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Abstract

The covering radius of a convex body K (with respect to a lattice
L) is the least factor by which the body needs to be blown up so that
its translates by lattice vectors cover the whole space. The covering
radius and related quantities have been studied extensively in the
Geometry of Numbers (mainly for convex bodies symmetric about the
origin). In this paper, we define and study the “covering minima” of a
general convex body. The covering radius will be one of these minima;
the “lattice width” of the body will be the reciprocal of another. We
derive various inequalities relating these minima. These imply bounds
on the width of lattice point free convex bodies. We prove that every
lattice-point-free body has a projection whose volume is not much
larger than the determinant of the projected lattice.
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Introduction

A central result in the Geometry of Numbers is Minkowski’s Theorem: if
a convez body is centrally symmetric with respect to the origin and contains
no point of a lattice L besides the origin, then its volume is at most 2™-det L.
This theorem, and its many extensions (some of which will be mentioned
below) give a powerful tool to prove the existence of non-zero lattice points
in 0-symmetric convex bodies.

The situation is somewhat different if we consider bodies containing no
lattice point at all. Such a body may have arbitrarily large volume (even
if we assume that it is centrally symmetric; this property is less relevant
in the inhomogeneous case). Just think of a large flat "pancake” between
two consecutive layers of lattice points. Nevertheless, the general question
remains: what can be said about lattice-point-free convex bodies?

One important property of lattice-point-free convex bodies is that they
are "flat”: there is a lattice hyperplane such that the number of lattice
hyperplanes parallel to it that intersect the body is bounded by a number
f(n) wich depends on the dimension only. We shall refer to this result as
the Flatness Theorem. More formally, we define the width of the convex
body K along a non-zero vector v as the quantity

max{v-z:z € K} —min{v-z:z € K}.

The lattice width of K is the minimum of its widths along vectors in the
dual lattice. (Note that the usual geometric width of K is the minimum
of its widths along vectors of unit length.) Then it is true that the lattice
width of a lattice-point-free convex body in n-space is bounded by f(n).
The Flatness Theorem goes back to Khinchine (1948) (in a sense, in fact,
to Kronecker).

Although our paper deals with the algorithmic aspects of the problems
involved only marginally, we have to mention the reason for the revival
of interest in the Flatness Theorem: it was exploited by H.W.Lenstra, Jr.
(1983) in his celebrated algorithm, which solves the integer linear program-
ming problem in a fixed dimension in polynomial time. The Integer Pro-
gramming Problem (in its feasibility version) is the problem of determining
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whether a given system of linear inequalities has an integer solution. Let P
be the set of all real solutions of the system. Using an algorithmic version
of the Flatness Theorem, Lenstra either finds an integer point in P or finds
a lattice hyperplane such that only f(n) of the parallel lattice hyperplanes
intersect K. In this latter case, we split the problem into f(n) subproblems
of lower dimension, and solve them recursively.

This application raises the problem of finding the best possible f(n) in
this theorem. As we shall see, there is a substantial difference between al-
gorithmic and non-algorithmic results. Khinchine’s work (non-algorithmic)
gives about n! for f(n). Lenstra obtains ¢*, but this result is constructive
in the sense that it yields a polynomial-time algorithm for each fixed di-
mension to find either a lattice point in the body or a hyperplane in which
direction the body is “flat”. Grotschel, Lovész and Schrijver (1983) showed
that this same order of magnitude can be achieved in polynomial time even
for variable dimension. Babai (1985) improved the result to obtain a simply
exponential function for f(n), in polynomial time. Hastad (1986), based on
the work of Lagarias, Lenstra and Schnorr (1987) showed that the Flatness
Theorem remains valid with f(n) = O(n*?). One of our main results is to
improve this to O(n?). We conjecture that this result is not best possible.
It is easy to construct a lattice-point-free convex body with lattice width
n, and it is possible that the best value of f(n) is linear. Unfortunately,
neither Hastad’s proof nor ours yields a polynomial-time algorithm.

Minkowski also introduced the successive minima of a convex body. The
ith successive minimum, JA;, is the least positive real number ¢ such that ¢{K
contains ¢ linearly independent lattice vectors. Minkowski’ Second Theorem
gives an upper bound on the product of these minima; this strengthens his
first theorem substantially. We remark that the lattice width of a body is
just the first minimum of the polar of its difference body.

The “covering minima” introduced in this paper form another sequence
of numbers associated with a body and a lattice, somewhat analogous to
the successive minima. We define the jth covering minimum p; of the
convex body K as the least positive real number ¢ such that the translates
of tK by all lattice vectors intersect each n — j dimensional affine subspace.



The last of these numbers is a well-known quantity (at least for centrally
symmetric bodies): it is the covering radius of K. Note that if K contains
no lattice point then its translates by lattice vectors do not cover the origin,
and hence its covering radius is more than 1. A certain converse of this
observation is also true: if the covering radius of the body is more than 1,
than the body can be translated to a lattice-point-free position.

The first covering minimum, on the other hand, turns out to be the
reciprocal of the lattice width of K. So the sequence of covering minima
“links” these two important numbers, a fact that will be exploited in our
proofs. Among others, we shall prove the inequality

Bitr S pj+c- g

where ¢ denotes an absolute constant. This yields by induction an inequal-
ity

pi<c-j*p.

Now if K is lattice-point-free then p, > 1 and hence it follows that the
lattice width of K, i.e., the reciprocal of y;, is O(n?).

Our results will also say something about the volume of lattice-point-free
bodies. While this cannot be bounded by any function of the dimension,
we shall show that for every lattice-point-free convex body there exists a
projection of the space such that the projected body is “almost” disjoint
from the projected lattice and the ratio of its volume to the determinant of
the projected lattice is bounded by a function of the dimension. A corollary
of this result yields a rather sharp “approximate min-max formula” for the
covering minima.

1. Basic Definitions and Results

R" and Z" denote the set of column vectors of length n with real,
respectively integer components. For any two vectors v,u in R", v - u



denotes the scalar product of the two vectors. For any two sets S,T in R",
S + T denotes the set {s+1t: s € S,t € T}. For example, S + Z" is the
union of copies of S translated by every integer vector. Thus, the covering
radius mentioned above is the infimum over all positive reals ¢ such that
tS+Z" = R". We abbreviate S+ T by S + t if T is the singleton set {t}.

Let V be a subspace of R”. We denote by V+ the orthogonal com-
plement subspace. For any set S in R", the projection of S parallel to
V (denoted by S/V) is the set {t : t € V1;3s € V such that s +t € S}.
S/V may be pictured as the projection of S into V+. For any set S, int(S)
denotes the interior of the set S; lin(S) denotes the vector space spanned
by the set S and cl(S) denotes the closure of S.

We refer the reader to Cassels (1971) and Gruber and Lekkerkerker
(1987) for basic definitions of a lattice, dual lattice, basis of a lattice etc.
Here we give a very brief description. A lattice L in R" is the set of
integer linear combination of a finite set of linearly independent vectors
which form a basis for the lattice. The number of vectors in a basis of
the lattice is called the dimension of the lattice. It is an invariant of the
lattice, i.e, it does not depend on the choice of the basis. If by,b,,...0,
form a basis of the lattice L, then the determinant of the lattice is the
m—dimensional volume of the parallelepiped spanned by by, b, ...b,,. It is
also an invariant of the lattice. The dual (or polar or reciprocal) lattice of L
is the set {z : z € lin(L);z-y € Z Vy € L}. It is easy to see that (L*)* =L
and that the determinant of L* is the reciprocal of the determinant of L.
The following lemma collects some well-known facts.

