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ABSTRACT

A topic of importance in the area of distributed algorithms is the effi-
cient implementation of formal verification techniques. Many such tech-
niques are based on coupled finite state machine models, and reachability
analysis is central to their implementation. SPANNER is an environment
developed at AT&T Bell Laboratories, and 1is based on the
selection/resolution model (S/R) of coupled finite state machines. It can be
used for the formal specification and verification of computer communica-
tion protocols. In SPANNER, protocols are specified as coupled finite
state machines, and analyzed by proving properties of the joint behavior of
these machines. In this last step, reachability analysis is used in order to
generate the "product” machine from its components, and constitutes the

most time consuming part of the verification process. In this paper we
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investigate aspects of distributing reachability over a local area network of
workstations, in order to reduce the time needed to complete the calcula-
tion. A key property which we exploit in our proposed design is that the
two basic operations performed during reachability, the new state genera-
tion, and the state tabulation, can be performed asynchronously, and to
some degree independently. Furthermore, each of these operations can be
decomposed into concurrent subtasks. We provide a description of the dis-
tributed reachability algorithm we are currently in the process of imple-
menting in SPANNER, and an investigation of the scheduling problems we

face.

July 31, 1987
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1. Introduction
Designing reliable distributed software such as computer communication protocols is

extremely difficult and challenging. Informal specifications of such software are often
imprecise and incomplete, and are not sufficient to ensure correctness of many simple dis-
tributed algorithms. One reason is that the concurrent execution of components typically
results in an exploding number of execution histories. This makes the prediction of all
possible erroneous behavior of such systems prohibitively complex for the human mind,
and as a result the designer musr rely on formal methods for specifying and analyzing the
software. There is an increasingly extensive literature on such formal methods and tools;

for example, see [Bo87] for a survey.

Among the formal specification methods, finite state models are one of the most
popular. In these models, the system is described as a set of coupled finite state machines
(FSMs), each machine modeling a concurrently executing component. The reason FSMs

are widely used to describe complex systems is that it is conceptually easier to describe
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such a system in terms of a large number of small components, and then derive the com-
plete system by taking the "product” of these components. In addition to this, in many
cases, FSM descriptions can be directly translated to implementable code or implemented

in hardware, see [AC85, AK84, GK87].

There are many existing tools for the analysis of finite state models, for example see
[ABM86, An86, FI87, CG86]. The way these tools work can be summarized in the fol-
lowing steps. First, they provide an environment in which the designer specifies the FSMs
by describing the components of the system. Usually, the designer also specifies the task
that must be satisfied by the system in order to ensure correct execution. In the second

step, the system uses the description of the components to construct the "product” FSM

which models the complete system. This step constitutes the reachability analysis of the -

system, during which a database of all the reachable states and transitions of the product
FSM is constructed from the specifications of the component FSMs. The last step consists
of checking the validity of the task formula on the product FSM. This can be accom-
plished in a "partial” way by assigning probabilities to the FSM and checking correctness
on some finite set of most probable histories, obtained by simulation, or in a complete way
by doing model checking of the FSM and the task formula, see [CE82, QS82]. In some
systems, the last step is embedded in the second step, and corresponds to doing reachabil-
ity analysis on a larger number of FSMs, some of which model the task requirements, see
[ACWB86]. One can also use various reduction techniques depending on the underlying
model, so that the product FSM is substituted by a smaller one. Further details about

these techniques can be found in the literature, and are beyond the scope of this paper.

From the previous discussion, it follows that a limiting factor for the practical appli-
cation of the FSM methods is the time it takes to perform the reachability analysis. With

the current technology, graphs of 10* to 10° states can be analyzed in times on the order
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of minutes or hours, by running the tools on single dedicated workstations. In this paper
we focus on how to move this limit substantially further by performing the reachability
analysis in parallel. Note that an important issue in favor of distributing the reachability
analysis is the size of the table of the explored states. For large graphs, this table cannot
fit in the main memory of a single workstation and the tabulation becomes increasingly
slower as the number of explored states grows. We describe a parallel reachability algo-
rithm and its implementation aspects, for the already existing tool SPANNER [ABMS7],
in a local area network of SUN workstations. We should emphasize that the design we
propose is general enough to be used for parallelizing the reachability analysis in most of

the existing FSM tools.

