A FAST PARAMETRIC MAXIMUM FLOW ALGORITHM

Giorgio Gallo
Michael D. Grigoriadis
Robert E. Tarjan

CS-TR-105-87

November 1986
Revised July 1987

*ok

A FAST PARAMETRIC MAXIMUM FLOW ALGORITHM*

Giorgio Gallo**
Dipartimento di Informatica
Universita di Pisa, Pisa, Italy

Michael D. Grigoriadis
Department of Computer Science
Rutgers University, New Brunswick, NJ 08903

Robert E. Tarjan
Department of Computer Science
Princeton University, Princeton, NJ 08544,
and AT T Bell Laboratories, Murray Hill, NJ 07974

Abstract. The classical maximum flow problem sometimes occurs in set-
tings in which the arc capacities are not fixed but are functions of a single
parameter, and the goal is to find the value of the parameter such that
the corresponding maximum flow or minimum cut satisfies some side con-
dition. Finding the desired parameter value requires solving a sequence
of related maximum flow problems. We show that the recent maximum
flow algorithm of Goldberg and Tarjan can be extended to solve an im-
portant class of such parametric maximum flow problems, at the cost of
only a constant factor in its worst case time bound. Faster algorithms for
a variety of combinatorial optimization problems follow from our result.

Keywords: Algorithms, data structures, graphs, maximum flow, network
flows, networks.

1. Introduction

The well-known mazimum flow problem calls for finding a maximum flow (or alternatively
a minimum cut) in a capacitated network. This problem arises in a variety of situations
in which the arc capacities are not fixed but are functions of a single parameter, and the

goal is to find the value of the parameter such that the corresponding maximum flow (or

This research was partially supported by the National Science Foundation under Grants
MCS-813503 and DCR-8605962, and by the Office of Naval Research under Contracts

N00014-84-K-0444 and N00014-87-K-0467.
Some of this work was done while this author was on leave at the Department of Computer
Science, Rutgers University, New Brunswick, NJ, 4/1986-7/1986.

1

minimum cut) meets some side condition. The usual approach to solving such problems is
to use a maximum flow algorithm as a subroutine and use either binary search, monotonic
search, or some other technique, such as Megiddo’s [28], to find the desired value of the

parameter.

Existing methods take no advantage of the similarity of the successive maximum flow
problems that must be solved. In this paper, we address the question of whether this
similarity can lead to computational efficiencies. We show that the answer to this question
is yes: an important class of parametric maximum flow problems can be solved by extending
the new maximum flow algorithm devised by Goldberg and Tarjan [13]. This algorithm is
the fastest among all such algorithms for real-valued data, uniformly for all graph densities.
The resulting algorithm for the parametric problem has a worst-case time bound that is
only a constant factor greater than the time bound to solve a nonparametric problem of
the same size. The parametric problems we consider are those in which the capacities of
the arcs leaving the source are nondecreasing functions of the parameter, those of arcs
entering the sink are nonincreasing functions of the parameter, and those of all other arcs
are constant. Our parametric maximum flow algorithm has a variety of applications in

combinatorial optimization.

This paper consists of four sections in addition to the introduction. In Section 2 we extend
the Goldberg-Tarjan algorithm to find maximum flows in an n-vertex, m-arc network for
O(n) ordered values of the parameter in O(nmlog(n?/m)) time. In Section 3 we use
the algorithm of Section 2 to compute information about the minimum cut capacity as
a function of the parameter, assuming that each arc capacity is a linear function of the
parameter. In this case, the minimum cut capacity is a piecewise linear concave function
of the parameter. We describe successively more complicated algorithms for finding the
smallest (or largest) breakpoint, finding a maximum, and finding all the breakpoints of

this function. Each of these algorithms runs in O(nmlog(n?/m)) time.

In Section 4 we discuss applications of our parametric maximum flow algorithm to vari-
ous combinatorial optimization problems. Depending upon the application, our method
is faster than the best previously known method by a factor of between logn and n. The
applications include flow sharing problems (3, 17, 20, 21, 26, 27|, zero-one fractional pro-
gramming problems [4, 5, 11, 12, 23, 24, 29, 32, 33, 34, 38|, and others |9, 42]. Section 5

contains a summary of our results and some final remarks.

2. Parametric maximum flows and the preflow algorithm

We begin in this section by reviewing the maximum flow algorithm of Goldberg and Tarjan
[13], here called the preflow algorithm. Then we extend their method to the parametric
maximum flow problem and we analyze three versions of the parametric preflow algorithm.
We conclude with some remarks about the parametric problem and our algorithm for

solving it.
2.1. Flow terminology

A network (see [10,43]) is a directed graph G = (V, E) with a finite vertex set V and arc set
E, having a distinguished source vertez s, a distinguished sink vertez t, and a nonnegative
capacity c(v,w) for each arc (v,w). We denote the number of vertices by n and the number
of arcs by m. We assume that for each vertex v, there is a path from s through v to ¢; this
implies n = O(m). We extend the capacity function to arbitrary vertex pairs by defining
c(v,w) = 0if (v,w) ¢ E. A flow f on G is a nonnegative function on vertex pairs satisfying

the following three constraints:

f(v,w) < ¢(v,w) for (v,w) eV xV (capacity) (2.1)
f(v,w) = —f(w,v) for (v,w) eV xV (antisymmetry) (2.2)
Z f(u,v) =0for v e V —{s,t} (conservation) (2.3)

veV

The value of the flow fis) .y f(v,t). A mazimum flow is a flow of maximum value.

If A and B are two disjoint vertex subsets, the capacity of the pair 4,B is ¢(4,B) =
> veawen (v, w). A cut (X,X) is a two-part vertex partition (X UX =V, XnX =0)
such that s € X and ¢t € X. A minimum cut is a cut of minimum capacity. If f is a
flow, the flow across the cut (X,X)is f(X,X) = ¥ ,cx wex f(v,w). The conservation
constraint implies that the flow across any cut is equal to the flow value. The capacity
constraint implies that for any flow f and any cut (X, X), we have f(X,X) < ¢(X, X),
which in turn implies that the value of a maximum flow is no greater than the capacity
of a minimum cut. The maz-flow min-cut theorem of Ford and Fulkerson [10] states that

these two quantities are equal.

2.2. The preflow algorithm

The preflow algorithm computes & maximum flow in a given network. To describe the

algorithm we need two additional concepts, those of & preflow and a valid labeling.

A preflow f on G is a real-valued function on vertex pairs satisfying the capacity constraint

(2.1), the antisymmetry constraint (2.2), and the following relaxation of the conservation

constraint (2.3):

Z f(u,v) > 0forallv eV — {s} (nonnegativity). (2.4)
ueV
For a given preflow, we define the ezcess e(v) of a vertex v to be D .\ f(u,v) if v # s,
or infinity if » = s. The value of the preflow is e(t). We call a vertex v ¢ {s,t} active if
e(v) > 0. A preflow is a flow if and only if (2.4) is satisfied with equality for all v ¢ {s,t},
ie.,e(v) =0forallv ¢ {s,t}. A vertex pair (v,w)is a residual arc for fif f(v,w) < ¢(v,w);
the difference ¢(v,w) — f(v,w) is the residual capacity of the arc. A pair (v,w) that is not

a residual arc is saturated. A path of residual arcs is a residual path.

A wvalid labeling d for a preflow f is a function from the vertices to the nonnegative integers
and infinity, such that d(t) = 0, d(s) = n, and d(v) < d(w) + 1 for every residual arc (v, w).
The residual distance d4(v,w) from a vertex v to a vertex w is the minimum number of arcs
on a residual path from v to w, or infinity if there is no such path. A proof by induction

shows that if d is a valid labeling, d(v) < min{d(v,t),d(v,s) + n} for any vertex v.

The preflow algorithm maintains a preflow f, initially equal to the arc capacities on arcs
leaving s and zero on other arcs. It improves f by pushing flow excess toward the sink
along arcs estimated (by using d) to be on shortest residual paths. The value of f gradually
becomes larger, and f eventually becomes a flow of maximum value. As a distance estimate,
the algorithm uses a valid labeling d, initially defined by d(s) = n,d(v) = 0 for v # s. This
labeling increases as flow excess is moved among vertices; such movement causes residual

arcs to change.