(1.1) Lemma Suppose L is a lattice in R™ with lin(L) = R™ and
V' 18 any subspace of R" . Then

(1.1.1) V has a linear basis containing only vectors of L iff V* has a
basis containing only vectors of L*.

(1.1.2) L]V 1s a lattice iff V* has a linear basis in L* .

By a convez body in a linear space V', we mean a bounded, closed, convex
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set K such that K — K spans V. We shall omit reference to V if V = R".
We remark that the assumption of closed does not result in any loss of
generality - the covering minima we define do not change when we take the
closure of the convex set and so it suffices to prove all our results for closed
sets anyway. For a convex body K that contains the origin in its interior,
we define its polar K* by

K'={z:zeR" z2-y<1Vye€ K}.
This set is again a convex body. If K is symmetric about 0 (and hence too
K™*)) their volumes are related by the following inequalities:

cr - « 2
- < -vol(K*) < =
g vol(K) - vol(K*) < e

where ¢y, ¢, are absolute constants. The upper bound is due to Blaschke
(1917) and Santal6 (1949); the maximum is attained when K is a ball. The
lower bound is due to Bourgain and Milman (1985). Mahler conjectured
that the minimum is attained when K is a cube; this question is still open.
The result of Bourgain and Milman will be important for us: several of our
results will involve the constant ¢y = 4/¢;. (Clearly we may assume that
co > 1.)

Let L be a lattice and K, a convex body in linL, centrally symmetric
with respect to the origin. The ¢th successive minimum of K with respect
to L, denoted by A\; = (K, L), is the least number ¢t > 0 such that tK
contains ¢ linearly independent lattice vectors (1 < i < n).

The following Lemma will be of a particular importance.

(1.2) Lemma: If K is a bounded 0-symmetric convex body and L is
any n-dimensional lattice in R™, then

Al(K, L)AI(K*, L*) S Cot

where ¢, 18 a constant independent of n.

Remark: Lagarias, Lenstra and Schnorr (1987) give the weaker bound
of O(n®?). As they remark, a result of Conway and Thompson (quoted
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in Milnor and Husemoller (1973)) implies that O(n) is the best possi-
ble upper bound in lemma (1.2). For n = 2, Mahler (1948) proved that
MK, L(K" L7) < V3.

Proof: Let V and V* denote the volumes of K, K* respectively. Then
by Minkowski’s convex body theorem, we have

M(K,L) < 2V-Yn(det(L))
Al(K*,L*) < 2(v*)—1/n(det(L*))l/n

Multiplying the two inequalities, the lemma follows by the theorem of Bour-
gain and Milman.

Remark: If we apply Minkowski’s theorem on successive minima, we
obtain the following stronger result :

RN ST RTT Y
where A; = \(K, L) and A} = A\ (K*, L*).

2. Covering minima

(2.1) Definition: Let L be a lattice with dimension r and K, a convex
body in lin L = V. We define the jth covering minimum of K with respect
to L, p;(K,L) = p; for j =0,1,2,...,r, as follows:

p; = inf {t : tK + L meets every (r — j)-dimensional affine subspace of V'}.

It is easy to see that the infimum is, in fact, a minimum. Furthemore,
for any zo € linL , tK + L meets every (r — j) dimensional affine subspace
iff (K —x0) 4 zo+ L does. So the value of y; is invariant under translations

of K.



Clearly 0 = po < pg < ... < p,. Further, p,(K, L) is the usual covering
radius (Cassels 1971). In what follows, we denote by A; the ¢th minimum
of L with respect to K — K and by A} the ¢th minimum of L* with respect
to (K — K)*.

In the lemmas that follow, we shall assume that lin L = R", unless
stated otherwise.

(2.2) Lemma: For 1 < j < n, there exists an affine subspace T of
dimension (n — j) in R™ such that

(1) TN (p; int(K)+ L) =0 and

(ii) the linear subspace parallel to T has a basis in L.

Proof: Without loss of generality, we can translate K and assume that
0 € K. For any affine subspace T of dimension (n — j), let p/(T) =
inf{t : T intersects tK + L}. There is a set of (n — j) orthonormal vectors
(v1,v2,...,vsn—;) and a v € R™ such that T' = v + lin{v,,...,vn—j}. Choose
v' = v(mod L), such that v’ belongs to the fundamental parallelopiped cor-
responding to some basis of L. Clearly, p/'(T) = p/(v' + lin{vy,...,v,—;}).
Thus p' is essentially defined on a compact set P in R™, where m =
(n — 7 + 1)n. Suppose sup{p'(p) : p € P} = 7. Then there is a sequence
of points py,ps,ps,... in P such that p'(p;) > v — 1/:. There is a con-

vergent subsequence ¢, ¢z, ..., of the p;, say the limit of the subsequence
is ¢*. Then ¢* defines an n — j dimensional affine subspace T* of R" be-
cause the orthonormality of the basis represented by ¢, g2, . .., implies the

orthonormality of the basis represented by ¢*. Further, p/(T%) = v = p;.
Now if T* N (p; int(K) + L) # 0, then u'(T*) < p;, contradicting the
definition of T™. So T* satisfies (i). The linear subspace parallel to T,
however, may not have a basis in L. To ensure (ii), we proceed as follows:
Let T' be an affine subspace of maximum dimension contained in R" \
(p; int(K) + L). We have shown that dim(7") > n — j. The closure of
(T"+ L) is contained in R™\ (y; int(K)+ L), and so T" is a maximal affine
subspace of cl(T’ + L). Let V' be the linear space parallel to T". If V' does
not have a basis in L, then it follows from lemma (1.1) that L/V’ contains



aline Il = {\u : A € R}. But then, cl(7" + L) contains T" + [, an affine
subspace of dimension 1 greater than 7”. This contradicts the definition of
T'. So V' has basis in L. Since dim(V") > n — j, we can choose a (n — j)
dimensional subspace of T" satisfying both (i) and (ii).

(2.3) Lemma: p; = 1/)].

Proof: Suppose v € \j(K — K)*NL* v#0. Thenv-(z—y) < A for
all z,y € K. Let f; = max{v-z:z € tK} and oy = min{v -z : € tK}.
Then 8; —a; < A} and since the points of L lie on hyperplanes of the form
{z:v-z =z} for z € Z, we must have f,, —a,, >1,1ie, p(f1—a1)>1,
Le., p1 = 1/AL

Conversely, by lemma (2.2) and lemma (1.1) pq = inf{t : tK + L inter-
sects every hyperplane of the form {z : v-z = s} where v € L*,s € R}. For
v € R™, v & v((K — K)*), there exist z,y € K such that v.(z — y) > v im-
plying that (1/9)K + L intersects every hyperplane of the form {z : v-z =
s}, s € R. Since v(K — K)*N L* = {0}Vy < A}, it follows that p; < 1/ for
all such v, thus gy < 1/A%.

It is interesting to point out that A, is the least ¢ for which the interiors
of the bodies tK 4+ z (z € L) are disjoint. In this respect A is dual to pu,.

The following inequalities relating the covering radius and the successive
minima are proved for centrally symmetric bodies in (Cassels, 1971).