We will elaborate now further on the ideas presented in the paper. A "centralized" -

reachability analysis is performed as follows. The input consists of the description of N
FSMs. A "global” state is a state of the product FSM, and consists of a vector of N local
states, one per component machine. The underlying model provides a way to compute for
each global state, the set of all possible successor global states. The reachability analysis
starts with some initial global state, and completes when all global states reachable (in any
number of steps) from this initial state, are found. While doing this, there are two basic
operations involved: the srare generarion, which given-a-global state, computes its successor
global states, and the state rabulation, which given a global state, checks if it has been
already found by keeping an updated table of the global states visited so far. The distri-
buted reachability analysis we propose is basically performed as follows. There are n state
generators and m state tabulators. Each state generator receives (global) states from the
tabulators, computes their successor states, and sends them to the tabulators. A state
whose successor states have been computed is considered to be "explored”. The tabulators

receives newly generated states from the generators, filter out the states that have already
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be found, and send unexplored new states to the generators. The key issues we address in
our design is how to distribute the newly found state information among the tabulators,
and the scheduling of the work requests among the tabulators and the generators, so that
the workload of different processors remains balanced. As it turns out, the scheduling
problem involved is non trivial, and has many generic aspects. This is due to the large
number of messages, and the comparable magnitude of the time involved in processing the

work carried by a message, with the message delay of the network.

The paper is organized as follows. In section 2, we briefly describe the SPANNER
system and the model of FSMs on which SPANNER is based. In section 3 we describe the

design of the distributed software, and its implementation environment. In section 4 we

examine the underlying scheduling problem, and we provide a queuing model for the sys- -

tem. This model can be used as a basis for simulating the performance of the system,
with different scheduling parameters. We also mention two open scheduling problems
which abstract different parts of the original problem and seem interesting for further
research. At the end of section 4, we investigate performance issues related with the gain
in speed of the reachability analysis due to parallelism. In section 5 are the conclusions of

this work.
2. The Selection/Resolution model and the SPANNER system

2.1. The Selection/Resolution model

For completeness, we review the selection/resolution model and the SPANNER sys-
tem. For simplicity we discuss the model in terms of its operational semantics. Further
details are available in [GK82, AKS83, ABM87]. The selection/resolution model is a for-
mal method of describing a complex system as a finite set of coupled FSMs. Each com-

ponent FSM (called a process) is specified as an edge labelled directed graph, see figure
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Figure 2.1

The vertices of the graph are stares of the process, and the directed edges describe a state
transition that is possible in one time step. A state encapsulates the past history of the
process and is private to that process. That is, no component FSM can know about this
state directly. In each state, a process can nondeterministically choose from a set of selec-

tions (enclosed in braces next to the state). The selections are signals processes use to
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coordinate. They can be viewed as indicating the ‘‘intention’ of the process. The com-

ponent FSMs use these selections to determine their transitions.

The directed edges of the component FSMs are labelled by elements of a Boolean
algebra generated by the selections of the processes. We use * to indicate the multiplica-
tion operator (Boolean and), and we use + to indicate the addition operator (Boolean or).

We use ~ for the Boolean negation.

After each process has made its selection, each process decides on a transition to a
new state. This resolution is done as follows. First, calculate the global selection of the
processes. This is done by multiplying together the current selections of all the processes.

Note that, by definition, this product is the and of all the current selections. Next, each

component FSM independently determines which transitions out of the current state are

enabled. It determines if a transition is enabled by the global selection by multiplying the
edge label by the global selection and checking if the result is O in the Boolean algebra. If
the product is 0, the transition is not enabled. Otherwise, it is enabled (a valid transition).
Finally, each process chooses one of the enabled transitions and transitions along that edge

to its new state.

Consider the case of k processes P,, ..., P, and let the selection of P; be s; at time
step . Then the global selection s = 5, 5, ... 5 is the AND (in the Boolean algebra) of the
individual selections. If process P; is in state v at time step 7, and the label on the edge
from v to w is €, then w is a possible state at time r + 1 if s - € # 0.

