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Abstract.

Let S be any set of N points in the plane and let DT(S) be the graph of the Delaunay
triangulation of S. For all points a and b of 5, let d(a,b) be the Euclidean distance from
a to b and let DT(a,b) be the length of the shortest path in DT(S) from a to b. We show

that there is a constant ¢ ( < ]—?éw ~ 5.08) independent of S and N such that

DT(a,b)
d(a,b)
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1 Introduction

A major goal in the study of data structures is the discovery of structures which are
succinet and efficient. The aim is to find a structure requiring a small amount of space
(typically linear) which can then be used for efficient computation. For example, search
trees on N data items are built in time N log N to store data in space N allowing for
searches in time log N. In this case, the data structure is used to represent all of the
data present. In other situations, efficiency is built into a data structure by not storing
all of the data, choosing instead to represent a subset which accurately characterizes the
information. For example, consider a depth first spanning tree for a graph. In this case, the
backbone of the graph is represented within the data structure and additional back-edges
appear in an additional structure. In this paper, we extend the problem one step further.
Our goal is to find a linear space data structure which represents a quadratic amount of

information effectively.

Our main results concern the use of the Delaunay triangulation of a set of points in the
plane as an approximation to the complete graph connecting these points. In particular,

we study the question:

Let S be a set of N points in the plane and let DT(S) be the graph corresponding
to the Delaunay triangulation of S. If @ and b are vertices of S, what is the
maximum value of the ratio of the shortest path connecting a and b in DT(S) to

the (Euclidean) distance between a and b?

We show that for all N and all point sets S, this ratio is bounded above by a constant.

In what follows, we show that this constant is at most lﬂﬁrr =~ 5.08.
b L

This problem has been previously studied by Chew [Ch86] who showed that if DT1(S)

is the Delaunay triangulation in the L norm then the ratio of shortest distances in DT\(S)

to straight line distances is bounded above by V10 = 3.16. He gives a lower bound of 7 /2

on the ratio we consider here but is unable to prove an upper bound. We conjecture that

the true bound is closer to /2 than to -lig\ﬁfr; we suspect that the appearance of the
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“golden ratio” here is an artifact of our proof technique rather than something inherently
related to Delaunay triangulations. Chew also argues based upon applications to motion
planning, polygon visibility and extensions of Voronoi diagrams/Delaunay triangulations

that the problem which we solve is of significance.

In a recent paper, Sedgewick and Vitter [SV86] studied the problem of ﬁﬁding shortest
distances within random Euclidean graphs. They describe applications to transportation
problems, AI searches and VLSI routing that arise from problems similar to the one we
study here. Further, they state our problem as an interesting problem and suggest that it
might be possible to find shortest paths using the Euclidean Delaunay graph in sublinear
time.

In addition to the applications mentioned in these papers, our result has potential
application to heuristics for finding fast traveling salesman tours and related problems
arising from finding shortest distances. Furthermore, the approach studied here represents

a paradigm that deserves further study by graph theorists.

[ Section 2 we derive our main result from a number of lemmas, which are proved in

Section 3.
2 The main result

We begin with (informal) definitions of the Voronoi diagram and the Delaunay trian-
gulation. The Voronoi diagram for a set S of N points in the plane is a partition of the
plane into regions, each containing exactly one point in S, such that for each point p € 5,
every point within its corresponding region (denoted Vor(p)) is closer to p than to any
other point of S. The boundaries of these regions form a [)laiuar graph. The Delaunay Tri-
angulation of S is the straight-line dual of the Voronoi diagram for S; that is, we connect
a pair of points in S if and only if they share a Voronoi boundary. Under the standard
assumption that no four points of £ are co-circular, the Delaunay T.iangulation is indeed

a triangulation [PS85]; we denote its corresponding graph by DT(5).

For the remainder of this section, fix points a, b € S; we will construct a path in DT(S)

that is not too long in relation to d(a,b). Assume for simplicity that a and b lie on the
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z-axis, with x(a) < x(b) (we denote the coordinates of a point ¢ in the plane by x(g) and
¥(q), respectively). We refer to members of S alternatively as points or vertices, and to

edges of DT(S) as edges or line segments, as the context indicates.

Our original idea for the path was simply to use the vertices a = bg, by, .., bm—1,bm =
corresponding to the sequence of Voronoi regions traversed by walking from a to b along
the a-axis (sce Fig. 1, where m = 4). In general, we refer to the DT path constructed in

!

this way between some z and z' in S as the direct DT path from z to 2. Let p; denote

the point on the x-axis that also lies on the boundary between Vor(b;_;) and Vor(b;), for

i = 1,2,...,m. The definition of the Voronoi diagram immediately gives that p; is the

center of a circle C; passing through b;—; and b; but containing no points of S in its interior.
Two simple properties of direct DT paths are:

Lemma 1: x(by) < x(by) <--- < Wb )

Lemma 2: For all 1,0 < ¢ < m, b; is contained within, or on the boundary of, circle(a, b)

(by which we denote the circle with a and b diametrically opposed).