To implement this approach, the algorithm uses an tncidence list I(v) for each vertex v.
The elements of such a list, called edges, are the unordered pairs {v,w} such that (v,w) € E
or (w,v) € E. Of the edges on I(v), one, initially the first, is designated the current edge
of v. The incidence lists I(v) for all v € V can be generated from an arbirarily-ordered arc

list E in O(m) time.

The algorithm consists of repeating the following step until there are no active vertices:

Push/Relabel. Select any active vertex v. Let {v,w} be the current edge of v. Apply

the appropriate one of the following three cases:

Push. If d(v) > d(w) and f(v,w) < ¢(v,w), send § = min{e(v),c(v,w) — f(v,w)}
units of flow from v to w. This is done by increasing f(v,w) and e(w) by é, and by
decreasing f(w,v) and e(v) by é. (The push is saturating if § = ¢(v,w) — f(v,w) and

nonsaturating otherwise.)

Get Nezt Edge. If d(v) < d(w) or f(v,w) = ¢(v,w), and {v,w} is not the last edge on
I(v), replace {v,w} as the current edge of v by the next edge on I(v).

Relabel. If d(v) < d(w) or f(v,w) = c¢(v,w), and {v,w} is the last edge on I(v),
replace d(v) by min{d(w) | {v,w} € I(v) and f(v,w) < ¢(v,w)}+ 1 and make the first
edge on I(v) the current edge of v.

When the algorithm terminates, f is a maximum flow. A minimum cut can be computed
as follows. For each vertex v, replace d(v) by min{d(v,s) + n, d¢(v,t)} for each v € V.
(This replacement cannot decrease any distance label.) Then, the cut (X, X) defined by
X = {v|d(v) > n} is & minimum cut whose sink side X is of minimum size, a property

that follows from Theorem 5.5 of Ford and Fulkerson [10].

The efficiency of this “generic” form of the preflow algorithm depends upon the order in
which active vertices are selected for push/relabel steps. We shall consider this selection
issue after we have extended the algorithm to the parametric problem. For the moment,
we merely note the bounds derived by Goldberg and Tarjan for the generic algorithm (with

any selection order).

Lemma 2.1 [13]. Any active vertex v has df('v,s) < oo, which implies d(v) < 2n — 1. The
value of d(v) never decreases during the running of the algorithm. The total number of

relabel steps is thus O(n?); together they and all the get nezt edge steps take O(nm) time.

Lemma 2.2 [13]. The number of saturating push steps through any particular residual arc

(v,w) is at most one per value of d(v). The total number of saturating push steps is thus

O(nm); each such step takes O(1) time.

Lemma 2.5 [13]. The total number of nonsaturating push steps is O(n?m); each such step
takes O(1) time.

In all variants of the algorithm, the running time is O(nm) plus O(1) time per nonsaturat-
ing push step; making the algorithm more efficient requires reducing the number of such

steps. This is also true in the parametric extension, as we shall see.
2.3. Extension to parametric networks

In a parametric network, the arc capacities are functions of a real-valued parameter \. We

denote the capacity function by ¢, and make the following assumptions:
i. ¢y(s,v) is a nondecreasing function of A for all v # ¢.
ii. ¢y(v,t) is a nonincreasing function of A for all v # s.
iii. ¢,(v,w) is constant for all v # s, w # ¢.

When speaking of a maximum flow or minimum cut in a parametric network, we mean

maximum or minimum for some particular value of the parameter A.

We shall address the problem of computing maximum flows (or minimum cuts) for each
member of an increasing sequence of parameter values A; < A, < .-+ < A;. Successive
values are given on-line; that is, A;,; need not be known until after the maximum flow
for A; has been computed. In stating time bounds we shall assume that the capacity of
an arc can be computed in constant time given the value of A. (Such is the case if, for
example, the arc capacities are linear functions of A.) We shall also assume that | = O(n);
the algorithm we shall describe computes no more than n — 1 distinct minimum cuts, no

matter how many values of A are given.

We shall now extend the preflow algorithm to the parametric maximum flow problem.
Suppose that for some value A; of the parameter we have computed a maximum flow f
and a valid labeling d for f. What is the effect of changing the value of the parameter to
Aix1?7 The capacity of each arc (s,v) may increase; that of each arc (v,t) may decrease.
Suppose we modify f by replacing f(v,t) by min{c,, (v,t), f(v,?)} for each arc (v,t) € E,
and replacing f(s,v) by max{c,, (s,v), f(s,v)} for each arc (s,v) € E such that d(v) <mn.
The modified f is a preflow, since e(v) for v ¢ {s,t} can only have increased. Furthermore,

d is a valid labeling for the modified f, since the only new residual arcs are of the form

6

(s,v) for d(v) > n and (v, s) for d(v) < n. This means that we can compute a maximum
flow and a minimum cut for A;,, by applying the preflow algorithm beginning with the
modified f and the current d.

This idea leads to the following parametric preflow algorithm. The algorithm finds a
maximum flow f; and a minimum cut (X;,X;) for each value A; of the parameter. It
consists of initializing f = 0, d(s) = n, d(v) = 0 for v # s, and 7 = 0, and repeating the

following three steps [times:

Step 1. (Update preflow.) Replace i by i + 1. For (v,t) € E, replace f(v,t) by
min{c, (v,t), f(v,t)}. For (s,v) € E with d(v) < n, replace f(s,v) by max{c,,(s,v),
f(s,v)}.

Step 2. (Find maximum flow.) Apply the preflow algorithm to the network with arc
capacities corresponding to A;, beginning with the current f and d. Let f and d be

the resulting flow and final valid labeling.

Step 3. (Find minimum cut.) Redefine d(v) = min{d(v,s) + n, dy(v,t)} for each
v € V. The cut (X, X;) is then given by X; = {v | d(v) > n}.

The minimum cuts produéed by the algorithm have a nesting property that was previously
observed in the context of various applications by Eisner and Severance [9], Stone [42],
and perhaps others. Megiddo [26] has also noted a similar property in a related problem.

Here, the result follows directly from our algorithm.

Lemma 2.4. For a given on-line sequence of parameter values A; < A, < -+ < A,
the parametric preflow algorithm correctly computes maximum flows f,, f,,---, f; and

minimum cuts (X,, X,),(X,,X,), -+,(X;,X,) such that X; C X, C--- C X,.

Proof. The correctness of the algorithm is immediate. For any vertex v, the label d(v)
cannot decrease in Step 3, which implies that d(v) never decreases during the running of
the algorithm. This means that X; C X, C ... C X, which in turn implies that there can
be at most n — 1 distinct sets X;. O

2.4. Analysis of the parametric preflow algorithm

In view of Lemma 2.4, Lemmas 2.1 and 2.2 hold without change for the parametric preflow
algorithm. Furthermore, the time spent in Steps 1 and 3 is O(m) per iteration for a total
of O(lm) = O(nm) time (assuming [= O(n)). Thus the parametric preflow algorithm

runs in O(nm) time plus O(1) time per nonsaturating push.

The number of nonsaturating pushes depends upon the order in which push/relabel steps
are performed. We shall analyze three versions of the parametric preflow algorithm. For
each, we show that the time bound for the nonparametric case extends to the parametric
case with an increase of at most a constant factor. The proofs of the following three

theorems are analogous to those given in [13].
We first analyze the generic version, in which push/relabel steps take place in any order.

Theorem 2.5. For any order of push/relabel step selection, the number of nonsaturating

push steps, and hence the running time of the parametric preflow algorithm, is O(n’m).

Proof. Let ® = Y {d(v)|v is active} if some vertex is active, and & = 0 otherwise. A
nonsaturating push step decreases ® by at least one. The function @ is always in the range
0 to 2n?. Step 1 can increase & by at most 2n?, for a total over all iterations of Step 1 of
O(In?) = O(n3). A relabeling step increases & by the amount by which the label changes.
Thus the total increase in & due to relabeling steps is O(n?). A saturating push step can
increase $ by at most 2n. Thus the total increase in & due to such steps is O(n?m). These
are the only ways in which & can increase. The total number of nonsaturating push steps
is bounded by the total increase in @ over the algorithm, which is O(n?*m). O

Next we consider the first-in first-out (FIFO) version of the preflow algorithm, which solves
the nonparametric problem in O(n?) time [13]. In this version, a queue Q is used to select
vertices for push/relabel steps. Initially Q is empty. At the beginning of Step 2 of the
parametric preflow algorithm, every active vertex is appended to @. The FIFO algorithm

consists of repeating the following step until Q is empty:

Discharge. Remove the vertex v on the front of Q. Apply push/relabel steps to v until

v is no longer active or v is relabeled. If a push from v to another vertex w makes w

active, add w to the rear of Q.