A chain of a process is a sequence of state-selection pairs consistent with the dynam-
ics described above. Intuitively, a chain is a sample path of the behavior or possible his-
tory of the process, where at each time step we record the state and selection of the pro-

cess.



2.2. The Spanner System

SPANNER is an environment consisting of a set of modules for specifying and
analyzing protocols. The underlying formal model is the selection/resolution model dis-
cussed above. SPANNER allows the user to specify a protocol as a set of coupled FSMs
using the SPANNER specification language. The parser module checks the specification

for syntactic correctness, and produces an intermediate description used by other modules.

The basic construct of the specification language is a process; this corresponds to a
labelled directed graph of the s/r model. The initial declaration of the process simply
describe the ranges of states and selections and gives the user the option (using the key-

word valnm) of providing descriptive names for the states and selections. The import

declaration describes which processes’ selections are visible in that process. The inir -

declaration declares the initial state of that process. The trans section is the transitions
section and consists of blocks that define transitions from sets of states. The format of a

block is shown in figure 2.2.

current state {selection list}
> next state : condition;
> next state  : condition;
Figure 2.2

Figure 2.3 shows the processes of a simple producer-consumer problem in the specification

language.

SPANNER provides a variety of other constructs that make it easier to specify large



constants N = 3

process P /*the producer*/
import C
states 0..2  valnm [PRODUCE.:0, AB:1, TRY:2]
selections 0..5 valnm [idle:0,write:1,writing:2, done:3, head:4,tail:5]
init PRODUCE
trans
PRODUCE {idle, write}
> TRY  :write);
> 8 :otherwise;

TRY {head,tail}
> AB :(C:idle,read,done) + (P:head)*(C:head) + (P:tail)*(C:tail);
>$ :otherwise;

AB {writing, done}
> PRODUCE:(P:done);
> % :otherwise;
end
process C /*the consumer*/
import P

states 0..2 valnm [CONSUME.:0, AB:1, TRY:2]
selections 0..5 valnm [idle:0, read:1, reading:2, done:3, head:4, tail:5]
init CONSUME
trans
CONSUME {idle, read}
> TRY (X.# > 0) * (Ciread);
>3 :otherwise;

TRY {head,tail}
> AB :(P:idle,write,done) + (P:head)*(C:tail) + (P:tail)*(C:head);
>3 :otherwise;

AB {reading, done}
> CONSUME:(C:done);
>$ -.:otherwise;
end
process X /*the counter*/

states 0..N+1 valnm [ERROR:N+1]
selections 0..N+1 valnm [error:N+1]
init 0
trans

$ {$}

>($ + 1)%(N+2): (P:done);

>($ - 1)%(N+2): (C:done);

> 9 : otherwise;
end

Figure 2.3
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systems. This includes the notion of cluster, to facilitate hierarchical development, and the
notion of process type as a template for the instantiation of similar processes. These con-

structs are discussed in the references.

The SPANNER system allows the user to experiment with and study the system of
coupled FSMs in two ways. First, the system can be studied using the reachability graph.
The reachability graph is a graph whose vertices are global states (vectors of local states),

and whose directed edges are valid transitions between global states.

The latest version of SPANNER is actually based on an extension of the s/r model
which allows reasoning about infinite paths (chains) [ACWS86]. It turns out that many

questions about protocols such as deadlocks, livelocks, and liveness can be answered solely

by proper investigation of the reachability graph. The general mechanism that we use is -

to add monitor processes that either check for or ensure certain properties of interest. For
example, to an existing protocol, we could add a process that ensures that a particular
component always makes progress and does not pause forever (a liveness property). Simi-
larly, we could add a process that checks that a particular task such as receiving messages
in the order sent was met. In this approach, proving the validity of arbitrary temporal

logic formulas is done by checking properties of a reachability graph.