Note in Fig. 1 that all the b; happen to be above the z-axis (i.e. ¥(b;) > 0 for all
0 < i < m. In such cases, we say that the direct path between the two points is one-sided.
One-sided paths are fortuitous for our purposes, because the ratio of the path length to
the Euclidean distance is at most m/2; this is a simple consequence of Lemma 1 above and
the following;:

Lemma 30 Let Dy, Da. ..., D be circles all centered on the r-axis such that D =
Ui<i<k Diis connected. Then boundary(D) has length at most - (2, — re), where zp and
z, are the least and greatest x—coordinates of D, respectively (see Fig. 2).

Lemma 3 applies to the one-sided paths because the half of boundary(C) (where C' is

defined as Uj<k<m Ck) that lies above the z-axis has length at least as great as the path

itself (because the b; are monotonic in ).

The trouble with this approach is that the path is not necessarily even close to being

one-sided; the path may zig-zag across the z-axis (as is illustrated in Fig. 3) O(N) times.
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Our modified approach, then, is to try to stay above the z-axis. Should the direct
path dip below the z-axis, we determine how costly the dip will be. If dipping below is not
too expensive (in a sense defined below) then we follow the direct path below the z-axis
and then back up. Otherwise, we construct a shortcut between the two points above the

z-axis. Most of the proof consists of showing that the shortcut is not too long. The exact

- path we take is made more precise in the proof of the following:

Theorem: There exists a DT path from a to b of length at most < 1—"%@7" - d(a, b)

Proof:

We present an algorithm for constructing a DT path from a = by to b = by, and then
analvze the length of the path it produces. Assume that the path so far has brought us to
some b; such that (1) ¥(b;) > 0 (initially, 7 = 0), (2) ¢ < m (meaning we're not finished),
and (3) ¥(biy1) < 0. Thus the direct path would dip below the z-axis for a while after b;.
Let j be the least number greater than i such that y(b;) > 0 (e.g. in Fig. 4, if ¢ = 2 then
j = 4). Let T denote the path along the boundary of C clockwise from b; to b;. Let w
denote the length of the projection of T onto the z-axis (thus w = x(b;) — x(0;)). Define
h = min{¥(q) : q lies on T'}. Now if h < w/4 then continue along the direct path to ; (i.c.
use edges bibiy1, bit1big2, ..., bj—1bj). Otherwise we take a shortcut as follows. Construct

the lower convex hull b; = zq, 21, 22, ..., 2n = b; of the set
{¢g €S : x(b) <x(q) <x(bj) and ¥(q) =2 0 and ¢ lies under b;b;}

(sce Fig. 5). Note that these convex hull edges are certainly not on the direct DT path
from a to b. Now the shortcut consists of taking the direct DT path from 2z to zp4y for

cach 0 < k <n — 1. The key fact (proved in Section 3) is:

Lemma 4: Lev z-zp4, be an edge of the lower convex hull described above. Then the

direct DT path from z; to zj41 is one-sided.

Next we analyze the length of the path produced by this algorithm. When proceeding

from b; to by, let ¢ denote the length of T'. If h < w/4 then let go be the point of T' with
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least y-value (see Fig. 6), let t; denote the length of the portion of T' from b; to go, and
t; the length of the portion of T from go to bj (thus t; +¢; = t). Let w; and w; denote
the lengths of the projections of those two portions of T, respectively (thus w; + w; = w).

Then the path we take (i.e. no shortcuts) has length at most
t++205() +¥(b;)) =t + 22k + (¥(bi) — h) + (Y(b;) — 1))
< t4+2(5 + (¥(b) — k) + (¥(b)) — 1))
=425 2 (b)) = k) + % + (¥(b;) — b))

<t+2(£t +"/_ ) =t(1 + V/5)

The last inequality follows from the (easily proved) fact that

+ b &

V5,
2

(VR =

whenever a and b are the legs of a right triangle with hypotenuse c.

On the other hand if A > w/4 then we take the shortcut, which has length at most

n—1

Z length of one-sided path from z; to z.4

k=0
(by Lemma 4) which is < 3700 l(l( g, ze—1)7/2 < tw/2. (by Lemma 3). Hence in either
casc. the distance we travel in getting from b, to bj is at most (1+ V3)t. Therefore summing
over all such trips b; to bj as well as the trips (for which we travel at most ¢ units) where

the direct DT path from a to b stays completely above tue z-axis, we get (by Lemma 3) a

total path length of at most d(a,b)l—'%érr. U



3 Proofs of the lemmmas

Proof of Lemma 1: The perpendicular biscctor of b; and b;41 contains p;. Point b;y,

lics to the right of this bisector, and b; lies to the left; hence x(b;) < x(biy1). U