(2.4) Lemma: A, < g, A+ A+... A,

Proof: The proof of the left hand side inequality is identical to the
case of symmetric bodies; minor changes are required for the right hand
side inequality, which we sketch here. First translate K so that the origin
belongs to K. Suppose vy, v, ... v, achieve the successive minima of K — K
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and z,,%Zs,...Z, are points in R™ such that z; and z; + v; belong to A\;K;
so, of course, the line segment joining these two points belongs to A\; K. Let
z be Y.r ,z;. If pis any point in space, let ay,a,...a, be real numbers
such that p — z = ¥, o;v;. Suppose B; = |a;] and v; = a; — B; and
l =Y, Bv;. Then p =1+ z + Y, viv; from which it follows that p
belongs to L + (3%, A;) K. Since this was true of an arbitrary p, we have
the required inequality.

Let us remark that lemma (1.2) can now be rephrased as follows :

A1 < conpiy

;From corollary (2.8) below, it follows that A\; < O(n?)p;, but we do not
know the how large A;/p; can be for given j and n.

Next we prove a further relation between the A’s and p’s, which will
play an important role later on.

(2.5) Lemma: For each j, 1 <j <n,

pit1 < pj+ Aneje

Proof: First we prove the case j = n — 1. By the definition of A, there
exists a non—zero vector v € LNA;(K —K). By translating K appropriately,
we may assume that v € \; K and that 0 € K. Consider any point p € R",
By definition, the line {p 4+ tv : ¢ € R} intersects u,—1K + L, and hence
there exists an s € R and a u € L such that p+ sv +u € p,-1K. Hence
p+[s]v+u = (p+sv+u)+([3] —3)v € pn_1 K+([s] =) MK C (pn-1+M1)K.
(because 0 € K). Since [s]v+u € L, this implies that p € (pn—14+ 1)K +L.
Since p was arbitrary, this implies that y, < p,—1 + A1

Now we consider an arbitrary j, 1 < j < n. By lemma (2.3), there
exists an (n — j — 1)-dimensional subspace T parallel to a linear subspace
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V spanned by vectors in L such that T' N (g, int(K) + L) is empty.
Let K' = K/V, L' = LJV. Let p; = ui(K', L"), X; = \((K' — K"),L') and
A* = N((K'— K")*, L") for all relevant ¢. We claim that p; < iy for all
¢ < j+1. For,if S is any (j +1—17)-dimensional affine subspace of R"/V,
then S + V is an (n — ¢)-dimensional affine subspace of R". So ;K + L
intersects S + V implying that p;K’+ L’ intersects S. Next, we claim that
,u:,,- +1 = Hj4+1. This follows from the choice of T. Further, A\{ < An_j4i—1 and
A* > Afr. (We do not need this last fact right now). By the first part of the
proof, we know that ,LL;; 41 < ,u;- + A}, Hence, the inequality in the lemma
follows.

Remarks: 1. From the above proof, it is clear that pu;(K,L) equals
the maximum of y;(K/T,L/T) over all n — j dimensional subspaces T' of
lin(L) spanned by vectors in L.

2. In the case when K is an ellipsoid, we obtain the stronger inequlity
(n)? < () + X2/

While the u’s and \’s are related in many ways, there is a substantial
difference between them. It is easy to see that given any sequence 0 < ¢; <
ty < t3... < t, of real numbers, there is always a lattice and a 0-symmetric
convex body such that \;(K,L) = t;. On the other hand, the sequence
[i1, b2 - - - i, satisfies rather stringent conditions, as shown by the following
assertions.

(2.6) Lemma: For all j, (1<j <n-—1),

piv1 < g+ co(J + 1)p.

Proof: Similarly as before, it suffices to prove this for j = n —1. Thus,
by lemmas 2.5 and 2.3,

o < pin—1+ A1 £ fin—1 + conpy
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By the monotonicity of the p’s, this last lemma implies that p;q1 <
(¢oj +¢o+1)pj. Below, we shall improve this bound for centrally symmetric
convex bodies. But first, we apply the previous lemma to obtain our main
estimate on the u’s.

(2.7) Theorem: Let K be a convez body in R™ and L , an n-
dimensional lattice in R™. Then for all 3, 1 < j <n,

D) < o7 3l .

Proof: We proceed by induction on j. Clearly the theorem is valid for
4 = 1. For higher j, we apply lemma (2.6):

: ) . )+ 1
Hi S Hi-1 -+ Col 1 S Co (f?‘))u'l + Col 1 = co(J 2 )Jul

For the special case of 0-symmetric convex bodies, Lagarias, Lenstra
and Schnorr (1986, theorem 9.2), also prove this result for j = n, i.e., they
show that u,A} < O(n?). By choosing 0 for the center of gravity of a (not
necessarily 0-symmetric) convex body K, and then applying their result to
K N(—K), one obtains a similar result for general convex bodies, but with

O(n®) in place of O(n?).

Remark: It is interesting to consider the following example : Let K
be the simplex {z : ¥7_;z; < 1 ;z; > 0V;j} in R" and L the standard
lattice Z™. Then it is easy to see that u,(K,L) = n since for any small
positive €, the point (1 — €1 —¢,...,1 — €) belongs to tK + L if and
only if t > n(1 — €). Further, it is easy to see that u,(K,L) = 1. Also,

12



M(K — K,L) = M\(K — K,L) = 1, so by lemma (2.5), we have that
wi(K,L) = j for all j. Thus, we have a lower bound on u;/p; of O(j)
and by theorem (2.7), an upper bound on this quantity of O(j?). We do
not know the best possible bound. We also note that for the octahedron
{z: X%, |o;| <1}, pn is O(n) and p, is 1. Again, it is easy to see that u;
is O(j). Thus, even for centrally symmetric bodies, we have a lower bound
on p;/p1 of O(j).

The next result follows immediately from Theorem 2.7 and inequality
(2.4).

(2.8) Corollary:

AN < 6 (” . 1)

If K is lattice-point-free then u, > 1 and hence p; > 1/ con?. Hence the
lattice width of the body is O(n?) as claimed in the introduction.

(2.9) Lemma: Forallj, 1 <37 <n,
74+1\1
ﬂ'jS#j—l‘l‘CO( 0 )F

J

Proof As before, it suffices to prove for the case of j = n. Then the
assertion follows by lemmas 2.5 and 2.8.

(2.10) Corollary: There ezists an i, 1 <i <n such that

pnAT < co(i +1)° log3(i +1).
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Proof It is easy to show that

1= = (i — pice),
25 log2(i + 1) " 21:(‘“‘ Hi-1)

=1 n 4=

and hence there exists an 4,1 < ¢ < n, such that p; — piy > 57— ol D) So
2
by the previous lemma, the corollary follows.

The following corollary sharpens the “Flatness Theorem”: it says that
a lattice-free body is either very flat or else it is flat in several directions.
In the next section we will give various further extensions of this result.

(2.11) Corollary: If a convez body K in R"™ contains no point of a
lattice L of dimension n in R", then there ezists ani, 1 <t <n and 1
linearly independent vectors wy,w,,. .., w; in the dual lattice L* such that
for each 3, 3 =1,2,...,1,

max{w;-z:z € K} — min{w; -z :z € K} <c,(i +1)° logj(i + 1).

Another way to formulate this result is that for every lattice-point-free
body, the space R” can be mapped linearly into some linear space R’ (by
the mapping = — (w; - z,...,w; - ) so that the lattice is mapped into YA
and the image of K lies inside a cube in R of side —c,(i + 1)® loga(i + 1).
It would be nice to achieve that the image of K be free from the image of
L. We shall address this question in the next section.