In order to make it convenient to study the reachability graph, SPANNER produces a
database that consists of three tables (relations). The global reachable states table (table r)
has as attributes index (the number of the global state), and the local state for each process
identified by the name of the process. In addition, each global state has the attribute cc
that identifies to which strongly connected component that state belongs. The transitions
table (table r) has as attributes ro-srare and from-stare that specify the global state numbers
for the one step transitions. Using a set of commands, the user can query the relations to

determine those table entries that satisfy a particular condition. For example, in the
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producer-consumer protocol of figure 2.1, we could ask if there is a global reachable state
with process P in state AB and process C in state AB, corresponding to both processes
accessing a common buffer at the same time, and we would find that the answer is no. In
addition, the database has a third relation called table c that is used in checking for live-

ness properties. For details, see [ABMS88].

Another way of studying the system of coupled FSMs is through simulation. This is
particularly useful for very complex protocols, since interesting constraints can be imposed
on the simulation. For example, it is possible to assign probabilities to the selection
choices and it is also possible to force a selection to be held for a particular number of

time steps. SPANNER allows the creation of a database of sample runs using a set of

simulation modules. These modules allow a simulation to be setup, using the constraints -

mentioned, then simulated, and finally analyzed. The user can analyze the results of the
simulation by querying the generated database using an interactive query language, similar

to querying the reachability database.

Reachability

Reachability in SPANNER is done in a fairly standard way. Given, a global state of
the system (a vector of local states of components), the first step is to generate potential
new global states. The is done by checking for all possible transitions that are enabled in
each component for that given global state, and then looking at the new local states that
result. These new local states are combined to form the next set of global states. This is
the generaror function of reachability. Next, the potential new states are checked to see if
they truly are new states. This is done by keeping the reached states in a hash table. This
is the rabularor function of reachability. Unexplored states are kept on a list of states to

be investigated, and they can be explored by either breadth-first or depth-first search.

In this paper, we essentially discuss various ramifications of parallelizing this
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reachability algorithm. As noted in the introduction, states can be generated in parallel,
since the generation of next states from two different initial states can be done indepen-
dently. Thus, the generator function can be done in parallel. Further, by being careful to
handle only parts of the hash table, the tabulator function could also be done in parallel.
It should also be noted that the generation of new states from a given initial state can also
be made parallel to some extent, since each component process can independently deter-

mine the enabled transitions from its initial local state.

3. Implementation

In this section we provide some of the details of our proposed implementation. First,

we describe the particular environment in which we intend to construct the parallel version -

of SPANNER. We then outline the distributed reachability algorithm. The details of the

scheduling policy implemented are discussed in section 4.

3.1. Implementation Environment

The system will be implemented on a network of SUN workstations in the Distri-
buted Computing Laboratory of Princeton University. We will use SUN models 2 and 3,
which will provide us with some heterogeneity with respect to processor speeds (the model
3 processor is significantly faster than that of the model 2). The machines are connected
via a dedicated Ethernet network, which ensures that during our experiments the network

is not loaded by extraneous messages.

The machines will be running SUN UNIX version 3.3, which supports a variety of
networking protocols [Sun86]. The currently implemented protocols are either stream or
datagram oriented. Stream protocols provide a bidirectional, reliable, sequenced commun-
ication channel between processes. The stream protocol implemented by SUN is the TCP

protocol defined by DARPA [Po80a]. Datagrams also allow bidirectional communication,
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but make no delivery guarantees. Datagram packets may be lost, duplicated, etc. SUN’s
datagram implementation is based on the IP protocol standard [Po80b]. Either type of
protocol can support a message rate of somewhat less than 1 megabit per second between

two SUN workstations on an otherwise idle Ethernet.

At first glance it would seem that choosing a stream protocol might be the obvious
course of action for our work. After all, users of stream protocols do not have to concern
themselves with the details of packet formation, dealing with duplicates, ensuring that
messages are not lost, etc. However, this functionality comes at the cost of lessened con-
trol over the transmission of data. The user view of a communication stream is that of a
boundary-less flow of data. That is, users think of streams as if they were inter-processor
versions of UNIX pipes [RT78], and are not aware of the details of the underlying com-
munication layers. Typically however, a stream protocol is implemented on top of a
datagram protocol (as is the case for our network). System designers who are primarily
concerned with efficiency and performance may need to have access to these underlying
layers. For example, it may be desirable to control the amount of data in a datagram

packet and the time of its transmission.