Theorem 2.6. For the FIFO version of the parametric preflow algorithm, the number of

nonsaturating push steps, and hence the total running time, is O(n?).

Proof. We define passes over the queue @Q as follows. The first pass during an iteration
of Step 2 consists of the discharge steps applied to the vertices initially on Q. Each pass
after the first in an iteration consists of the discharge steps applied to the vertices added
to @ during the previous pass. There is at most one nonsaturating push step per vertex v
per pass, since such a step reduces e(v) to zero. We claim that the total number of passes

is O(n? + In), from which the theorem follows.

To establish the claim, we define ® = max{d(v)|v € Q}if Q@ # 0,and ® =0if Q = 0.
Consider the effect on & of a pass over Q. If v € @ at the beginning of a pass and d(v) = @,
then v ¢ @ at the end of the pass unless a relabel step occurs during the pass. Thus, if
¢ is the same at the end as at the beginning of the pass, some vertex label must have
increased by at least one. If ® increases over the pass, some d(v) must increase by at least
the amount of the increase in ®. From the end of one iteration to the beginning of the
next, ® can increase by O(n). Thus (i) the total number of passes in which @ can increase
or stay the same is O(n? + In); (ii) the total number of passes in which & can decrease is at
most the total increase in ¢ between passes and during passes in which it increases, which
is also O(n? + In). We conclude that the total number of passes is at most O(n? + In),

verifying the claim and hence the theorem. O

A more elaborate version of the preflow algorithm [13] uses the dynamic tree data structure
of Sleator and Tarjan [39,40] to reduce the running time to O(nmlog(n?/m)) . The cor-
responding version of the parametric flow algorithm also runs in O(nmlog(n?/m)) time.
It uses a queue Q for vertex selection, and it performs discharge steps exactly as does
the FIFO algorithm, but in place of push/relabel steps it uses more complicated tree-
push/relabel steps. A tree-push/relabel step can move an amount of flow excess through
several arcs at once. Extending the analysis in [13] to the parametric case is straightfor-

ward. We shall merely summarize the results.

The dynamic tree algorithm uses a parameter k, the mazimum tree size, which can be
chosen freely in the range from 2 to n. An easy extension of the analysis in [13] shows
that the parametric preflow algorithm runs in O(nmlogk) time plus O(log k) time per

addition of a vertex to Q. Furthermore, the number of additions of a vertex to @ is O(nm)

9

plus O(n/k) per pass over @, where passes are defined as in the proof of Theorem 2.6.
The O(n?) bound on the number of passes in the proof of Theorem 2.6 remains valid
if the dynamic tree algorithm is used in place of the FIFO algorithm. Combining these
estimates, we obtain an O((nm + n?/k)logk) bound on the total running time. Choosing

k = max{2,n*/m} gives the following theorem:

Theorem 2.7. The parametric preflow algorithm implemented using dynamic trees runs in

O(nmlog(n?/m)) time.
2.5. Additional observations

We conclude this section with several observations about the parametric maximum flow
problem and our algorithm for solving it. Our first observation concerns variants of the
parametric maximum flow problem. Our algorithm remains valid if the arc capacity func-
tions are nonincreasing on arcs out of s and nondecreasing on arcs into ¢, and the values
of the parameter A are given in decreasing order. To see this, merely substitute —A for A.
The algorithm also applies if the arc capacity functions are nondecreasing on arcs out of s
and nonincreasing on arcs into t, and the values of A are given in decreasing order. In this
case, reverse the directions of all the arcs, exchange the source and sink, and apply the
original algorithm to this reversed network, which we shall denote by GE. Each minimum
cut (X,X) generated for GF will correspond to a minimum cut (X,X) in the original
(nonreversed) network that will have the source side of minimum size instead of the sink
side. Successively generated minimum cuts in G® will correspond to cuts with successively

smaller source sides in the original network.

If we are only interested in computing minimum cuts, there is a variant of the preflow
algorithm that does less computation, although it has the same asymptotic time bound [13].
This variant, here called the min-cut preflow algorithm, computes a preflow of maximum
value and a minimum cut, but not a maximum flow. It differs from the original algorithm
in that a vertex v is considered to be active only if e(v) > 0 and d(v) < n. The algorithm
terminates having computed a maximum preflow. (A preflow f is maximum if and only
if for every vertex v, v # t or e(v) = 0 or df(v,t) < oo.) If this variant is used to
compute minimum cuts, a maximum flow for a desired parameter value can be computed by
beginning with the corresponding maximum preflow and converting it into a maximum flow
using the original preflow algorithm. Most of the applications we shall consider only require

the computation of minimum cuts or even minimum cut values and not maximum flows.

10

So far we have required all arc capacities to be nonnegative, but if we are dnly interested
in computing minimum cuts, we can allow negative capacities on arcs out of s and on arcs
into {. This is because there is a simple transformation that makes such arc capacities
nonnegative without affecting minimum cuts [34]. For a given vertex v, suppose we add
a constant A(v) to ¢(s,v) and ¢(v,t). Then the minimum cuts do not change since the

capacity of every cut is increased by A(v).

By adding a suitably large A(v) to ¢(s,v) and ¢(v,t) for each v, we can make all the arc
capacities positive. In the parametric problem, we can choose a new function A on the
vertices of G for each new value A; of A without affecting the O(nmlog(n?/m)) time bound

of our algorithm. It suffices to choose

A;\l('u) = max{0,c, (s,v)} + max{O,—cAl(v,t)},
Ay, () =A5,(v) + e, (vyt) — ¢y, (v,t) fori>1.

With this choice, the transformed arc capacities are nondecreasing functions of A on arcs
leaving s and constant on arcs that enter {. Although the same effect could be obtained
by adding a sufficiently large constant to the capacities of these arcs, the modification
we have described has the additional advantage of keeping capacities as small as possible.
In subsequent sections, when discussing minimum cut problems, we shall allow arbitrary

capacities, positive or negative, on arcs leaving s and arcs entering t.

The minimum cuts corresponding to various parameter values have a nesting property that
is a strengthening of Lemma 2.4. The following lemma is an extension of known results
(10, p.13] that we shall need in the next section. To prove the lemma, we shall use the

min-cut preflow algorithm discussed above.

Lemma 2.8. Let (X, X) be any minimum cut for A = ,, and let (¥,Y) be any minimum
cut for A = A, such that A; < A,. Then, (X NY,X UY) is a minimum cut for A =), and
(XUY,XNY)is a minimum cut for A = J,.

Prcof. Run the min-cut parametric algorithm for A = A,, followed by A = A,. At the
beginning of the computation for A = },, all vertices v € X — {s} have d(v) > n. Thus,
after a maximum preflow is computed for A = A,, all arcs (v,w) with v € X,w € X are
saturated (their flow has not changed during the computation for A = A,.) Since (v,Y) is

a minimum cut for A = A,, all arcs (v,w) with v € Y,w € ¥ are saturated. Furthermore,

11

if v € Y — {t} then e(v) = 0, since the net flow across (Y¥,¥) must be equal to the excess
at t.

Now consider the cut Z = (X UY), Z = (X NY). Any arc (v,w) withv € Z, w € Z must
be staurated. Since v € Z — {t} implies e(v) = 0, the cut (Z, Z) must have capacity e(t),

and hence it must be a minimum cut.

The proof for (X NY,X UY) is similar: proceed on G, and run the min-cut parametric
algorithm for A = A,, followed by A = A;. O

A direct consequence of this lemma is the following corollary, which we shall need in the

next section.

Corollary 2.9. Let (X,,X,) be a minimum cut for A = A,, let (X,,X,) be a minimum cut
for A = A, such that X; C X, and A; < A,, and let A; be such that A; < A; < A,. Then
there is a cut (X;, X;) minimum for A, such that X; C X, C X,.

Proof. Let (X},X}) be any minimum cut for A = ;. Take X, = (X3 U X,) N X,,

X; =V — X;, and apply Lemma 2.8 twice. O

Our last observation is that if the graph G is bipartite, the O(nmlog(n?/m)) time bound
for computing parametric maximum flows can be improved slightly. Suppose V = AU B,
AN B # 0, and every arc in G has one vertex in 4 and one in B. Let n, = |4| and
ng = |B| and suppose that n, < ny. Then the time to compute maximum flows for [
ordered values of A can be reduced to O(n ,mlog(n%/m +2)) if | = O(n4). This requires
modifying the preflow algorithm so that only vertices in A are active, and modifying the
use of the dynamic tree data structure so that such a tree contains as many vertices in A as

in B. The details can be found in [41]. The bound is slightly worse if | = w(n) (see [41]).

