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ABSTRACT

In this paper we report on an experimental study of load balancing stra-
tegies for a network of workstations. We have implemented a load balancing
mechanism on which a variety of strategies have been tested. Our current
implementation runs on a local area network composed of a variety of Sun
workstations. Some of the difficulties involved in developing a practical load
balancing mechanism are described, as well as our suggested solutions to those
problems. Among the issues addressed are how to avoid instabilities in the deci-
sion policy (especially in the case where the load balancing mechanism must
deal with incomplete load information), and how to implement load sharing in
an environment where the individual processors are owned by separate users
(clearly, on such networks, policies that evenly spread the load throughout the
system are not appropriate).
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1. Introduction

In many of today’s computing environments, it is not uncommon to see a mix of idle and
overloaded machines on the same network. This is specially true in local area networks of
workstations, where users may use their machines only sporadically. It is also the situation in
distributed systems where the workload requirements have a large variance throughout the day.
This imbalance leads to a needless degradation in system throughput and to a large increase in
mean response time. Although users may realize that there are cycles available elsewhere and
individually execute their jobs remotely, we feel that there is a need for mechanisms that
automatically perform this task.

In the past, most work in the area of load balancing has been carried out within a theoretical
framework. For example, Stone [1] approached this problem by modeling task allocation as a
graph partitioning problem, while Chu [2] chose instead to answer load balancing questions by
translating them into 0-1 integer programming problems. The trouble with such approaches is
that, while they shed a certain amount of light on the subject at hand, they also abstract away
much of the complexity which must be addressed in an implementation.

Our work has consisted of actually implementing a load balancing mechanism, in order to
study load sharing policies with as large a degree of realism as possible. Qur system runs on an
Ethernet [3] local area network of SUN workstations of various models. The software consists
of a set of cooperating daemons that periodically transmit load information, and local shell (i.e.,
command interpreter) programs that use that information to decide on the appropriate execution
site for user jobs. As shown in Figure 1, users present their commands to a local shell (Ish)
which in turns queries a local daemon (rld) which has been exchanging load information with rld
daemons at other machines on the network. Based on the information provided by the local rld,
the Ish software decides to run the incoming job locally or to run it remotely (which it does using
the help of a remote slave, 1shd). We refer the interested reader to [4] for more details of our
implementation.

Although we have developed only a very simple load balancing scheme, our measurements
show that, even under conditions of relatively small load imbalance, sizable performance gains
can be achieved. For example, as shown in [4], C compilations running on a loaded machine can
be made to run almost 4 times faster by using our implementation. Furthermore, the overhead
involved in running our system is very small (for both users and non-users of our mechanism).
That is, users can expect our implementation to provide them with as fast a response time as they
could achieve by themselves if they were fully aware of load conditions in the entire network.
And those network users who do not wish to utilize the load balancing functionality find that
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their performance is not significantly degraded by the overhead of running our system.

In the process of developing our implementation, a number of problems have arisen. In the
remainder of this paper, we will describe some of those problems and our current thoughts on
solving them. The first of the four topics we will concentrate on is the issue of dealing with
incomplete load information. The second is the problem of deciding upon a reasonable
definition of load. The third involves the accuracy of statistics gathered by operating systems.
The last one addresses the special requirements that must be met by load balancing implementa-
tions in networks of independently-owned workstations. Finally, we present some conclusions
about the general usefulness of load balancing schemes.

2. Incomplete Information

In any load balancing implementation, load information must be communicated among all
the participating nodes. The most appropriate manner for accomplishing this on an Ethernet is
to have each machine broadcast its load at periodic intervals. The main difficulty with this
approach is that, if the broadcast interval is not frequent enough, the load information data may
be stale (i.e., out of date) by the time the decisions have to be made. On the other hand, the fre-
quency of broadcasts cannot be increased arbitrarily since there is a cost involved in obtaining,
sending and receiving data. Clearly, the more often load information is communicated, the
higher the overhead of the balancing mechanism, and the more network bandwidth is wasted.
Most importantly, processors must be interrupted in order to receive network messages, and may
not be able to carry out any useful work if the number of such messages becomes too frequent.
For example, our measurements show that an otherwise idle processor that has to deal with
approximately 20 incoming load messages per second will have a CPU utilization of about 25%,
while if there are about 45 incoming messages per second the CPU utilization for this task is
more than 50%.

However, it is also dangerous to send information updates too infrequently. This is best
made clear by the following example. Consider the case in which one machine on the network is
is completely idle. In that case, all the other processors may decide (based on the last load infor-
mation message sent by that machine) to send their jobs to the idle processor. Very soon, that
““victim’’ machine is overloaded, and (if the broadcast interval is sufficiently large), other
machines will not find out about the change in load. Then, when everyone finds out that the vic-
tim processor is overloaded, all the machines may pick the same ‘‘least loaded’’ site and the
situation just described is repeated once again. In such a scenario, the entire network runs at the
speed of a single (and overloaded!) processor.