In practice, communication systems (i.e., the combination of network hardware, pro-

. tocols and operating system support) have certain packet sizes that they deliver most effi-

ciently; for example, if the networking code in the operating system kernel needs to move
the user’s data out of the user’s address space before shipping it across the network, a
packet size equal to the operating system's page size will usually result in the largest
throughput. Another fact that must be taken into account in the implementation of a
parallel application is that it is usually more efficient to send one large message than many

small ones because there is normally an overhead per packet sent.

In light of the above comments, it seems clear that our choice of networking protocol
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is not an obvious one. Our present approach is to develop the initial code using a stream
protocol. Once the debugging stage is complete, we will start using the datagram facility,

in order to obtain the maximum performance from our system.

3.2. Software architecture

We have already provided some details of the reachability analysis carried out by
SPANNER. The distributed version consists of n generators and m tabulators. Each gen-
erator stores the complete description of all component FSMs but keeps no information
about the set of reachable states. The "global" hashtable (which would be used by
SPANNER in its non-distributed version) is now split into m equal nonoverlapping hasht-
ables to be used by each of the m tabulators. Each tabulator has no information about the
FSMs, and will only store the global states which hash in its local hashtable. This implies
that each global state can be stored in only one among the m tabulators. One can easily
define the function # which maps any global state v to the appropriate tabulator h(v) as
follows. Compute the hashvalue of v, and check to which of the local hashtables it

corresponds. The index of the corresponding tabulator is the value A(v).

A generator is described in terms of three concurrent processes: a receiver process,
which feeds the input queue with unexplored states by unpacking the arriving messages; a
next state generator, which given a state produces its successor states; and a sender pro-
cess, which controls the sending of the resulting states through the network. A tabulator is
similarly defined in terms of a receiver, a state tabulator, and a sender process. A more

precise description follows:

Generator i, i=1,...,n.
Process Receiver

do until (end of reachability analysis) {
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receive message from network;
break it into states;
append the states to the generator input queue
}
Process Next_State_Generator
do until (end of reachability analysis) {
get next state v from the generator input queue;
compute the set next (v);
for each v’ in next(v) dof{
compute j=h(v');
append <v',v,i> to the generator

output queue with destination Tabulator j
}
}

Process Sender

do until (end of reachability analysis) {

for each output queue with destination Tabulator j, j = 1,...,m, do{

use the heuristic scheduling policy of section 4

to pack states into messages sent to Tabulator j

}

Tabulator j, j=1,...m.
Process Receiver
do until (end of reachability analysis) {

receive message from network;
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break it into states;
append these states to the tabulator input queue
}
Process State_Tabulator
variables: U; is the list of the unacknowledged states
sent to generator i (in the order sent), i = 1,...n.
do until (end of reachability analysis) {
get next element <v',v,i> from the tabulator input queue;
if v is in Uy for some k=1,...n, then
update Up=:Up—(v,v1,...,V,),
where vy,...,v; are all states in Uy
prior to v;
insert v’ in the hash table;
if v’ is a new state, append it to the tabulator output queue
}
Process Sender
do until (end of reachability analysis) {
Use the heuristic scheduling policy of section 4
to pack states from the tabulator output queue into messages

sent to the generators

What we have not specified yet is how the end of reachability condition will be
detected by the processes. A simple way to do this is the following. When any processor
remains idle for more than time ¢, it triggers a round where all processors respond about

their work status. If all of them have empty input queues, then the above condition is
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satisfied.

A final point to be made is that at the end of the reachability analysis phase each
tabulator will have only a portion of the reachability graph and a final coalescing step will
be required in which all the sub-graphs are merged. This coalescing step could also be

done in parallel with the tabulation.

4. Scheduling aspects

In this section we examine the scheduling problems which must be addressed by the
distributed software described in the previous section. There is a plethora of parameters
which are important for the efficient execution of the system. The measure of perfor-
mance we consider is the total finishing time, i.e., the time at which all the reachable
states have been found. Intuitively, this can be minimized if we can keep the work bal-
anced among the various computing resources in the system. Achieving such a balance
among the tabulators and the generators constitutes a nontrivial scheduling problem which

needs some novel heuristic solution.