Proof of Lemma 2: Let ¢ denote the midpoint of segment ab; let & be such that c lies

in the Voronoi region of b;. Then

d(bo, ¢) = d(bi,¢) = ... = d(b,c)

and d(br,¢) < d(bgy1,¢) < ... < d(bm,c). |

Proof of Lemma $: By induction on k. The claim is easy if k = 1; so let k > 2 and
assume it for & — 1. Let ¢; and g4 denote the leftmost and rightmost points of the Dy,
respectively (see Fig. 7), and assume without loss of generality that g4 = z,. Let g3 be
the rightmost point at which Dy intersects another circle D; (thus j < k); let g3 be the
rightmost point of D;. We can assume that Dj does not entirely contain any circle D;
(i # k), since otherwise D; would not contribute to boundary(D) and hence the induction
would be trivial. Denote by a; (a2) the length of the arc on circle Dy clockwise from ¢
to ¢» (resp. g2 to qq). Let az be the length of the arc on circle D; clockwise from ¢, to
3. Finally, let ag = (7/2)(x(g3) —x(q1)) and let a5 = (7/2)(x(g4) —x(g3)). Then a simple

convexity argument shows that

a1 + ag 2 &

Also, we have

o4 + o5 =) +az.

Henec.

ay a3+ as 2 ag +as =ap +az,

implving a3 + as > a2. Therefore, denoting the length of the boundary of D by bd(D),



we have
bd(D) < bd(circle(gs,q)U |  Ds)
1<i<k=1
< bd(circle(gs, g4)) + bd ( U D,)
1<i<k—1
< w(zy —x(q3)) + m(x(g3) — z¢) (by the inductive hypothesis)
< w(ay — ).
0

Proof of Lemma 4:

By Lemma 2, the direct DT path from z; to zj4; lies entirely within circle(zg, 2k41)-
We now show that there are no points of S within the lower semicircle of circle(zk, zx+1),

so the path must be one-sided.

Let ¢ be an arbitrary point in this lower semicircle; we must show ¢ € S. If x(b;) <
x(q) < x(b;) and ¥(q) > —h (i.e. ¢ lies in region It} in Fig. 5) then we claim ¢ ¢ S.
To sce this, note that if ¥(¢) > h then it lies outside the lower convex hull; whereas if

— I < ¥(q) < h then ¢ lies in the interior of Uj<x<j Ck-

We next show that ¥(¢) > —h (that is, ¢ ¢ Ra). Assume without loss of generality
that ¥(zx) < ¥(zr41). Since zx € § it must lie directly above some point of T, since the
area below T and above the z-axis is contained in C' and therefore contains no members
of S. Therefore ¥(zi) > h > w/4. Let ' be the point with coordinates (%(zp41),¥(21))-
Let ¢ and ¢ denote the midpoints of segments zj.zp4 and zp2', respectively. Then ¥(c') >
w/4. That g € circle(zg, 2') follows from ¢ € circle(zg, zr41) and ¥(g) < ¥(z) = y(=').
Furthermore, X(zp41) — X(z1) < w, since by extending zgzp41 on both sides we encounter
points on T and since T' is connected (and ience the projection of T' onto the z-axis 1s at
least as long as the projection of zpzg41 onto the z-axis). Therefore radius( circle(zg, z')) <

w/2. Hence

¥(q) > ¥(c') — radius( circle(zy, ) > w/d—w/2=-w/4.
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Finally, we assume x(g) > x(b;) (hence g € Rq) (the case x(g) < x(b;), that is ¢ € R,
is handled analogously). We will show that ¢ lies in the interior of Cj, implying q ¢ S.
Let ¢ be the leftmost point of intersection of circle C; with the line y = h. Let 2, be the
rightmost point of intersection of C ; with the line y = —h. Let € denote the line that passes
through =34 perpendicular to segment zpzj41, and let ¢' be the line containing b; and 2.
Note that both € and € both must have negative slopes. Clearly the entire circle(zk, zx41)
lies below € and in particular so does ¢. We claim that this implies that ¢ lies below €' as
well. To see this, first note that our assumption ¥(zx) < ¥(zx41) implies ¥(2x41) < ¥(bj),
and lence line € intersects the line z = x(b;) below bj. Therefore it suffices to show that
slope(() < slope(€') (recall that both are negative). The monotonicity of slopes in the lower
convex hull gives slope(zrziy1) < slope(z¢b;). Therefore since ¢ and (' are perpendicular
to zpzr41 and z¢bj, respectively, (the latter is because x¢ and z, are diametrically opposed
on Cj), we have slope(¢) < slope(¢'). Thus ¢ indeed lies below '; hence since ¢ is in Ry it

must also be in C; and therefore not in S. O
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Figure 1

The Voronoi Diagram is shown in solid line,
and the direct DT path between a and b in dotted line.
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A direct DT path that is not one-sided.
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Figure 4

An upper bound on the length of the direct DT path
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Figure 6

Analyzing the path length when the shortcut is not taken
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Figure 7

llustration for the proof of Lemma 3.