It follows from the previous corollary that a lattice-point-free body ei-
ther has lattice width O(1) or has width O(n® log2(n + 1) along at least
two non-parallel dual lattice vectors. In fact, one can get a slightly sharper
result.
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(2.12) Corollary: If a convez body K in R" contains no point of a
lattice L of dimension n in R", then either its lattice width is less than
2 or else there exists an i, 2 <1 < n and i linearly independent vectors
Wy, Wy, ..., w; in the dual lattice L* such that for each j, 7 =1,2,...,1,

max{w; -z :z € K} — min{w;-z:z € K} <2¢,(i +1)* logj(i +1).

Proof: By the hypothesis, we have u, > 1. We replace K by the body
pn K and prove the conclusion for this which clearly suffices. Now we have
tn = 1. If the lattice width of K is at least 2 then py < 1/2 and hence

D (pi— pic1) =1—p1 2 1/2.

=2

Hence the assertion follows by the same argumment as above.

Let us return to inequalities relating various covering minima. We do
not know how far the estimate pj11 < pj + co(J + 1)p1 can be improved.
For j = 1, we can apply the result of Mahler (1948) mentioned above to
obtain g3 < (1 4 v/2)u;. Hurkens (1987) has shown that in the plane, the
maximum value of py/p is exactly 1 + (2/v/3). From this it follows (by
remark 1 following lemma 2.5) that in general, we have

2 < (1+ 2/V3)m.

For centrally symmetric bodies, perhaps pjt1 < pj + pq is valid. We
can only prove the following result (which does not remain valid for general
convex bodies).

(2.13) Theorem: If K is a centrally symmetric convez body then for
all k, pryr < 2pg.
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Proof: Again it suffices to consider the case when k = n — 1. We may
also assume that K is 0-symmetric since the covering minima are translation
invariant. For this proof, let Ay = A(K,L). Suppose v is nonzero and
v € KNL. Let V = lin{v} and let superscript ' denote projection parallel
to V. Let p € R™ be an arbitrary point. We will show that p € 2p,,—1 K + L.
First we consider the case when p' ¢ L'. p' € p,_1K'+1] = S(say) for some
l; € L by the definition of p,_;. Let w be the point on the boundary of
S such that I{,p',w are colinear (in that order). Since p,_ 1K'+ L' covers
R"/V, there is some I € L, I} # I} such that w € p,—1 K"+ 1. Let 54,35,
be the straight lines parallel to v through [y, I3, p respectively. Then there
are points e, f on s;, 8, respectively such that g(pe) + g(pf) < 2411 Where
g is the distance function corresponding to K. Let a,b be the two lattice
points nearest to e on s; and ¢,d be the lattice points nearest to f on
s5. We will show that one of a,b,c,d is at distance (with respect to K)
at most 2u,_; from p. Let g(pe) = a and g(pf) = . Then it is easy to
see that there must be two adjacent lattice points A, B on s; such that
g(ad) + g(aB) < 2(a+ B) + Ay; but g(ad), g(aB) > Ay by definition of A,
so A\; € 2(a+ ) < 4p,—;. Now the sum of distances (corresponding to K)
from p to a,b,c,d is at most 2(a + 8 + A1) < 4(a + /), so one of these 4
distances must be at most o + 8 which is at most 2u,_; which finishes the
proof of the lemma in this case.

In the case that p’ € L', there is a lattice point on the line s at distance
at most \;/2 from p, and again it is true that 4,1 > Ay, so we have the
required result.

Remark: This inequality is tight. For example, if we take L = {z :
xz € Z", Y z; is even} and K = the unit cube, then u,(K, L) = 2 whereas
pi(K,L) =1 for: < n.

3. The volume of lattice-point-free convex bodies
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Recall Minkowski’s fundamental theorem: If L is an n-dimensional lat-
tice and K is a 0-symmetric convex body in lin (L) , containing no points
of L other than 0, then the volume of K is at most 2"x the determinant
of the lattice L. In this section, we address the question of what can be
said about the volume of convex bodies that do not contain any lattice
points at all. It is trivial to see that we cannot assert anything as strong
as an upper bound on the volume — for example in R", the convex body
K = {z : 0.1 < 2; < 0.9} has no point of the lattice L = Z" and has
infinite volume. In this example, however, if we let V' to be the subspace
{z : z; = 0}, then we see that K/V has the following two nice properties :

(1) K/VNL/V = 0;

(2) vol(K/V) < 1.

The first condition obviously implies that K N L = §. Further, the
second condition is a Minkowski like upper bound on the volume. This
leads us to ask whether there exists a fixed function f(-) such that whenever
KNL =, then we can find a subspace V spanned by vectors in L such that
K/VNL/V =0 and vol(K/V) < f(i)-det(L/V) where ¢ is the codimension
of V. Unfortunately, this is false as we show by a simple two-dimensional
example.

Example: Let M be a large positive real. Consider the triangle T
in the plane with vertices (—3i7,0), (3, M + 1),(1 + 537,0). It is easy to
see that the only integer points of T' are on its boundary, so the set S =
int (T') has no integer points. It is not difficult to see that when M is large
enough, for any subspace V of R? spanned by integer vectors, S/V contains
integer points except when V = {0}. But of course the volume of S can be
increased without bound by increasing M. So we cannot simultaneously
satisfy conditions 1 and 2.

But, fortunately, a slight weakening of this is true and this will be the
main theorem of this section: instead of requiring that the K/VNL/V =0
we can only require that if z belongs to K/V N L/V, then z is not very
“centrally” located in K.
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Definition: Suppose ¢ is a nonnegative real number. A point z in a
convex set K is §— central for K if for any y € K, there exists z € K such
that z —z = 8(z — y).

(3.1) Remark: It is clear that every point is 0-central and no point is
e-central for any e greater than 1/2.

If the convex set K in R™ has a center of gravity ¢(K), then the con-
traction of K about ¢(K) by a factor of (1 — §) contains only ni_l_l— central
points of K. Conversely, if a point z is §-central for a convex body K in R"
with center of gravity y, then there is a z in K such that z —z = §(z — y),
thus z belongs to a contraction of K by a factor of 1 — § about y. In the
special case when K has a center of symmetry, the contraction of K by a
factor of 1 — § about this center is precisely the set of §/2-central points.
This remark is not used in what follows; it shows, however, that the notion
of centrality we use here ties in with another notion in which a point z may
be defined to be central if it lies in the body obtained from K by shrinking
it by a factor of 1 — é from its center of gravity.

We associate a series of numbers with a convex body and a given basis of
a lattice. Suppose K is a convex body in lin(L) where L is a lattice described
by a basis by, bg,...b, of it. Let V; = lin{by, bs,...b,} for i =1,2,...n and
Vo = {0}. Let b; = b;/Vi_y for i = 1,2,...n. Let fi(-) be the distance
function on V,,/V;_; whose unit ball is (K — K)/V;_; for: =1,2,...n. We

define the series of numbers 74, 73,.. .7, as follows :

7i(K; by, by, ... b)) = Fi(Dy).

(3.2) Lemma: For any lattice L, any basis by, by, ... b, of it and any
convex body K in lin(L), we have

pa(K, L) < ZTJ-(K; b1, bay ... by).

i=1

Proof: The proof follows the lines of the proof of lemma (2.5). Let
7; = 7{(K;by,by,...b,). Since by € 71 - (K — K), we can assume (after a
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suitable translation of K) that 0 and b,/7; both belong to K. (Note that
translation of K leaves all quantities in the lemma invariant.) Arguing as
in lemma (2.5), we have then that p,(K,L) < 71 + pin—1(K/V1,L/V;). But
{by/V4,b3/V4,...b,/V;} forms a basis of L/V;. Hence the lemma follows by

induction.