We start by examining a simpler system consisting of a single tabulator and n genera-
tors. The basic controller of the load of the processors in our system is the tabulator. It is
the tabulator’s responsibility, once an unexplored (new) state has been found, to ship it to
the most appropriate generator among the n available. The following reasons make such a
decision very complex. In most LAN’s, a message has essentially the same cost (delay) if
it contains up to some maximum number of bytes. This implies that sending a message
containing one state or some system dependent m,, number of states, can be achieved for
the same cost. This motivates the batching of a large number of states in the same mes-
sage. In order to make this possible, states ready to be shipped must be kept in a queue
until enough of them accumulate to be batched in a message. The negative side-effect of

such a decision is that this can produce idle time for the processors waiting to process
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these states. On the other hand, if a small number of states per message is sent, this will
result in flooding the network with messages and will increase their delay. The reader
should be reminded of the size of the problem being on the order of 10° to 10° states,
which makes batching unavoidable. The optimal size of the batch is a crucial parameter to

be determined. Note that batching needs to be done from the generator’s side as well.

Another consideration is the following. At the beginning of the computation, the
number of unexplored states for most problems will grow exponentially fast, and towards
the end it will rapidly decrease to zero. If the tabulator ships exceedingly large amounts
of work to the generators towards the last phase of the computation, it is likely that during
this last phase the workload of the generators will be unbalanced, since there are not
enough new unexplored states generated which the tabulator can appropriately distribute
to even things out in the generators. A sensible policy should, in the initial phase of the
computation, send large amounts of work to the generators to reduce the probability of
them staying idle. Towards the end the policy should keep a store of unfinished work in
the tabulator’s output buffer, from which increasingly smaller batches of work are to be
send to the generators in an attempt to keep their outstanding workload balanced, and to
reduce the workload uniformly to zero. Such a policy will minimize the total completion
time. A key factor in our system that makes such a policy difficult to implement is the
random delay with which observations concerning the workload of the generators are
made. The tabulator can only estimate the outstanding work in the generator sites from
the information in the messages it receives (the newly generated states arrive together with
the identity of their generator site). An important characteristic of our system is that the
delay of a message through the network is of comparable magnitude to its processing time
(time that the destination processor takes to complete the work associated with the states

stored in the message). Finding optimal policies with delayed information is in general
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outside the scope of any realistic analysis; hence, a heuristic solution to the problem is the

most for which one can hope.

Following the ideas in the previous discussion, a scheduling policy should define the
following decisions for the tabulator: when to send a message to a generator, to which gen-
erator to send it, and how much work the message should contain. The available informa-
tion for such a decision is an estimate of the amount of outstanding work of each genera-
tor, its processing rate (estimated), the amount of work stored in the tabulator’s queue,

and the average delay of messages in the network.

The Queueing Model.

For modeling the system we make the following assumptions. First, the graph con-
structed by the reachability analysis is characterized by a distribution function fg of the
outdegree of its states, and by some upper bound Ng of its number of states. In our
model we assume that each state has d next states, where 4 is distributed with f; and is
independent for different states. We also assume that each newly generated state at time ¢
has probability r(¢) of being already visited. There are many ways to describe r(z) as a
function of x(¢) and Ng, where x(r) is the number of states found up to time ¢. Different
such functions correspond to different types of graphs. One such choice is

r(t) = x(t)/Ng, which corresponds to graphs with small diameter.