3. The min-cut capacity function of a parametric network

For a parametric network, we define the min-cut capacity function () to be the capacity
of a minimum cut as a function of the parameter A. We shall assume throughout this
section that the arc capacities are linear functions of A satisfying the conditions (i)-(iii) of
Section 2. It is well known [9,42] and follows from the results of Section 2 that under this
assumption () is a piecewise-linear concave function with at most n—2 breakpoints. (By

a breakpoint we mean a value of A at which the slope of £(A) changes.) The n — 1 or fewer

12

line segments forming the graph of k() correspond to n — 1 or fewer distinct cuts. We
shall develop three algorithms for computing information about k(). The first computes
the smallest (or equivalently the largest) breakpoint. The second computes a value of
A at which &()) is maximum. The third computes all the breakpoints. Each of these
algorithms uses the algorithm of Section 2 as a subroutine and runs in O(nmlog(n?/m))
time. Although the algorithm for computing all breakpoints solves all three problems, we
shall present all three algorithms since each is more complicated than the preceding one

and since the resulting difference in constant factors may be important in practice.

We shall assume that the capacities ¢,(s,v) and ¢,(v,t) are given in the form c,(s,v) =
ay(v) + Aay(v) and ¢, (v,t) = by(v) — Ab;(v), with arbitrary coefficients ay,b, and nonneg-
ative coefficients a,,b,. A minimum cut (X,, X,) for some A =), gives an equation for a

line that contributes a line segment to the function x(A) at A = A;. This lineis Ly (A) =
@y + APy, where ay = CAD(XO:Xu) — Aoy and G, = EveXo a;(v) — ZvEXo by (v).

3.1. Computing the smallest breakpoint of x(})

To compute the smallest breakpoint of k(A) we use an algorithm stated by Gusfield [17] for
an application involving scheduling transmissions in a communication network, discussed

in more detail in Section 4.1.
The algorithm consists of the following two steps.

Step 0. Compute A;, A, such that the smallest breakpoint A, satisfies A; < A; < A,.
Compute a cut (X,;,X,) that is a minimum for A,. Go to Step 1.

Step 1. Compute a cut (X,,X,) that is a minimum for A,. If Ly (A;) = Lx,(};),
stop: A, is the smallest breakpoint. Otherwise, replace A, by the value of A such
that Ly (A) = Lx,(A) and repeat Step 1. (The appropriate value of A is (a; — ¢;)/

(B: = B,))

The values of A, generated by this algorithm are strictly decreasing; thus the para-
metric preflow algorithm of Section 2 applied to G® performs all ierations of Step 1 in
O(nmlog(n?/m)) time, saving a factor of n over Gusfield’s algorithm [17].

13

In Step 0, it suffices to select A; sufficiently small that for each vertex v such that (s,v)
or (v,t) is of nonconstant capacity, ¢y (5,7) + Yy cv_ga4) €(u;7) < €y (v,t). A suitable

value of A, is

— : N o ZuEV—{s,t} C(u:v)
Ay = ve‘l/?_-‘ﬁ,t}{ bo(v) — aq(v) a;(v) + b, (v)

Similarly, it suffices to select A, sufficiently large that for each vertex v such that (s,v)

| a;(v)+b(v)>0} —1. (3.1)

or (v,t) is of nonconstant capacity, c,, (v,t) + EwEV—{s,i} c(v,w) < cy,(s,v). A suitable
value of), is

ZwEV—{s,t} C('D,'HJ)
vEV —{s,t} a;(v) + b,(v)

Essentially the same algorithm can be used for computing the largest breakpoint; instead

| ay(v) +b(v)>0} +1. (3.2)

of successively decreasing A\, and using G®, successively increase A, and use G.

3.2. Finding a maximum of x(2)

Our algorithm for finding the value of A that maximizes k() is based on a simple method
of iterative interval contraction for computing the maximum f(A*) of a strictly concave
and continuously differentiable function f()\) on a nonempty interval [A;,A,] of the real
line. The method is as follows. First, compute the function values and the tangents of f(X)
at each end of the given interval. Second, compute the point A, € [A;,A,] where the two
tangent lines intersect, and also compute f'(A;). Then, if f'(A;) < 0 replace A, by A; and
repeat; if f'(A;) > 0 replace A; by A; and repeat; if f'(A;) = 0 accept A; as the solution.

Of course this algorithm need not terminate, but it will converge to the maximum.

The method is seldom used in this general setting because it is inferior to several other
algorithms for one-dimensional maximization. But it can be specialized in the obvious way
to handle the piecewise-linear concave function x(A) efficiently. A maximum of £(A) can
be computed in as many function evaluations as there are linear segments that comprise
#(A), namely n—1 or fewer. Using the notation introduced above, A; = (a, —a;)/(8; —B,)
if the line segments of k(A) at A, and at), are distinct. Otherwise, the search terminates
with a line segment of zero slope and A* = A, (or A* = A,). The algorithm will compute a
maximum of £(A) in O(n?mlog(n?/m)) time since at most n — 1 minimum 1t problems

must be solved.

The running time of this algorithm can be improved by partitioning the sequence of succes-

sive values of Ay into two subsequences, one increasing and the other decreasing. It is then

14

possible to use two concurrent invocations of the parametric preflow algorithm: Invocation
I that starts with A\; and computes minimum cuts of G for an increasing sequence of A
values, and Invocation D that starts with), and computes minimum cuts of G® for a
decreasing sequence of A values. A new value A, is a member of the increasing sequence if
B3 > 0, and a member of the decreasing sequence otherwise. The initial values of A; and
A, must be such that all breakpoints lie in the interval [}, A,], a property that is assured
by the values of A defined by (3.1) and (3.2).

The algorithm to compute a maximum of k() consists of the following four steps.

Step 0. Compute the initial values A; and A, from (3.1) and (3.2). Start concurrent
invocations (I and D) of the parametric preflow algorithm of Section 2: For A = A,,
Invocation I computes a minimum cut (X,,X,) having |X,| maximum; for A = A,,

Invocation D computes a minimum cut (X,, X,) having |X,| minimum.

Step 1. Compute A; = (e, — a;)/(B8; — B;), pass A; to both invocations I and
D, and run them concurrently. If invocation I finds a minimum cut (X7, X]) first,

suspend invocation D and go to Step 2 (the other case is symmetric.) Compute
By = zue_i',, a,(v) - zvexs by (v).

Step 2. If B; = 0, stop: A* = X;. Otherwise, if §; > 0, replace A; by A;, back up
invocation D to its state before it began processing A, and go to Step 1. Otherwise,

go to Step 3.

Step 3 (B3 < 0). Finish running the invocation D on A;. This produces a minimum
cut (XP,XP), not necessarily the same as (X{,XI). If B, > 0, stop: A* = A,.
Otherwise, replace A, by A,;, back up invocation I to its state before processing A;,

and go to Step 1.

Backing up invocation D or I as required in Steps 2 and 3 is merely a matter of restoring
the appropriate flow and valid labeling, which takes O(m) time. The total time spent
during one iteration of Steps 1, 2 and 3 is proportional to the time spent in invocation I
or D, whichever one is run to completion on A; and not backed up. The total number of
values of A; processed is O(n). Thus the total time is proportional to the time necessary to
run the parametric preflow algorithm of Section 2.3 twice, once on an increasing sequence

of values and once on a decreasing sequence of values; i.e., O(nmlog(n®/m)) .

15

3.3. Finding all breakpoints of k()

In some applications it is necessary to produce all the line segments or breakpoints of k(A),
possibly along with the corresponding minimum cuts. To do this we extend the maximum-
finding algorithm of the previous section. This algorithm uses iterative contraction of the
interval (A}, A,]; it ignores breakpoints that lie in the discarded portion of the interval.
We can find all the breakpoints by proceeding as in the algorithm of Section 3.2 but
using a divide-and-conquer strategy that recursively examines both of the subintervals
[A;,A;] and [A;, ;] into which the current interval is split by the new value A;. This
method was proposed by Eisner and Severance [9] for bipartite graphs in the context of a
database record segmentation problem (see Section 4.4). Unfortunately, a straighforward
implementation of this idea yields an O(n*mlog(n?/m))-time algorithm. To obtain a
better bound it is necessary to use two concurrent invocations of the parametric preflow
algorithm, and also use graph contraction so that recursive invocations of the method

compute cuts on smaller and smaller graphs.