We now define a notion of “reduced basis”. This notion was introduced
for the case when the 0-symmetric convex body in the definition is a sphere
by Korkine and Zolatarev (1873).

(3.3) Definition: Let b;,b,,...,b, be a basis of the lattice L. For
1 = 2,3,...n, let b = b;/lin{by, by, ...b;—1} and let b, = b,. The basis
by, ba, ... b, is said to be a reduced basis for the lattice L with respect to a
0-symmetric convex body P if

(3.3.1) by achieves the first (Minkowski) minimum of L with respect to
- -4

(3.3.2) Fori > 2, b; achieves the first minimum of L/ lin {by, b, ..., bi_1}
with respect to P/ lin {bq,ba,...,bi—1}.

(3.3.3) For j,i such that n > j >1 > 1, |b; - b < |b; - b]/2.

Our definition makes it clear that such a reduced basis always exists.
Note that the value of the first minimum attained in (3.3.2) is exactly
T,(%P; b]_, bz, o bn).

(3.4) Theorem: Suppose L is an n—dimensional lattice and K is a
convez body in lin(L) with KNL = (. Letby,bs,...by, be a reduced basis of L
with respect to K — K. Let V; = lin(by, bs,...b;) and 7; = 7;(K; by, b, ... by)
fori=1,2,...n. Then for each i, 1 <1 < n—1, the projection parallel to
V; has the following properties.

(8.4.1) L]V; contains no (11 + ...+ 7;)-central point K/V;.

(8.4.2) There exist n — ¢ linearly independent vectors wi,wa, ..., Wy
in (L/V;)* so that for j =1,2,...n —1,
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. co(n — i)’
max{w;-z:z € K/V;} —min{w; -z :2 € K/V;} < ————
Tit1

(3.4.8) The volume of K/V; is at most det(L/V;)/(riz1)"".
(3.5) Remark: We have

max {w;-z:z € K/V;} —min {w;-z:z € K/V;}

=max {w;-z:z€ K}— min {w; -z):z € K},
since w; € lin(L)/V;. Also observe that wy,...,w,_; are vectors in L*.
So (3.4.2) implies that K has “small” width along these n — ¢ dual lattice
vectors. In words, the theorem states that if K is free of lattice points,
there is an n — ¢ dimensional projection of it that is free of “central” lattice

points of the projected lattice and has “small” width in n — ¢ independent
directions - the maximum number possible.

Proof: I. Suppose (3.4.1) fails. Then there is a (71 + ... + 7;)-central
point of K/V; which belongs to L/V;. Of course, we have 7y + 73 +...7; <
1/2. Without loss of generality, we may assume that this point is 0. For

the rest of the proof, we use the following notation: K’ = K N V; and
L'=LnNV.

(3.6) Claim: K' — K'D (1 +...+n)((K - K)nV).

(Note that (K — K)/V; = K/V; — K/V; but in general (K — K)NV; #
(KNV;)—(KNnW).)

Proof: Suppose v € (K—K)NV;. We wish to show that (7y+...4+7)v €
(K" — K"). There exists p € K so that p+ v € K. Since 0is (11 + ...+ 7;)
central in K/V;, there exists s € K so that s/V; = (11+...47)(s/Vi—p/Vi).
Now the vectors (71 +...+7)p+(1—(r1+...+7))sand (1 +...+7)(p+
v)+(1—=(m1+...+7))s are in K, since 7y + 72 + ... 7; < 1, which proves
the claim.
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(3.7) Claim: p;(K', L") < 1.

Proof: by,b,,...b; is a basis of the lattice L’. By claim (3.6), we have
Ti(K';by, by, ... b;) < TERBeta) for j = 1,2, .. .i. So the claim follows by
lemma (3.2).

Thus, we have that K’ N L' # (0 which implies that K N L # 0, a
contradiction that establishes (3.4.1).

II. Since 7;41 = M((K — K)/V;, L/V;), we have by lemma (2.8),

e (€ = OV @) S 05 )

which implies (3.4.2).
III. Finally,7;4; = \((K — K)/V;, L/V;) also implies that

2"~ det (L/V;)

i+1

vol((K — K)/V;) <

by Minkowski’s convex body theorem. Since

vol(K — K)/V) = vol(K/Vi — K/Vi) = 2=vol(} - K/Vi -} K/ Vi)
> vol(K/V;)

by the Brunn-Minkowski Theorem, (3.4.3) follows.

21



(3.8) Corollary: Suppose L is an n—dimensional lattice and K is a
convez body in lin(L) with K N L = 0. Let Aq,A,,... A, be real numbers
satisfying 0 = Ay < A < Ay < Az... < A, £ 1. Then there is an 1,
0<i<n—1and ani dimensional subspace T' of lin(L) spanned by vectors
in L such that

(8.8.1) K|T contains no A; - central point which belongs to L/T.

(3.8.2) There exist n — i linearly independent vectors wy, wa, ... Wn_; in
(L/T)* so that for j =1,2,...n —1,

co(n —1)?

maz {w; -z :x € K/T} — min {w;-z:2€ K/T} < ————
Aipr — Ay

(3.8.8) The volume of K/T is at most det (L/T)/(Aip1— A"

Proof: Let by,b,,...,b, be a reduced basis of L with respect to K — K
and let 7; = 7y(K; by, ba, ... b,) for i = 1,2,...n. Note that ; +7o+... 7, 2
pn(K,L) > A,. Let k be the minimum value of j such that 7y +7m+...7; >
A;. We will prove that the corallory holds with ¢ = k — 1.We consider two
cases :

Case 1: k = 1. Then we choose T' = (). (3.8.1) is obviously true. We
have \((K — K),L) = 71 > A;. So, (3.8.2) follows by corallory (2.8).
(3.8.3) follows from Minkowski’s convex body theorem ; the proof is very
similar to the proof of (3.4.3) and we omit it.

Case 2: k > 2. Then we take T' = lin(by, by, ... ;). Thenry+7mo+...7; <
A; and Ti41 > Ay — Ay, so the corallory follows from theorem 3.4.

By choosing different sequences for the A’s we can get different appli-
cations of the corallory. One natural choice is A; = Z§=1 1/(25log3(j +1)).
For this choice, (3.4.1) will be rather weak whereas (3.4.2) will be strong :

max{w; -z :z € K/T} —min{w; -z : z € K/T} < 2¢,i°logj(i + 1).
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Thus we obtain corallory (2.11) as a special case. Another sequence
A; = i/n for i = 0,1,2,...n yields some interesting results. With this
sequence, we immediately get the following corallory.

(3.9) Corollary: If L is an n-dimensional lattice and K is a conver
body in lin(L) with K N L = () then there ezists an j,1 < 7 < n and an
(n—j)-dimensional subspace T spanned by vectors in L such that the volume
of K/T is at most n det(L/T).

We can re-formulate this result to give upper and lower bounds on the
covering radius p, in terms of volumes of projections. Assuming that we
can compute volumes efficiently (which in fact we can not), these bounds
give an "approximate good characterization” of the covering radius in the
following sense: they provide a necessary condition and a (different but
close) sufficient condition for the ezistence of a lattice point in every trans-
lation of a body in terms of the non-ezistence of a projection with small
volume.

(3.9) Definition: Let L be a lattice and K a convex body in the linear
span of L. We define p(K, L) to the infimum over all subspaces V of lin(L)
spanned by vectors in L of the quantity (vol(K/V') /det(L/ V))* where
k is the dimension of lin(L)/V.