The model describes n generators and a tabulator connected through a LAN, see Fig-
ure 4.1.
There are two types of customers in the system: the "simple"” customers (single states) and
the "batched” customers (many states batched into one message). Simple customers belong
to different classes. Each class describes the origin-destination of the customer (for exam-
ple, T—G;) and whether or not the customer serves as an acknowledgement (discussed

below). The class of a batched customer is the description of the class of each simple
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Figure 4.1
customer it contains. Each generator G;, i = 1, - * - ,n, has an input queue qf;‘. an output

queue qg', and a server with rate y.G‘. There are two network queues interfacing to the
generator, the network output queue qg:o, and the network input queue qﬁf;. Customers
arriving in the network output queue are of the batched type. Upon arrival, they are
automatically "unpacked” (a message containing k states is broken into k single state mes-
sages), and the resulting simple customers are placed in the generator input queue. The
server serves simple customers from the generator input queue in a FCFS basis, and after
each service completion it appends a random number d of simple customers with destina-
tion the tabulator, in its output queue. The first among them is tagged as an ack-
nowledgement. As mentioned before, d is distributed with distribution function fg. A
sender processes connects the output queue of the generator to the input queue of the net-
work. Its function consists of making batched customers out of simple customers, and
append them at appropriate times in the network queue. Its available information consists

of the state of the generator queues, and of some local timer.

The tabulator has an input queue ¢/, and an output queue q{,. These queues inter-
face in a similar fashion to the generators case with a network output queue qﬁ,o through
an receiver process, and with the network input queue q_){r'] through a sender processes

respectively. A batched customer arriving in the network output queue is immediately
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unpacked, and the resulting simple customers are placed in the tabulator input queue. A
server of rate pl serves this queue in a FCFS basis. When a customer finishes service at
time ¢, it leaves the network with probability r (), and with probability 1—r(z) it joins the
output queue. In this event, the state counter x is incremented by one, to denote that a
new state has been found. If a customer finishing service is an acknowledgment and G;
was its origin (class information of the customer), the variable z; denoting the outstanding
work (number of states to be explored) of generator G;, is decremented by one. The
sender process does the packing of simple customers, assigns the destination of the result-
ing batched customers, and places them at appropriate times in the network input queue.
Its available information consists of the values of x, z,, * * * ,z,, and the state of the tabu-

lator queues.

We are now left with the description of the network. There are n+1 input queues
and n +1 output queues already mentioned before. The model we choose better describes
LAN’s of the Ethernet type, such as the one in our implementation. Each non-empty
input queue is served with rate min[pwmax, Heowm/ #0f non & queues). To model conges-
tion we choose My <(n+1)Mmax. In this model, pwpax corresponds to the maximum ser-
vice rate allocated to any network queue. This implies that the minimum delay of a mes-
sage being in the front of a network input queue, is on the average 1/pma. If the number
of transmitting stations increases, i.e., the number of non-empty network input queues
grows, the service rate allocated to a queue decreases as the total network service rate

Mot 1S being shared equally among the competing queues.

Heuristic Scheduling Policies.

A scheduling policy is defined in terms of the algorithms used by the n+1 sender

processes of the system. We propose a scheduling policy of the following form:

Generator i: The sender process has a timer of duration r. While the generator
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output queue has more than Bg customers, it forms batches of B; simple customers and
delivers them to the network. If there are less than Bg customers, it sets the timer. If the
timer times out, and there are still less than Bg customers, it batches them into a message

and sends them to the network.

This policy reduces the probability that the tabulator stays idle, while there is work

for the tabulator at the generators. It also reduces the number of messages needed.

Tabulator: The sender algorithm uses the following heuristic. The size of the batch is
an increasing function of the number of customers in the tabulator output queue g, start-
ing from zero if the queue is empty, and bounded by some By. There is a threshold k" in
the number of customers in g5 which affects the operation as follows. If there are more
customers than k", it continuously makes batches and sends them to the generators, keep-
ing the outstanding work indices w; = z;/ p.G’ as close as possible, until an "upper water-
mark” W,y for each w; is reached. Then it stops sending, until some w; drops below, in
which case it resumes the sending of work. If the number of customers in g} drops below
k®, it stops sending until for some generator w;<Wp,,, where Wy, corresponds to some
"low watermark”. Then it resumes sending to this particular generator, until w,=W ;.

The Readers can convince themselves that in order to achieve an even distribution of cus-

- tomers in the queues of the system, Wy, and W, have to be increasing functions of the

number of customers in g5. Choosing Wy, to grow appropriately with g5 ensures that
the tabulator queues do not grow faster than the generator queues. Choosing Wy, to
decrease as g5 decreases provides that in the termination phase all queues will decrease
uniformly to zero. The appropriate selection of Wp,,, and W, remains an open research
topic. (A simple queueing theory argument indicates that W, should be proportional to
(9b)*.