If G is a network and X is a set of vertices such that exactly one of s and ¢ is in X,
we define G(X), the contraction of G by X, to be the network formed by shrinking the
vertices in X to a single vertex, eliminating loops, and combining multiple arcs by adding
their capacities. The algorithm we present reports only the breakpoints of (), although
it computes cuts corresponding to the line segments of the graph of x(A). If the actual
cuts are needed, they can either be saved as the computation proceeds or computed in a

postprocessing step using one application of the method in Section 2.3.

Our algorithm uses a recursive procedure called slice. With each network G to which slice
is applied, we associate four pieces of information: Two values of A, denoted by A; and A,,
and two flows f, and f,, such that f; is a maximum flow for A, f, is a maximum flow for
A, the cut ({s},V — {s}) is the unique minimum cut for A, the cut (V — {t},{t}) is the
unique minimum cut for A,, and A; < A,. The initial values for A; and), are computed
from (3.1) and (3.2) as before. The breakpoint algorithm consists of the following three
steps.

Step 1. Compute A, according to (3.1). Compute a maximum flow f; and minimum
cut (X,,X,) for A, such that |X,| is maximum by applying the preflow algorithm to
G. Let G' = G(X,).

16

Step 2. Compute A, according to (3.2). Compute a maximum flow f, and minimum
cut (X,,X,) for A, such that |X,| is minimum by applying the preflow algorithm to
(G")R. Let G" = G'(X3).

Step 3. If G" contains at least three vertices, let f}' and f}' be the flows in G"
corresponding to f; and f, respectively; perform slice (G", A, A,, fi', f3'), where slice

is defined as follows:
Procedure slice(G, A, Ay, f1, fo)-

Step S51. Let A3 be the value of A such that ¢, ({s},V — {s}) = ¢,,(V — {t}, {t}).
(This value will satisfy A; < A; < A,.)

Step 52. Run the preflow algorithm for the value A; on G starting with the preflow f!
formed by increasing f, on arcs (s,v) to saturate them and decreasing f; on arcs (v,1)
to meet the capacity constraints. As an initial valid labeling, use d(v) = min{d, (v, 1),
dg (v,8)+n}. Concurrently, run the preflow algorithm for the value A; on G starting
with the preflow f; formed by increasing f, on arcs (v,t) to saturate them and de-
creasing f, on arcs (s,v) to meet the capacity constraints. As an initial valid labeling,
use d(v) = min{d_f;(s, v), dﬁ (t,v) +n}. Stop when one of the concurrent applications
stops, having computed a maximum flow f,. Suppose the preflow algorithm applied
to G stops first. (The other case is symmetric.) Find the minimum cuts (X;, X;)
and (X3, X}) for Ay such that |X,| is minimum and |X}| is maximum. If | X;| > n/2,
complete the execution of the preflow algorithm on G% and let f, be the resulting

maximum flow.
Step 83. If ¢5(X;,X,) # (X}, X}) for some), report \; as a breakpoint.

Step S4. If X, # {s}, perform slice (G(X;), Aj, s, f1, f3). If X} # {t}, perform
slice (G(X3),24,25,%5:f3)-

The correctness of this algorithm follows from Corollary 2.9. Note that the minimum cuts
computed in Step S2 correspond to minimum cuts for A, in the original network, with the
correspondence obtained by expanding the contracted vertex sets. Since each vertex of G

is in at most one of the two subproblems in Step S4, there are O(n) invocations of slice.

17

3.4. Analysis of the breakpoint algorithm

Two ideas underly the efficiency of the breakpoint algorithm. To explzﬁn them, we need to
develop a framework for the analysis of the algorithm. We shall charge to an invocation of
slice the time spent in the invocation, not including the time spent in nested invocations.
The time charged to one invocation is then O(m) plus the time spent running the preflow
algorithm in Step S2. Summing O(m) over all O(n) invocations of slice gives a bound of

O(nm). It remains to estimate the time spent running the preflow algorithm.

The first idea contributing to the speed of the algorithm is that the results of Section 2
allow us to bound the time of a sequence of preflow algorithm applications, not just a
single one, by O(nmlog(n?/m)) . That is, if we charge this much time for an invocation
of slice, we can regard certain of the nested invocations as being free. The second idea
is that running the preflow algorithm concurrently on G and on G¥ allows us to regard
the larger of the nested invocations in Step S4 as being free. This leads to a recurrence

bounding the running time whose solution is O(nmlog(n?/m)) .

Consider an invocation of slice G(A;,,, fi,f;). Let G; = G(X;) as computed in Step
S4, and let G, = G(X3); let n,,m; and n,,m, be the numbers of vertices and arcs in
G, and G,, respectively. We regard this invocation of slice as being a continuation of
the algorithm of Section 2.3 applied to G, with A; the most recently processed value of
A and f, the resulting maximum flow. Simultaneously, we regard the invocation as being
a continuation of the algorithm of Section 2 applied to G, with A, the most recently

processed value of A and f, the resulting flow.

With this interpretation we can regard the preflow algorithm applications in Step 52 as
being free, but if |X;| < n/2 we must account for new applications of the Section 2
algorithm on G(X,) and G®(X,), and otherwise (i.e., |X}| < n/2) we must account for
new applications of the Section 2 algorithm on G(X}) and GF(X}). Thus we obtain the
following bound on the time spent in invocations of the preflow algorithm. If G has n
vertices and m arcs, the time spent in such invocations during the computation of k() is

at most T'(n,m)+ O(nmlog(n?/m)) , where T(n,m) is defined recursively as follows:

0 ifnx<3;
T(n m) == max{T(n;,m,;) + T'(n,, m,) + O(n;m, 105(n21/m1)) :
? o Ny,Ng 2 331, + 1, <1+ 2;
' n, < ny;my,m, > 13m; +my, <m+1} ifn> 3.

18

Remark. In this analysis, the sequence of preflow algorithm invocations associated with
a particular application of the algorithm of Section 2.3 is on a sequence of successively

smaller graphs, but the analysis in Section 2.4 remains valid. O

To solve the recurrence for T'(n,m), we begin by simplifying it. Observe that T'(n,m) =
O(Ty(n,m)log(n?/m)), where T,(n,m) is defined as follows:

0 ifn<3;
T (n m) — ma'x{T](nhml) ¥ Tl('”’z:mz) e L L
S ny,My 2 35 ny+ny Sn+2
n, < ny,; my, my >21; m; +my, <m+1} ifn>3.
By making the change of variables n' = n — 2,m' = m — 1, we obtain T,(n,m) =

T,(n — 2,m — 1), where T, is defined as follows:

0 ifn<1;

max{Ty(n;,m,) + Ty(ny, my) + nymy +2my +ny +2
Ny,Ny S 1iny +n, <0y
ny, <ny; my,my, 2 03 m;+my <m} ifn>I1.

Tz(nsm) =

Since the recurrence for T,(n,m) can be unwound at most n — 1 times before all branches
are terminal, the additive term “2m, + n, + 2” contributes at most (n — 1)(2m + n + 2)
to T,(n,m). That is, T,(n,m) = Ty(n,m) + O(nm), where T} is defined as follows:

0 ifn<1;
max {Ty(n,,m;) + T3(n,y,m,) + nym; :
Ta(n,m): ny,ny <15 ng +n, <n;j

ny < ny; my,my 2 0;

m;+my, <m} ifn>1.
An easy proof by induction shows that Ty(n,m) < mm. This implies that T(n,m) is
O(nmlog(n?/m)) and in turn that the total running time of the algorithm is of the same

order.

3.5. Additional observations

We conclude this section with two observations. First, note that a complete set of minimum
cuts for all values of A can be represented in O(n) space: store with each vertex v ¢ {s,t}
the breakpoint at which v moves from the sink side to the source side of a minimum cut,
for a set of minimum cuts whose source sides are nested. The breakpoint algorithm can
be augmented to compute this information without affecting its asymptotic time bound.

Second, the time bound of the three algorithms in Sections 3.1-3.3 can be improved to

19

O(n 4mlog(n% /m + 2)) if G is bipartite and x(A) has O(n,) breakpoints. Here n, is
the size of the smaller half of the bipartite partition of V. This bound follows using the
bipartite variant of the preflow algorithm mentioned at the end of Section 2.5 (see [41] for

details).