If for a positive real number ¢, tK + L covers lin(L), then clearly,
t K/V + L/V covers lin(L)/V for all subspaces V' spanned by vectors in L,
so we must have vol(t K/V)/det(L/V) must be at least 1. Thus it is clear
that p.(K,L) > 1/p(K, L). Together with Corollary (3.8), this yields the

following;:

(3.10) Corollary: For any lattice L and convez body K in the span of
L, 1/p(K,L) < pn(K, L) < n/p(K, L).
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Remark : In the case when K is an ellipsoid, the upper bound can be
improved to O(y/n)/p(K, L), along the lines mentioned after Lemma (2.5).

The question arises as to how much we can improve the upper bound
on the product pp in Corollary (3.10). We will show below that it cannot
be improved below O(logn). To this end, consider the simplex

S={r:zcR*; za,-m,-_<_1; z; > 0Vi}
=1
where the a; are as yet unspecified reals satisfying 1 = a; > a3 > as... >
a, > 0. Let L be Z". We claim that

n

,un(S,L) = Z‘;ai.
In fact, for any positive e, it is easy to see that the point (1—e,1—¢,...,1—¢)
belongs to tS+Liff t > ¥ a;(1—e¢), so we have p,(S, L) > ¥ a;. The reverse
inequality is also obvious.

We now wish to compute p(S,L). To this end, we argue that the in-
fimum in the definition of p is achieved for a subspace V spanned by a
subset of {ejy,...,e,}. For, given any subspace V of dimension ¢, choose
subspace U spanned by n — ¢ unit vectors such that V. NU = {0} .Let
W be the orthogonal complement of U. Let S’ and L’ denote the pro-
jection of S and L parallel to V' on the space U. Then it is clear that
vol(S§/V)/ det(L/V) = vol(S’)/ det(L'). Furthermore, vol(S’) > vol(S/W)
and det(L’) < det(L/W). So W is “better” than V.

Now if V' is spanned by the unit vectors {e,,...,ex} then

vol(S/V) = 5 - > -

—_ ?
ag, -..ak, _ tlay...a;

and

det(L/V) = 1.
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; 1/ ‘
Let g(i) = (ﬂalalz___ai) U foils s 1,2,...n. Then, we have p(S,L) >
min; g(¢). Choosing V' = lin(ei41,€it2,---€n), we see that equality is
acheived, so we in fact have

p(S,L) = ming(i).

Now putting a; = 1/: for ¢ = 1,2,...n, we have p(S,L) = 1 and
pn(S, L) = TF, 1/i = O(log n), thus establishing a lower bound of O(log n)
on the product up. It is not diffucult to see that for any a,,as,...a, sat-
isfying 1 = a; > a3 > a3...a, > 0, we have min; g(z) < O(logn)/ Y a;, so
we have p,(S,Z")p(S, Z") < O(logn) for any simplex S with one vertex at
the origin and the others along the coordinate axes.

4. Convex bodies with few lattice points

In this section, we extend our results on lattice-point-free convex bodies
in terms of the number of lattice points in the body.

(4.1) Theorem: If L 1s a n dimensional lattice and K a convez body
in lin(L), with s = |K N L|, then there ezists a nonzero element u of L*
such that max{u-z:z € K} —min{u-z:z € K} < ¢,[(s + 1)"/"|n?.

Proof: For any convex body S in the linear span of an m dimensional
lattice P and any natural number k, define p,,,(S, P, k) to be the infimum
over positive reals ¢ such that for each z € lin (P), there exist k distinct
elements y1,ys,. ..y, in P such that z belongs to y; +tS for: = 1,2,... k.
Note that this quantity is also invariant under translations of S. We will
show that for any natural number k, the following holds.

pin(K, L, )M (K — K)*, L*) < ¢,[k/™]n? (4.2)

For the rest of the proof, let us abbreviate u,(K, L, k) by p(k); A(K —
K,L) by A\; and \y((K — K)*,L*) by A\}. Note that |[K N L| = s implies
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that (s 4+ 1) > 1. This together with the inequality (4.2) obviously gives
us the theorem.

Let v be a nonzero element of L N Ay(K — K). We first translate K so
that 0,v belong to \;K. Let V = lin (v) and let K’ = K/V;L'= L/V and
for each natural number k, denote by p'(k) the quantity pu,—1(K', L', k).
We claim that for any natural numbers %, !

p(kl) < p'(k) + 1

For any pin lin (L), there exist k distinct points y1,ys,...yx in L’ such
that y; + p'(k)K' intersects the line through p parallel to v. There are
clearly [ distinct points of L (say v;1,vig,...,v;) on the line y; + V such
that v;; + p/(k) K intersects p+V at a point ¢;; with p—¢;; = a;jv where 0 <
a;; < I. Clearly all the v;; are distinct and p belongs to v;; + (p'(k) + 1A ) K
for all ¢, 5 proving the claim.

Using this, we prove the inequality (4.2) by induction on n. First observe
that it is obvious for n = 1. Let [ = [k'/"] and r = [k"5"]. Since Ir > k, we
have that p(k) < I\ + p'(r). By induction, we have that p'(r)\((K/V —
K/V)*,(L/V)*) < co[rmT](n—1)% < ¢ l(n—1)2 which gives that u/(r)A} <
¢ol(n—1)% This combined with the inequality A;A} < ¢,n finishes the proof.

Remark: The bound in the theorem cannot be improved below O(n(s+
1)1/™) as the following examples show : Let K be the the simplex in R™ with
vertices (0,0,...0),(M,0,0,...0),(0,M,0,0...0),...(0,0,...0,M) for an
arbitrary (large) positive M. Then for suitably large M, K has roughly as
many points of Z™ as the volume of K which is M"/n! and the width of K
is O(M).

In the case that K is centrally symmetric (i.e., there exists a point ¢ in

K such that for all z, whenever ¢4z belongs to K, so does ¢— ), the upper
bound in the theorem can be improved by a factor of O(n) as follows:
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(4.3) Claim: For any positive real number o, (K — K) contains at
1

least L(%Ln) nJ distinct points of L.

Proof: The volume of \{(K — K)* is at most 2" det (L*) and hence the

% i con)? i d t
volume of the dual object ALI(K — K) is at least 2n(ge : )(L*) =2 cgin () (by
the result of Bourgain and Milman ). Thus the volume of %(K — K) is at

least (22" det (1) wpence the claim follows by Mordell’s theorem (Theorem

chin®

1, §7.2 of Lekkekerker (1969)).

Let f(-) be the distance function defined by K — K. Now for any point
p in space, there is a point z of L such that pu,(K,L)K + z contains p. Let
k be any natural number. By the above claim, there are at least k distinct
points y in L, such that f(y — z) < ¢,nk"/A;. All these points y satisfy
f(y = p) < pa(K, L) + conk™ /)%, thus we have the following theorem.

(4.4) Theorem: If L is an n diemnsional lattice and K is a centrally
symmetric convez body in lin(L), with s = |K N L|, then there exists a
nonzero element u of L* such that max{u-z :z € K} —min{u-z : z €
K} <en*+ c.nst/m,

5. Some Applications

In this section, we give some applications of the methods and results
of this paper in number theory. The first concerns the residue classes of a
linear form modulo a prime and the second concerns inhomogeneous simul-
taneous diophantine approximation.
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Suppose p is a prime number and a,, a,, ... a, are any natural numbers.
For any natural number b, define a(b) as follows :

a(b) = min{z; + 22+ ...+ ¢, : x; >0, integers Za,:sc,- =b (modp)}.
=1
Let
p(ai,az,. .., an;p) = max{a(b): 0 < b < p}.