We can simply define a policy for the general case of m tabulators by having each
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tabulator use |U;|, as defined in the previous section, in place of z;.

Some Open Scheduling Problems.

There are two simple versions of the model for which the form of the optimal
scheduling policy may be more tractable. Solving these could give a greater insight for
how to operate the complete system. These models are derived by reducing to zero the
transmission delay of the network in one of the directions from G to T or from T to G.

The first model is described in Figure 4.2.
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There_ is a finite number K° of simple customers at time 0 in queue g;, There is a sender
process (controller) which as in the previous model, makes batches of simple customers,
and puts them in the network queue gy. Each such batch corresponds to.a batched custo-
mer and is destined to one of the two servers §; §;. The network consists of a server
serving with rate wy in FCFS basis batched customers. Once a batched customer is
served, it joins its destination queue g¢;, { = 1,2 as the set of its composing simple custo-
mers. Each server §; serves with rate w from its queue g;, i = 1,2. The information

available to the controller is the complete departure process of the system.

The second model is shown in Figure 4.3.

The difference with the previous is that it takes zero delay to append customers in the
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queues of the two servers, and that the information available to the controller is a delayed
picture of the departure process of the system. For both systems we want to minimize the
time all customers complete service. One can easily see that a threshold type policy of the
form described in the previous section should perform well in these models. Although the
mathematical analysis of these two models might be prohibitively complex, any progress in

this direction can result in a valuable practical contribution.

4.1. Performance Analysis

In this section we provide a simple analytic model in order to predict the approximate

performance of our scheme. Let

- n = number of generator nodes
m = number of tabulator nodes
N = number of states in the graph to be analyzed
d = average out-degree of vertices in state graph
= average time required to generate a single state (seconds)
t; = average time required to decide if one state is new (seconds)
B = average number of states batched in each message
tm(B) = average time required to send one message containing B states (seconds)

Using the above definitions, the reachability analysis performed on a single workstation
will take total time T; = Nd(z,+1;) to complete, since each state is examined d times on
average, by both the tabulator and generator software. Assuming that using the current

technology, a tool runing on a 1 MIP workstation completes a graph of 10° states and
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d = 10 in the order of an hour, we get that 1,+1, is equal to 5-1073s,

The first interesting remark is that there is a maximum achievable speed up indepen-
dent of the number of workstations. To see this, we compute the total time spent in com-
municating through the network. One can easily see that this time is equal to
N(d+1)t,(B)/B. Let B® correspond to the value of B minimizing f,,(B)/B. Then, if an
arbitrarily large number of workstation is used, the maximum speed up is aproximately
equal t0 Kpax = B (t4+1,)/t,(B"). Using B = 40 (25 bytes/state, 1024 byte message),
and and network bandwith equal to 5 Mbits/s, we get K, = 100. (For a large number

of two-way conversations the effective bandwidth of an Ethernet is at least 5 Mbits).

We examine now how to choose the m, n. Assuming that we have m +n < K., and

we operate in the otimal way (all processors are kept busy until the end), then we must

have that Ndty/m = Ndt;/n = T1/(n+m). From this it follows that the optimal partition

is such that t;/m = t,/n, and the speed up is equal to m +n.

5. Conclusions

In this paper we demonstrated that distributed reachability analysis can be easily
incorporated into many existing protocol analysis environments and can produce a signifi-
cant speed up of the analysis. In many research enyironments there is easy-access to
LANs with 10-20 workstations, which, according to the results of our performance study,
is an ideal environment to implement our method. An important remark which makes our
approach even more viable in the future is that fiber optic technology makes communica-
tion bandwidth available in a faster rate than the rate of increase of hardware speed. In
our method a large number of communicating workstations can utilize this available

bandwidth.

We are currently implementing the parallel reachability algorithm in SPANNER. We
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hope that the results of our implementation will justify the approach presented in this

paper.
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