4. Applications

In this section, we give a number of applications of the algorithms in Sections 2 and 3. For
each application, we obtain an algorithm running in O(nmlog(n®/m)) time, where n is
the number of vertices and m is the number of arcs in the graph involved in the problem.
For applications in which the graph is bipartite, the bound is O(n mlog(n?/m + 2)),
where n , is the size of the smaller half of the bipartite partition of the vertex set. (When
the latter bound is applicable, we shall state it within square brackets.) Depending upon
the application, our bound is a factor of from logn to n better than the best previously
known bound. Our applications fall into four general categories: Flow sharing problems,
zero-one fractional programming problems, parametric zero-one polynomial programming

problems, and miscellaneous applications.
4.1 Flow sharing

Consider a network with a set of sources S = {s;,s,,---,5,} and a single sink ¢, in which
we want to find a flow from the sources in S to t. We require flow conservation at vertices
not in S U {t}. We can model this problem as an ordinary one-source, one-sink problem
by adding a supersource s and an arc (s,s;) of infinite capacity for each 7 € {1,---,k}.
The resulting network can have many different maximum flows, with different utilizations
of the various sources; we define the utilization u; of source s; to be the flow through the
arc (s,s;). The question arises of how to compare the quality of such flows. Suppose each
source s; has a positive weight w,. Several figures of merit have been proposed, leading to

the following optimization problems:

i. Perfect sharing: Among flows with u;/w,; equal for all 7 € {1,---,k}, find one that

maximizes the flow value €(?).

ii. Mazimin sharing: Among maximum flows, find one that maximizes the smallest

ui/w:, 'ir E {1,"‘,k}.

20

ili. Minimaz sharing: Among maximum flows, find one that minimizes the largest

ui/wi,ie{lv"'vk}'

iv. Optimal sharing: Among maximum flows, find one that simultaneously maximizes

the smallest u;/w; and minimizes the largest u;/w;, 1 € {1,---,k}.

v. Lezicographic sharing: Among maximum flows, find one that lexicographically
maximizes the k-component vector whose j-th component is the j-th smallest u;/w;,
ie€{1,---,k}.

Flow sharing problems with one source and multiple sinks are completely analogous to the
multiple-source case: merely exchange source and sinks and reverse the network. For the
criteria (ii)-(v), one can even allow multiple sources and multiple sinks, and simultaneously
optimize one criterion for the sources and a possibly different criterion for the sinks. This
is because each of problems (ii)-(v) calls for a maximum flow, and a multiple-source,
multiple-sink problem can be decomposed into a multiple-source one-sink problem and
a one-source multiple-sink problem, by finding a minimum cut of all sources from all
sinks, contracting all vertices on the sink side to give a one-sink problem, and separately
contracting all vertices on the source side to give a one-source problem. This observation

is due to Megiddo [26].

Perfect sharing arises in a network transmission problem studied by Itai and Rodeh [21] and
Gusfield [17] and in a network vulnerability model proposed by Cunningham [5]. We discuss
these models below. Brown studied maximin sharing [3], Ichimori, Ishii, and Nishida
[20] formulated minimax and optimal sharing, and Megiddo [26,27] studied lexicographic
sharing. Motivation for these problems is provided by the following kind of example, which
gives rise to a multiple sink problem. During a famine, relief agencies supplying food to the
stricken areas want to distribute their available food supplies so that each person receives
a fair share. The weight associated with each sink (famine area) is the population in
that area, possibly adjusted for differences in food needs between adults and children, and
other factors. A perfect sharing solution gives every person in every famine area the same
amount of food, but it may be too restrictive since it need not allocate all the available
and transportable food supply. A better solution will be provided by solving one of the

problems (ii)-(v). There are analogous industrial interpretations of this model.

21

We shall show that all five flow sharing problems can be solved in O(nmlog(n?/m)) time
using the algorithms of Sections 2 and 3. The lexicographic sharing problem requires com-
puting all the breakpoints of a min-cut capacity function by the algorithm of Section 3.3.
The other four problems are easier, and can be solved by the algorithm for finding the
smallest (or largest) breakpoint given in Section 3.1. Our tool for solving all five problems
is the following parametric formulation: for each s; € S, let arc (s, s;) have capacity w;);,
where A is a real-valued parameter. Since all arc capacities are nonnegative, the range of
interest of A is [0,00). There are at most k breakpoints of the min-cut capacity function

k(A), one per source ;.

Perfect sharing. Find the smallest breakpoint A, of k(). Any maximum flow for A, solves
the perfect sharing problem. This was observed by Gusfield [17] in the context of the
network transmission scheduling problem described below. Another application will arise

in Section 4.2.

Scheduling transmissions. Itai and Rodeh state the following problem of scheduling trans-
missions in a “circuit-switched” communication network represented by a directed graph
G = (V, E) with fixed positive arc capacities. The capacity c(v,w) is the effective trans-
mission rate of the communication channel (v,w) in the direction from v to w, say in bits
per second. A central vertex (sink) ¢ € V receives all traffic that originates at a subset
of vertices S C V — {t} called emitters (sources). Each emitter s; € S has w; > 0 bits of
information that it wishes to send to {. We assume that G has paths from each 5; € S
to t. The communication protocol allows the sharing of arc capacities by several paths,
but it requires that at least one path from s; to t be established before transmission from
s; can begin. Clearly, if transmissions are scheduled from each emitter, one at a time,
the entire task can be completed in T = Zaieswi/c(X‘-,X:—) seconds, where (X, X;) is
a minimum cut separating s; and t. But since arc capacities can be shared, it may be
possible to obtain a lower value for T. The objective is to minimize the time T within

which all transmissions can be completed.

To see that the problem is a perfect sharing multiple source problem, let A = 1/T, in
units of 1/second, and assign a capacity of w,;) bits per second to each arc (s, s;) from the
supersource s to an emitter s; € S. Once A, and the corresponding maximum flow have
been computed by the algorithm described above, the actual transmission schedule can be

constructed from the flow in O(m) time as described in [21]. Itai and Rodeh proposed two

22

algorithms for this problem, with running times of O(kn?m) and O(k*nmlogn). These
are modifications of known maximum flow algorithms. In comparison, our algorithm runs

in O(nmlog(n?/m)) time.

Mazimin sharing. Find the largest breakpoint A, of k(1). Any maximum flow for A, solves

the maximin sharing problem.

Minimaz sharing. Find the smallest breakpoint A, of k(). Find a maximum flow for
A,

c(v,w)— f(v,w), each arc (s, s;) has infinite capacity, and each arc (s;, s) has zero capacity.

Construct a residual network in which each arc (v,w) with s ¢ {v,w} has capacity

Find a maximum flow f' in the residual network. The flow f + f' is a minimax flow in the

original network.

Optimal sharing. Find the smallest breakpoint A, and the largest breakpoint A; of x(}).
Find a maximum flow f for A,. Construct a residual network in which each arc (v, w) with
s ¢ {v,w} has capacity c¢(v,w) — f(v,w), each arc (s,s;) has capacity w;(A; — A,), and
each arc (s;,s) has zero capacity. Find a maximum flow f' in the residual network. The

flow f + f' is an optimal flow in the original network.

Lezicographic sharing. Find all the breakpoints of k(). For each source s;, let A; be the
breakpoint at which s; moves from the sink side to the source side of a minimum cut. For
each arc (s,s;) define its capacity to be w;A;. Find a maximum flow f with these upper
bounds on the capacities of the arcs out of 5. Flow f is a lexicographic flow and hence an

optimal flow.

The correctness of the first four algorithms above is easy to verify. We shall prove the
correctness of the algorithm for the lexicographic sharing problem. Renumber the sources
if necessary so that \; < A, < ...}, and let G_, denote the parametric network with

A = oo.

Theorem 4.1. On G there is a maximum flow f such that f(s,s;) = w;A; for all . Such

a flow is a lexicographic flow.