In Figure 2 we show the results of an experiment where the above problem becomes clear.
Here, a simple-minded load balancing scheme is used, that is, one where jobs are sent to the least
loaded processor. Load information is broadcast by each processor at 20 second intervals. In
this experiment five users were active on a network of four processors. (Each user is modeled by
a script that correspond to a typical user work pattern of editing a program, compiling it, running
the resulting object code followed by some thinktime.) Each of the points along the X-axis
represents the initial placement of users on the network (i.e., 2,1,1,1 means that two users were
at the first machine and one user was logged on to each of the other three processors). The Y-
axis marks the average response time of the user scripts. The experiment was repeated multiple
times to achieve statistical accuracy.
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The line marked ““no Ish”’ is the result of executing all the jobs without the benefit of load
balancing. It represents the performance that could be expected in most distributed systems.
The line labeled “‘Ish’’ marks the response time obtained under our simple load balancing
scheme. As can be seen, load balancing only helps when the system is already extremely imbal-
anced (i.e., all the users at the same site). The victim problem described above accounts for the
poor performance of the load balancing software.

We have explored a variety of techniques to minimize problems with stale data. For exam-
ple, to try to eliminate the victim problem, we have tried a ‘‘required difference’’ policy. That
is, a machine will only move a job to a remote processor if that processor’s load is less than the
local one by a certain amount. The intuition behind this is that if the difference is small, chances
are that it has already disappeared by the time that the local processor is ready to send the job but
that disappearance has not yet been reflected in the broadcast loads. The results of this policy
are also shown in Figure 2, for the case of a required difference parameter of 1.0 (that is, a job is
executed remotely if the remote site has a load average smaller than the local one by 1.0 or
more) by the line marked *‘Ish (delta=1.0)"". While the performance improves somewhat from
the first case, it is still not satisfactory for the cases where the initial placement is relatively bal-
anced.

A second technique that also can be tried to alleviate the stale data problems is to try to
reduce the uncertainty in the load information in the following fashion. Whenever a job is sent
to a remote processor, the sending processor can update its own value of the load at the other
site, for example by increasing by 1.0 the load value it received from the remote processor the
last time the latter broadcast its load. The results of this strategy are also shown in Figure 2, in
the line marked ‘‘Ish (gamma=1.0)"". As can be seen, this new technique still does not help
much in the balanced network case, but obtains a greater improvement than before in the unbal-
anced network cases.

Finally in Figure 3, we show the results of combining both strategies. Now we can see that
our load balancing scheme shows a performance improvement over the no load balancing case
for all cases. Clearly, the combined technique provides us with the means for dealing effectively
with the problems inherent in making scheduling decisions based on old data. We refer the
reader interested in more details of these policies to [5].

3. Load Definitions

One of the first problems that arise in the context of designing a load balancing mechanism
is that of deciding on an appropriate definition of ‘‘load’’. Clearly, since we are developing a
system for balancing the system load, a clear definition of it is required before work can proceed.
Furthermore, since we will have to decide at some point whether a machine is ‘‘more loaded’’
than another, the load definition employed must be a single-dimensional quantity.

At first glance this issue might seem a simple matter of defining load as a function of the
load statistics available from the operating system. However, it is not clear how much weight to
give to the individual statistics of each of the different resources in a computer system. That is,
if for a given machine we are told the amount of free memory, CPU utilization, and the number
of disk requests per second, it is not obvious how much emphasis to give to each of these items.
In addition, the load function itself is bound to be quite complex. For example, if there is
enough memory to contain the working set of the currently executing jobs plus that of the job
being scheduled, any memory statistics will be mostly unimportant. However, if the arriving
job’s memory requirements are so large that they may push the system into thrashing, those
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same memory statistics become of paramount importance.

Finally, it is not even clear that a single definition of load will suffice for most jobs. Con-
sider the following example. To a CPU-bound job, the load at a site with mostly 1/O-bound
processes is very slight. This is so because the processing-intensive job will have few competi-
tors there for the CPU. On the other hand, to an incoming I/O-bound job, the load at that
machine will seem quite high. Thus, load may not only be a quite complex function, but it may
also depend on the job currently being load balanced.

Fortunately for us, the situation is much simpler in the type of environments that we are
interested in, i.e., in local area networks of workstations. In such networks, the current techno-
logical trends are towards the use of diskless nodes, that is, machines that store and retrieve data
from a file server across the network. Since in this case the disk traffic is the same for all proces-
sors, the I/O load component of load need not be taken into account. A second technological
development is that of the declining price of memory. Thus, it now becomes relatively inexpen-
sive to provide a workstation with more than enough memory to run its local jobs. Hence, for
our purposes, focusing on the CPU load seems to be sufficient for defining load.