(In words, p is the least integer such that every residue class modulo p
can be represented as the sum of at most g — not necessarily distinct —
numbers a;.)

To see what makes u large, suppose that there exists a natural number
t and integers s; such that s; = ta; (mod p) and |s;| < ¢ for all i. Let
b=t"p—1)/2 (mod p). Then for any natural numbers ,,z3,...2,
with 3%, a;z; = b (mod p), we have 37, s;z; = ;1 (mod p), whence
Sr |sile; > 25* and hence T, z; > (p — 1)/2¢. We show that this is, in
a sense, the only reason for u to be large.

Let ¢(ay,as,...,ans;p) denote the least ¢ in the above argument. More
formally, let |z (mod p)| be the minimum absolute value of an integer y
such that y = ¢ (mod p) (thus |z (mod p)| is always in the range [0 Z5+])
and ¢ = ¢(a1,as,...,a,;p), the minimum over all integers ¢,1 <t < p—1,
of the maximum of {|ta; (mod p)|,|ta; (mod p)|,...,|ta, (mod p)|}.

Theorem (5.1): Let p be a prime number and ai,as,...a, any n
natural numbers and let p(ay, as,...a,;p) = p and ¢(ay,az,...0,;p) = ¢
be the quantities defined above. With c, as in lemma (1.2), we have

(p—1)/2¢ < u < c,n’p/¢.

Proof: We already proved the left hand side inequality. To prove the
right hand side inequality, we will use theorem (2.7). First observe that we
can assume that the greatest common divisor of ay,as,...a, is 1 — if not
we can divide all of them by their g.c.d., which leaves the two quantities in
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the theorem unchanged. Let S C R" be the simplex {z : Y1, z; < 1;2; >
Ofori = 1,2...n} and let L be the lattice {z : z € Z™; ) a;z; = 0
(mod p)}. Let p,(S, L) be the covering minimum defined in section 2. Let
a be the vector (ay,ay,...a,) and for any z in R", we will denote }_i_, a;z;
by a - z.

Claim (5.2): p < p,(S, L).

Proof: Let b be an arbitrary natural number. Consider any z € Z"
such that a-z =b (mod p). There exists a y € L such that y + p,(S,L)S
contains . Then  — y is in p,(S,L)S and a-(z —y) = b (mod p) thus
proving the claim.

It is easy to see a converse to the inequality :
B2 Ju"n(sa L) —n.

In fact, for any point z in Z™, there is an integer point z in xS such that
a-z=a-z (mod p) by the definition of . Then z — z belongs to L, thus
L + uS contains Z™. Further, Z" + nS contains R" proving the ineqality.
We will not use this ineqality in what follows.

Claim (5.3): ¢ < pA1((S—9)* L*) < 2¢.

Proof: First, we assert that L* is the set of all integer linear combi-
nations of the n unit vectors plus the vector (%, %,...%). (This is not a
basis because it is a dependent set.) To see this, first observe that there is
a unimodular n X n matrix B whose first row is ay, as,...a, since the q;
are relatively prime. It is easy to see that the rows of B with the first row
multiplied by 1/p form a basis of L*. Then the assertion follows since all
the unit vectors and (%}, g %1 are all integer combinations of this basis
of L* and conversely. So,
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L* = {Eﬁ;ei—}-tv : Bi,t € Z}
i=1
where, e; are the unit vectors and v = (ay/p,as/p,...a,/p). Thus the
minimum /., norm of a nonzero vector in L* is the minimum over all nonzero
integers ¢ of the value max {[ta,/p|, [taz/p|,..., [tas/p]} where for a real
number 7, [r| denotes the distance from r to the nearest integer. Thus the
first minimum of L* with respect to C = {z : |z;| < 1} equals ¢/p.

Next, we assert that 2C C (§ - 8)* € C. If a € (§ — 5)*, then
—1 < a-e; <1 for all the unit vectors e; (since all e; belong to ), so
lalee < 1, thus (S — S)* € C. If a € 1C, then for all z,y € S, we
have |a - (z — y)| < Ty lail [oi — yil < 30 leil + |yl < 1, so we have
2C C (S — S)*. Now the claim follows from the last paragraph.

Now theorem (5.1) follows from claims (5.2) and (5.3) and theorem
(2.7).

Remark (5.4): The lower bound in theorem (5.1) is tight as seen by
the following example : a; = —1, a; = a3 = ... = a, = 1 whence it
is easy to see that ¢ = 1 and u = (p — 1)/2. We do not know if the
upper bound is tight. But it can be shown that the upper bound cannot
be improved by more than a factor of O(n) as follows. (We only sketch
the argument.) Suppose p is fixed and much larger than n. We give a

U for

counting argument that for most ay,as,...a,, we have a(0) > cnp
some numerical constant ¢. Let S be the simplex defined above. Then for
positive reals M such that M >> n, the number of integer points in M - S
is roughly the volume of M - S which equals M"/n!. Each point z in M - S
satisfies a-x =0 (mod p) for p"~! of the possible p™ vectors a. Thus there

exists a constant ¢ such that if M < enp'/", then for 3/4 of all possible a’s
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, there is no z in M - S such that a-z =0 (mod p). This proves our claim
from which it obviously follows that for at least 3/4 of the a’s, p exceeds
enp'/™. We will also show that there is a numerical constant d such that
for at least 3/4 ths of the a’s, ¢ > dp™=. Let M be any positive real.
Then the number of vectors with n integer components each at most M in
absolute value is at most (2M + 1)", each such vector can be multiplied
by any integer ¢ modulo p to produce an a with ¢ < M. Thus there are
at most O(pM™) vectors a for which ¢ is less than or equal to M. Since
the total number of a’s is p™, our claim is proved. The two claims together
show that for a positive fraction of the a’s , the product u¢ exceeds cipn
for some numerical constant c;.

The methods above can be extended to several congruences (instead of
one) and to non-prime modulii. Also, @ and p can be defined with respect
to convex bodies other than the simplex S.

Our second aplication concerns inhomogenoeus simultaneous diophan-
tine approximation. Suppose aj,as,...a, are arbitrary reals. The gen-
eral problem of approximating them by rationals with the same denomi-
nator is called simulataneous homogeneous diophantine approximation. In
the inhomogeneous case, we have also n other reals 4y, f;,... 0, and we
wish to approximate ay,ay,...a, by reals (p; + £1)/q¢,(p2 + B2)/q,(p3 +

B3)/q...,(pn+ Bn)/q (respectively) where py,pa,...p, and ¢ are integers.
Cassels (1957) is a general reference on the topic. For the next theorem,

we remind the reader of the notation that for a real number r, we denote
by [r]| the distance of r to the nearest integer.

Theorem (5.5): Suppose aj,as,...a, are any reals and let Q, e be
positive reals such that for all integers ay,as,...a,, not all zero,

Qa1 + azas + ... azan] + €Y |ai| > cn’ (5.6).

i=1
Then for all reals By, P2, ... [Pn, there exist integers p1,pa,...Pn,q with
lg| < @ such that for all i,

lga; — pi — Bil < e. (5.7)
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Conversely, if for all reals 1, Ba, . . . B, there exist integers py, pa, ... Pn,
and q with |¢| < Q such that (5.7) is satisfied, then for all integers
ay,as, ... d,, not all zero, we have

Q[ajay + azas + ... anay| + eZIa;[ > 1/2.