Proof. Let i,,1,,--+,1;_, be the values of i such that Ai;’ - f\,-:,ﬂ. Let iy = 0 and ¢, = k.
Then A; ,A,;,,+, A, , are the distinct breakpoints in increasing order. Let {s} = X, C
X, C X, C -++ C X, be the sets such that (X;,X;) for 1 < j <[is the minimum cut
with the smallest sink side for A = Ai;- Then s, 1,8, 12,°,8; € X; — X; ;. For

£l

23

1 <j <l the cut (Xj_l,)_{j_l) is a minimum cut for A = ;. as well, specifically the
one with the smallest source side. Thus, Cx (Xj—l!Xj—l) = e, (Xj,)zj). It follows by
induction on j that for 1 < 7 </,

k
(X5, X)) Zw Y w (4.1)

i:ij+1
which implies that
coo(Xj - {3}$Xj) = Z w:‘":’,- (42)
i=1

Equation (4.2) implies that any flow for G, such that f(s,s;) = w;A; for all i must be a
maximum flow (choose 7 = [in (4.2)). It must also be a lexicographic flow, since for all
j, any flow that has f(s,s;) > w;A; for 1 <1 <4; ; must either have f(s,s;) = w;A, for
1<¢<1;or havesome i € {i,_; +1,---,i;}, such that f(s,s;) <w;A;.

It remains to show that G admits a flow f with f(s,s;) = w;A;. Consider running the
min-cut parametric preflow algorithm presented in Section 2.5 on the parametric network,
for the successive A values A; ,A; ,---,A;. Let f;, fy, -+, f; be the successive maximum
preflows generated by the algorithm. When the min-cut preflow algorithm is restarted with
a new value ,\t-), of A, the flow on each arc (s, s;) with i € {ij_] +1,---,k} is first increased
from w;A; | to w;A; . All of this new flow successfully reaches the sink ¢, because of
equation (4.1) and the fact that (Xj,)_(j) is a minimum cut for A = A;.. It follows by
induction on j that f; is a flow and that f,(s,s;) = w;A; for 1 <1 <i;. In particular, f;

is the desired flow. O

4.2. Fractional programming applications

Another class of problems that can be solved by the parametric preflow algorithm of
Section 2.3 arises from various discrete and network optimization problems with fractional
objectives. In general, the fractional programming problem is defined as

A(z") = max { A(z) = f(2)/g(=) } , (4.3)

z€S

where f(z) and g(z) are real-valued functions on a subset S of R”, and g(z) > 0 for all
z € S. Isbell and Marlow [22] proposed an elegant solution method for the important case

of linear f and g, but their approach has been extended to nonlinear problems (see e.g.

24

Dinkelbach [7]), and more recently to several classes of combinatorial problems (see e.g.

Picard and Queyranne (32, 33], Padberg and Wolsey [30] and Cunningham [5]).

A problem that is intimately related to (4.3) is
(2",3) = max { 2(z,) = £() ~ Aa(e) } (44)

where A is a real-valued constant. These two problems are related in the sense that z* solves
(4.3) if and only if (z*,A*) solves (4.4) for A = X* = \(z*) giving the value z(z*,*) = 0.
Isbell and Marlow’s algorithm generates a sequence of solutions until this condition is met.
We state their algorithm below in a form useful for our purposes (see e.g. Gondran and

Minoux (14, pp.636-641]):
Algorithm FP:
Step 0. Select some z° € §. Compute Ay = f(z°)/g(z°). Set k = 0.

Step 1. Compute zF*? solving the problem (4.4): z(z**+1,},) = max, s 2(2,A;) =
f(z) = Ag(z).

Step 2. If 2(z*t1,X,) = 0, stop: z* = zF. Otherwise, let A\, ; = f(z*+!)/g(z**?),
replace k by k + 1 and go to Step 1.

Theorem 4.2. Algorithm FP is correct. The sequence of values {),} generated by the

algorithm is decreasing.

Proof. For any particular k, z(z**!,),) is nonnegative in Step 1, since z(z**1,),) >
z(zF, M) = 0. If z(zF*1,),) = 0, the algorithm halts with z* which solves (4.4) for
A = X and hence solves (4.3). The algorithm continues only if z(z**1,},) > 0, i..
f(z*t1) — X, g(2**1) > 0, which implies A, ; = f(z*1)/g(z**1) > A,. O

If maximization is replaced by minimization in problem (4.3), it suffices to replace max-
imization by minimization in (4.4) and use the same algorithm. In this case all values
of z(z**1,),) except the last one are less than zero, and a decreasing sequence {)} is
generated. Another important observation is that in Step 1, the maximization (4.4) can
be taken over a larger set §' O S, provided that z(z,A,) < 0 for all z € §' — S. In the
minimization problem, the corresponding requirement is z(z,A,) > 0 for all z € §' — S.

Several of our applications make use of this extension.

25

The following Lemma can be used to bound the number of iterations of Algorithm FP in

some situations.
Lemma 4.3. g(z**1) < g(z*) for k > 1.

Proof. Consider iterations k — 1 and k of Algorithm FP, and assume A(z¥) < A(z*). In
iteration k — 1 we have z(z*,A,_;) > 0 and A, = f(z*)/g(z*). In iteration k we have:

0 < z(z**1,x) = f(a*t) — Ag(=*H)
= f(‘”kH) - Ak-]ﬂ("’Hl) +)\k_lg(mHl) -)‘kg(“’kﬂ)
< F(2*) = Ap_yg(2®) + Ay 9(=*) = g (=)
= Ag(=*) = Xema9(2*) + Moy 9(2*H7) = Mg (=)
(9(2*) — g(=*+ 1)) (A = Xer)s

which implies that g(z*) > g(z*¥*1) since A, > A\;_;. O

The efficiency of Algorithm FP depends upon the number of times problem (4.4) has to
be solved, and on the time spent solving it. For continuous functions f and g defined on
a nonempty compact set S, Schaible [37] has shown that the decreasing sequence {g(z*)}
for k > 1 approaches g(z*) linearly, and the increasing sequence {),} approaches A*
superlinearly. Nevertheless, (4.4) may be as hard to solve as the original fractional problem
unless some assumptions are made about f, g and S. Fortunately, even the most restrictive
assumptions find relevant applications in practice. For instance, if f and g are linear and
S is polyhedral (the case in [22]), the algorithm consists of solving a finite number of
linear programs (4.4) whose solution is implemented by cost-parametric programming on
intervals (A, A,], for successive k. This can be specialized to network simplex parametric
programming by using the primitives described by Grigoriadis [15]. If f is a negative
semidefinite quadratic form and g is linear, the sequence of concave quadratic programs
defined by (4.4) can be handled by the parametric algorithm of Grigoriadis and Ritter
[16]. If f and g are negative and positive definite quadratic forms respectively, Ritter’s
parametric quadratic programming method [36] can be used. Approaches for more general

nonlinear problems are analyzed in [7, 37].

If S is nonempty and finite, f is real-valued, and g is positive, integer-valued, and bounded
above by some integer p > 0, Lemma 4.3 implies that Algorithm F P will terminate in p+1

or fewer iterations. This observation has been used in various applications where g(z) is a

26

set function, for which usually p = O(n). Such is the case whether (4.3) is a maximization

or a minimization problem.

We shall now describe a number of applications of the generic Algorithm FP. In each
case the sequence of problems (4.4) that arise can be handled by our parametric preflow

algorithm or its min-cut variant described in Section 2.5.

Strength of a directed network. This is an application due to Cunningham [5, Section
6]. Let G = (V,E) be a given directed graph with n vertices, m arcs, nonnegative arc
weights and nonnegative vertex weights, and a distinguished vertex s € V. We assume
that every v € V — {s} is reachable from s in G. The arc weight ¢(v,w) represents
the cost required to “destroy” the arc (v,w) € E. The node .Weight d, is the “value”
attributed to having v reachable from s. Destroying a set of edges A C E (at a total
cost of f(A) = Dtk ¢(v,w)) may cause some subset of vertices V, C V — {s} to
become unreachable from s, resulting in a loss of g(4) =), v, d, in total value. The
ratio f(A)/g(A) is the cost per unit reduction in value. Cunningham defines the strength
of the network to be the minimum of this ratio taken over all subsets A C E whose removal
reduces the value of the network, i.e. such that g(A) > 0. This is a problem of the form
(4.3):
NAY) = min {A(4) = f(4)/g(4) },

AgE,y(A)}O

which leads to a sequence of problems (4.4) that Cunningham calls attack problems:
Z(Akﬂa)‘k) = Toax { 2(4,2) = f(4) — X9(4) } -

Each such problem amounts to finding a minimum cut in an expanded network formed by
adding to G a sink ¢ and an arc (v, t) with capacity A, d, for eachv € V—{s}. If we solve the
strength problem using Algorithm FP and use the algorithm of Section 2.3 to compute
minimum cuts for the generated parameter values, we obtain an algorithm running in
O(nmlog(n?/m)) time; as Cunningham notes, there can be only O(n) iterations of Step
1. Alternatively, we can make use of his observation that (4.5) is zero if and only if there
is flow in the expanded network such that f(v,t) = A.d, for each v € V. Equivalently,
A(A") is the largest value of A for which the minimum cut is (V, {t}). That is, the strength
problem is a perfect sharing problem, and it can be solved in O(nmlog(n?/m)) time as
described in Section 4.1. Either method improves over Cunningham’s method, which solves

O(n) minimum cut problems without making use of their similarity.