Although we have carefully considered the design of load metrics [6], in practice we have
found that using the UNIX load average (i.e., the exponentially averaged number of processes in
the run queue over the last minute), is adequate for our needs. This load metric is simple to
obtain (it is already computed by the operating system) and our load balancing implementation
has achieved good performance with it.

4. System Statistics

As was mentioned in the previous section, in principle a definition of load may be based on
a variety of performance indices provided by the operating system. But this assumes that the
required information will be made available by the operating system. Furthermore, it implies
that those statistics will be correctly gathered and compiled at a frequent enough rate. These
assumptions may or may not be met by the available operating systems.

For example, in Berkeley UNIX [7], which is the operating system used for our experi-
ments, it has been noted that many of the system statistics are computed in such a way as to be
almost useless (see [8] for a description of some of the problems empirically observed). Addi-
tionally, in that system, many of the statistics gathered by the software are not computed all the
time, but rather at 5 second intervals, which may be too infrequent for some applications.
Finally, in the case of the load average (already described in the previous section) which is the
performance index we are particularly interested in, it is computed as an exponentially-smoothed
average over a number of time intervals (1, 5, and 15 minutes). Even if the figure computed for
the shortest interval is used, it is clear that the load average will require about a minute to
“‘react’” to large changes in processor load.

Up to now, we have not addressed the question of the correctness of the statistics gathered,
or fully investigated the effect of the sampling rate on system statistics. However, we have car-
ried out a brief experiment on the effect of the averaging interval used in computing the load
average. We modified the operating system kernel to compute the load average at much shorter
intervals (down to 15 seconds). Our measurements show that while the performance of the load
balancing mechanism improves somewhat (in particular, it is more resilient to the stale data
problems described in a previous section), the improvement is not significant enough to warrant
a permanent modification of the Berkeley UNIX kernel.



5. Independently-Owned Machines

This area of research is motivated by the following observation. It seems to us that there
are really two environments in which load balancing may be of use. One is that of a network
where there are a number of machines owned by a single entity; there, it is desirable that load
should be evenly balanced across all the machines. A second one is that of a network of works-
tations, where individual users own their machines; while those owners may not mind that some-
one else is “‘borrowing’’ a few cycles while they are not fully utilizing their processors, they cer-
tainly are not willing to see their own response suffer in order to help the overall system
response time. While most of the work in load balancing relates to the first kind of environment,
we feel that the second one also merits careful study, and presents an entirely new set of design
requirements. We are currently developing policies for networks of independently owned
workstations, as well as exploring techniques that can be used in systems that consist of a mix of
the two environments.

Although this aspect of our research is not yet over, our ideas on this topic have centered on
the following approach. In order to provide users with a well-defined method for specifying how
much they are willing to help others, our scheme consists of allowing each processor to set both
high and a low watermark. If the load of a machine is below the low watermark, that processor
will not consider itself overloaded and thus will be willing to execute processes sent to it by
other machines. If the load is above the low watermark, that processor will deny all remote
requests for job execution. The high watermark comes into play to determine whether a proces-
sor will look for help from other machines. If a machine’s load is below the high watermark,
that processor will consider itself underloaded and thus will never try to execute any of its jobs
remotely. Conversely, if the load is above the high watermark, a network node will begin to
look for another machine that will accept the remote execution of the node’s jobs.

There are a number of details in this scheme that we will not describe here; please see [9]
for the relevant information. However, it is clear from the descriptions given above that the
watermarks divide the load space into three regions. If the system load is below the low water-
mark, the processor will execute all jobs locally and accept remote jobs for execution. In this
case the machine can be said to be underutilized. If the load is between the low and high water-
marks, the processor will cease accepting remote jobs but will continue to process locally all its
jobs. We consider this the normal case for efficiently used machines. Finally, if the load rises
above the high watermark, the processor will try to offload its jobs on some remote site (and
continue to deny remote requests for execution).

A final comment on this scheme is that, if the low watermark is set above the high one,
when the load is in the region between the two, the processor will be trying to offload its jobs
while continuing to accept foreign ones. this will clearly result in a performance degradation as
jobs will have to pay the extra communication overhead without any savings in processing time.
At the present time we are integrating this scheme with the load balancing mechanism described
in Section 1.

6. Conclusions

In this paper we have described our load balancing implementation, as well as detailing
some of the problems we have encountered in designing a practical system. Four issues were
discussed. The first was the difficulty of dealing with out of date information in load balancing
systems in which participants broadcast their load at periodic intervals. A number of strategies
were described which we feel are sufficient for dealing with this problem. Two other
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discussions concerned the various difficulties encountered in defining a load metric and in
obtaining the appropriate operating system statistics to compute those load metrics. Finally,
some of the ideas involved in our current work on networks of independently owned worksta-
tions were described. For those networks, it is clear that load sharing is a more appropriate goal
than load balancing. Although there are still many questions to be answered, the experimental
results we have obtained so far in this work has convinced us that it is possible to construct a
simple load balancing mechanism that can still achieve significant performance improvements in
realistic situations.
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