=1

Proof: We first prove the second statement in the theorem. Suppose
aq,0s,. .. a, is any set of integers not all zero. Choose 1, 32, ... 3, so that
St a;B; = 1/2. For these B’s there exist integers g, pi1,ps,...pn by hy-
pothesis so that (5.7) is satisfied. So we have a;p; + a;8; — €|a;| < qa;a; <
a;p; + a;f; + €|a;| Vi. Summing these and noting the definition of 3, we
have [¢ ¥ a;a;| > %— €Y |a;| whence of course |¢|[Y a;ai| > % — e |ail,
completing the proof of the second part of the theorem.

The first part of the theorem is proved by appealing to theorem (2.7).
To this end, let L be the lattice generted by the rows of the following
matrix:

(1 b f . . . 0 \
o 1 0 . . . 0
o o . . 0 1 0
K(l’l (e'D) " . . (o 7% E/Q)

Let K be the unit “cube” = {z : 2 € R"*;|z;| < 1}. Then it is easy to
see that the conclusion of the first part of the theorem is true (i.e., for all
reals By, Ba, . .. Bn there exist integers p1, pa, . .. pn, ¢ With |¢| < @ satisfying
(5.7) ) if and only if p,41(K,L) < e. So it suffices to prove that under the
hypothesis, pn41(K,L) < e. But, the dual lattice L* is generated by the
rows of the following matrix :
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1 00 . . . (—Qay)/e
{O L v = (——Qag)/e\

00 . .0 1 (—Qan)e

0 0 0 Qe /

(K — K)* is the octahedron {z : z € R"; Y |z;| < 1/2} and it is easy to
check that the hypothesis in the theorem implies that A ((K — K)*, L*) >
c,n?/e ; this together with theorem (2.7) yields the current theorem.

We formulate another version of this last result, which shows that it can
be viewed as a strong quantitative version of a theorem of Kronecker (cf
Lovéasz 1986, Theorems (1.1.9) and (1.3.4)). Another quantitative version
was proved by Khinchine (1946); his result implies the version of ours in
which the factor n? below is replaced by an exponentially large factor. Note,
however, that ours is in a sense weaker than Kronecker’s and Khinchine’s
result, because the latter say something about each particular choice of the
B;. We could use the results of Hastad (1987) instead, and obtain a version
which would assert a similar ” pseudo-equivalence” for each particular choice
of the 3;, but would give a worse value (n® instead of n?) on the right hand
side.

(5.8) Theorem: Suppose p is a prime number and n is a natural

number greater than 1. Suppose ay,as,...a, are integers not all divisible
by p and € 1s a positive real such that

min{} " |a;|: Y aia; =0 (mod p); a; € ZVi ; not all a; = 0} > ¢,n’/e
i=1 i=1
(5.9).
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Then, for all integers By, Ba, ... By, there exists an integer t such that
lta; — B; (mod p)| <epfor i=1,2,...n (5.10)

Conversely, if for all integers (1, B2, ... Bn, there exists an integer t sat-
isfying (5.10), then

n n 1
min{) _ |a;| : Y a;; =0 (mod p); a; € ZVi ; not all a; =0} > L
€

i=1 i=1

Proof: The first part of the theorem is proved using theorem (5.5). To
this end, let a! = a;/p for i = 1,2,...,n. We wish to apply the first part
of theorem (5.5) with the o’ s , € and @ = ¢,n?p. Note that | >, a;q;
(mod p)| = p[Xi,a;al], so if ¥ a;a;is not equal to 0 (mod p), then
[Y%, a;al] > 1/p, so (5.6) is satisfied ; so we have by theorem (5.5),
that for all integers By, Ba, . . . fBn, there exist integers t,py, pa,...pn so that
|tal —p; — B;/p| < € which implies that |ta; — 8; (mod p)| < ep completing
the proof. If Y a;a; =0 (mod p), then, we have by the hypothesis of the
current theorem, €3 |a;| > ¢,n* whence again (5.6) is satisfied and hence
its conclusion which implies the conclusion of the current theorem.

To prove the second part of the theorem, assume that for all integers
B1, B2, ... Bn, there exists an integer ¢ satisfying (5.10). Let ay,as,...a, be
arbitrary integers not all zero such that " a;a; =0 (mod p) and choose f
’s so that " a;8; = (p—1)/2 (mod p). Let ¢ satisfy (5.10). Then, we have
(r-1)/2=|-Saifi (mod p)| = [(Satai—T aiB) (mod p)| < peXlai

from which the theorem follows.

Acknowledgments: This research was done while both authors were
visiting the Institut fiir Operations Research, Universitat Bonn, School of
Operations Research, Cornell University and the Mathematical Sciences

34



Institute, University of California, Berkeley. We thank the institutions
for their hospitality. We thank Herb Scarf, Eva Tardos and Bill Cook for
helpful discussions.

References

W.Blaschke, Uber Affine Geometrie VII: Neue Eztremeigenschaften von
Ellipse und Ellipsoid, Leipziger Ber. 69, pp 306-318 (1917).

J.Bourgain and V.D.Milman, Sections euclidiennes et volume des corps
symetriques convezes dans R™ , C.R.Acad. Sc. Paris, t. 300, Série I,n 13,
pp 435-438 (1985).

J.W.S.Cassels, An introduction to the geometry of numbers Springer
Verlag (1971).

J.W.S.Cassels, An introduction to diophantine approzimation, Cam-
bridge University Press, Cambridge Tracts in Mathematics and Mathe-
matical Physics , No.45, (1957).

P.M.Gruber and C.G.Lekkerkerker, Geometry of Numbers, 2nd edition,
North Holland , Amsterdam—New York (1987).

J.Hastad, A good dual vector, to appear in Combinatorica (1987).

J.Hastad, private communication (1986).

R.Kannan, Minkowski’s Convez body theorem and integer programmaing,
Mathematics of Operations Research, Volume 12, Number 3, (1987) pp415-
440

C.J.Hurkens, Blowing up a convez body in two dimensions, manuscript
(1987)

N.Karmarkar, A new polynomial time algorithm for linear programming,
Combinatorica 4, pp 373-396 (1984).

A. Khintchine, A gquantitative formulation of Kronecker’s theory of ap-
prozimation, Izv. Akad. Nauk. SSSR, Ser. Mat. 12, pp 113-122 (1948) (In
Russian).

A Korkine and G.Zolotarev, Sur les formes quadratiques, Math. An-
nalen 6, pp 366-389 (1873).

35



J.Lagarias, H.W.Lenstra and C.P.Schnorr, Korkine-Zolotarev bases and
successive minima of a lattice and its reciprocal lattice, to appear in Com-
binatorica (1987).

A K.Lenstra, H-W.Lenstra and L.Lovasz, Factoring polynomaials with
rational coefficients Mathematische Annalen 261, pp 513-534 (1982).

H.W.Lenstra, Integer programming with o fized number of variables,
Mathematics of Operations research, Volume 8, pp 538-548 (1983).

L.Lovész, An algorithmic theory of numbers, graphs and convezity, NSF-
CBMS Regional Conference Series 50, SIAM (1986).

K.Mahler, On lattice points in polar reciprocal domains, Proc. Kon.
Ned. Wet. 51 pp 482-485 (=Indag. Math. 10, pp 176-179) (1948).

J.Milnor and D.Husemoller, Symmetric bilinear forms Springer-Verlag,
Berlin (1973).

L.A.Santalé, Un invariente afin para los cuerpos convezos de espacios
de n dimensiones , Portugal Math. 8 (1949) pp 155-161.

36



