Then we get

Yor = Zop (1+n§0( ‘ +5\y—fl))

1=0 Iy—zl

= =140 (5+ Sl ).

Using the chain rule we have

(TY(w) = [ITUTHw))

=0

- (da) (o ()

assuming |T7'(w)| is sufficiently large and |w| < ¢/8. The mean value theo-
rem then implies

T} {Br(2-n)} C Bi(2)

r' = rg™(d) (1 410 (% + 5lz_n])) :

Hence, as before, we get that for sufficiently large n,

T2 { Bryn(ay2(4"(d)) } C B(2)

where

as long as |Z|¢"(d) < § for ¢ sufficiently small.

3 Successive Normalizations

The difficulty in proving theorem 1.1 is that Ar is not necessarily con-
tinuous when f has multiple roots. Let fi, fs,... be a sequence in P; for
which

nN—00

lim A7 = inf Ar ;.
1111 Ts.fﬂ ]}élpd T:.f
By passing to a subsequence we may assume that
fa(z) = (2 =r1)" .. (2 = 75,)™
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with
ext - te=4d

and
ri#F Vn, 1<j < ko.

By passing to a subsequence we can assume
re — as n — 00.

If any r; is isolated, i.e. for some ¢ we have r; # r; for j # 7, then we could
show by continuity in f of T that for some § > 0 we have

By(rf) C I'zys,
for all n sufficiently large, and thus

inf Ar ;>0
f€Pq T

(the details of the argument appear as part of the proof later in this section).
If not, we can assume
r=rqs=...=Tk

and r; # r for j > k;. We will now analyze more carefully the way in

which r7,...,r} converge to ri.
For z1,...,2m € C not all the same, we define the normalization of
Z1,...,2m centered at z; to be the unique linear map

g(z) =az +1b, aeR,a>0,0€C

such that .
Z g(zi) = 0:
=1
and g(z1) =0.
By passing to a subsequence we can assume that

1. the normalizations g,(z) = anz + by centered at r{ have o s

P =i
as n — oo, and



—log,. an
qll S0 Jan—uz (3.1)

as n — oo for some a € [1/g;,1] where

and where |a| denotes the largest integer < a.

Clearly
Dolsi—sil =1,
i<j
and so we have
S1 == Sk,

and s; # s; for j > ky where k; < k;. In other words, by normalizing we
separate the first k; roots into smaller groups. By repeated normalization
we will finally separate r from all other r?’s. Now we start with the deepest
level of normalization and work up, proving a density lower bound for each
level.

Let the deepest level be £, and let

ha(rl?) — for1<:<ky

where k., is the normalization of r},...,r, centered at rf. We have
Solti—til=1,
i<j

t1 =0, and #; # t; if 1 > 1. Consider

f(z) =(z —11)%...(z — tg,)™.

Since T3(t1) = t1, [T{t1)| < 1, and o0 is 2 repelling fixed point for T we
have open sets E, arbitrarily near oo, such that TJ?{E} — t; as n — 00.

Take a point z large enough so that lemma 2.2 holds, with B.(z) converging
to t; under T for some € > 0. We have

Begrja(2q7") CTp g
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for m sufficiently large where Z is as in lemma 2.2 and

ke
=4 (Z 65) .
i=1

Let ! be the normalization of the £—1-th level, i.e. of r,..., 7}, centered
at r{,

() = dz + b,
and let

Ry(2)=8n2 ¥ by,

We have that
e have tha ay |~logg,(an/al)] _

— 9
!
an

as n — oo for some a € [i, 1] (at each level we normalize and pass to a
subsequence satisfying a condition analogous to that of equation 3.1 as well
as the preceeding condition). We want to prove that

B (20) C Tz 1, (3.2)
for all sufficiently large n, where

zZog = ,%anM

e = eagy" /4
for some positive integer M. To see this, consider first
hofa(2) = (2 = ha(rD))™ ... (2 — Ba(rE,)) ™.
We claim that for n sufficiently large we have
Bz) C Trnass-
To see this, we note that for some small n > 0 we have
|z —t1] < = |T(2) — ta] < (1 — p)lz — 4
for some u > 0, and that for some large N,

TY {B(2)} C Byplty).
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Estimating as in lemma 2.2 (note that for any ¢ we have h,f, € F;;p for
n sufficiently large and D = d — ¢,) we get that for n sufficiently large

|z —t1] <0 = |Ths.(2) —tal < (1= p/2)]z — 4
— 2z E PT,hnfn

and that
Thann {Bf(z)} - Bﬂ(tl) C PT,hnfn,

using h,(r?) = t; and that for any y € B.(z) we have y,TJa(y),TJ%(y),...
stays away from the r™’s with 7 > 1. Now we apply lemma 2.2 to conclude
that for m sufficiently large we have

Ty s {Beq;"fz(gﬁn)} C Be(z) C T'zpntn
so that
Begrj2(297") C T'hnta
as long as |#|¢)* < ¢/§ for some c sufficiently small, where 1/¢ is a lower
bound on h,(r?) for 7 > k¢ Rescaling by a factor of a,/a; and translating
appropriately we get
Begpan/(2a) (24 an/ an) C Trp, s
if
|Z|¢7 an/a), < cn;ikn Rirf)< e (3.3)
i>ke
Taking
a,
m(n) = |log,, a—J - M
where M is sufficiently large to ensure equation 3.3 holds, we get that for
sufficiently large n,
Beaq;Mftl(gaqf_M) - PT,h;f,
the 4 in eag;™ /4 appearing to account for the fact that

an min
a‘,‘Qf ™
approaches, rather that equals, ag;™ as n — oco. Thus equation 3.2 is

established.
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Now that we have a statement of the form

By (20) C Tt £

we proceed to get a statement of the form

B.,(z1) C Tz pusns

where h” is the normalization at the £ — 2-th level, i.e. the normalization
of rP,...,r%,_, centered at z7. To do this we consider

JE(Z) = (2 —11)" ... (2 — tg,_, ).

Using lemma 2.1 we can find an arbitrarily large z with an e so that for
some N
T} {B(2)} C Be(20)-

Now we repeat the argument of before to conclude

Ty . {B(2)} C Beo(20)

1.e.
B(z) C Trp, s,

for n sufficiently large, and that
TI;T{,JE:) {Bel(zl)} C PTJh‘gfn

for some m'(n) and fixed €;, 2.
Repeating the above argument £ — 2 more times yields that for all n
sufficiently large we have
BE(Z) Clry,

for some fixed € and z with z very near r7. Hence
lim Arj, > 7€’ >0

n—+00

and theorem 1.1 is proven.
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