27

Zero-one fractional programming. An important subclass of (4.3) is the problem for which

f(z) > 0 and g(z) > 0 are given polynomials defined for all z in § = {0,1}" — {0}" as

follows:
PeA ieP i=1
g@)= Y bo]z + D bz (4.6)
QeB 1€EQ i=1
The sets A and B are given collections of nonempty nonsingleton subsets of {1,---,n},

ap > 0 for each P € 4, and by < 0 for each @ € B. Since f(z) > 0 and g(z) > 0 for all
z € S, we have a; > 0 and b; > 0 for each 1 € {1,---,n}. This problem was studied by

Picard and Queyranne [32]. For ease in stating time bounds we assume n = O(|4| + |B|).

Algorithm FP leads to a sequence of problems of the form (4.4) for increasing values
Ar > 0 of A. Each such problem is an instance of the selection or provisioning problem,

characterized by Rhys [35] and Balinski [2] as a minimum cut problem on a bipartite graph.

The entire sequence of these problems can be handled as a parametric minimum cut prob-
lem of the kind studied in Section 2. We give two different formulations, one of which
works for the special case of B = 0 (i.e. g(z) contains no nonlinear terms) and the other
of which works for the general case. All the subsequent applications we consider fall into
the case B = 0.

If B = 0, we define a bipartite network G whose vertex set contains one vertex for each
set P € A, one vertex for each 7 € {1,---,n}, and two additional vertices, a source s and
a sink ¢. There is an arc (s,v) of capacity ap for each vertex v corresponding to a set
P € A, an arc (1,t) of capacity Ab; —a; for every i € {1,---,n}, and an arc (v,1) of infinite
capacity for every vertex corresponding to a set P € A that has ¢ as one of its elements.
Observe that the capacities of all arcs into ¢ are nondecreasing functions of A, and those
of all oiher arcs are constant. The parametric preflow algorithm operates on GF instead
of G. For a given value of A, a minimum cut (X, X) in G corresponds to a solution z to

(4.4) defined by z; =1ifi € X,z;, =0if i € X.

In the general case (B # 0), it is convenient to assume f(z) > 0 for some z (otherwise the

solution to (4.3) is A(z) = 0, attained for any z) and that algorithm FP starts with an

28

z? such that A; > 0. Then, the entire sequence {A,} is strictly positive. To solve (4.4) we
rewrite it as follows:
Az, 3) = X max (F(2)/ - g(=))

We define the network G to have a vertex set consisting of one vertex for each set P € 4,
one vertex for each set Q@ € B, one vertex for each 1 € {1,-.-,n}, and a source s and a
sink ¢. There is an arc (s,v) of capacity ap/A for each v corresponding to a set P € 4, an
arc (s,v) of capacity —bg for each v corresponding to a set Q € B, an arc (v,i) of infinite
capacity for each vertex v corresponding to a set P € A or Q € B that has 1 as one of its
elements, and an arc (7,t) of capacity b, — a;/) for each 7 € {1,---,n}. The capacities of
arcs out of 5 are nonincreasing functions of A and those of arcs into ¢ are nondecreasing
functions of \; the parametric preflow algorithm operates on GE. Minimum cuts in G

correspond to solutions exactly as described above.

Remark. This formulation differs from that in [32] because of the division by A. The
formulation of [32] gives a parametric minimum cut problem in which the capacities of
arcs out of the source and of arcs into the sink are nondecreasing functions of A, to which

the results of Section 2 do not apply.

The following analysis is valid for both of the above network formulations. The nesting
property of minimum cuts (Lemma 2.4) implies that the number of iterations of Step 1 of
Algorithm FP is O(n), a fact also observed by Picard and Queyranne [32]. To state time
bounds, let us denote by n' and m' the number of vertices and edges, respectively, in G;
n' =n+|A[+|B|+2and m' = n+[A|+|B|+ > pea [Pl+ 3 gcp |Q|- Algorithm FP,in
combination with the parametric preflow algorithm of Section 2.3, yields a time bound of
O(n'm'log(n'? /m)) [or O(nm'log(n?/m' + 2))], improving over the algorithms of Picard
and Queyranne [32] and Gusfield, Martel and Fernandez-Baca [19].

Mazimum-ratio closure problem. This problem was considered by Picard and Queyranne
[33] and independently by Lawler [24], who only considered acyclic graphs (see the next
application). The problem can be solved by a straightforward application of Algorithm
FP. Each problem in the sequence of problems (4.4) is a maximum-weight closure problem.
The mazimum-weight closure problem (Picard [31]) is the generalization to nonbipbartite

graphs of the selection or provisioning problem [2,35] mentioned above.

29

These closure problems are defined formally as follows. Let G = (V,E) be a directed
graph with vertex weights a, of arbitrary sign. A subset U C V is a closure in G if for
each arc (v,w) € E with v € U we also have w € U. A closure U* C V is of mazimum
weight if the sum of its vertex weights is maximum among all closures in G. To compute a
maximum-weight closure, construct the graph G* from G as follows. Add a source s and
a sink t to G. Create an arc (s,v) of capacity a, and an arc (v,t) of zero capacity for each
v € V. Assign infinite capacity to all arcs in E. A minimum cut (X,X) of G* gives the
desired closure U* = X — {s}.

Now let @, > 0 and b, > 0 be given weights on the vertices of G = (V, E). The mazimum-
ratio closure problem is to find a closure U* that maximizes the ratio a(U)/b(U) over all
nonempty closures U C V. To compute a maximum-ratio closure, Picard and Queyranne
[33] suggest the use of Algorithm FP. This requires the solution of a sequence of O(n)
maximum-weight closure problems, each of which is a minimum cut problem. Thus an
O(n?mlog(n?/m)-time algorithm results. Lawler’s algorithm uses binary search and runs

in O(knmlog(n?/m)) time, where k = log(max{n,a_,,,b, .. }), assuming integer weights.

We can solve the entire sequence of minimum cut problems by the parametric preflow
algorithm of Section 2.3 as follows. Modify G* so that for each vertex v € V there is an
arc (s,v) of capacity a, — Ab, and an arc (v,t) of capacity zero. All other arcs have infinite
capacity. We start with U? = V U {s}; or, equivalently, with a sufficiently small value of A
so that the minimum cut is ({s} UV, {t}). Such a value is A; = min, a;/b;. The capacities
of arcs out of the source are nonincreasing functions of the parameter, and the parameter
values are given on-line in increasing order. The parametric preflow algorithm operates on
(G*)® and runs in O(nmlog(n?/m)) time, improving the bound of Picard and Queyranne

by a factor of n and that of Lawler by a factor of k.

Remark. Negative arc capacities in the various minimum cut problems can be made non-
negative using the transformation suggested in Section 2.5. In the minimum-ratio closure
pichlem, it suffices to assign a capacity of max{0,a,—Ab_} to each arc (s,v) and a capacity

of max{0, A\b, — a,} to each arc (v,1).

A job sequencing application. Lawler [24] applied his algorithm to a problem studied by
Sidney [38] and others: there are n jobs to be scheduled for processing on a single machine

subject to a partial order given as an acyclic graph G = (V, E), where V is the set of jobs.

30

Each job v has a processing time a, and a “weight” b, > 0 that describes its importance or
some measure of profit. Let the completion time of job v as determined by a given feasible
sequence be C,. It is required to find a sequence that minimizes) . b,C,. This problem
is NP-complete for an arbitrary partial order even when all a, = 1 or all b, = 1 [24]. Sidney
offered the following decomposition procedure. First find a maximum-ratio closure U, such
that |U,| is minimum. Remove the subgraph induced by U, from G, find a maximum-ratio
closure U, of the reduced graph, and repeat this process until the entire vertex set is
partitioned. Sidney and Lawler call closures initial sets of V. Once such a decomposition
is found, an optimal schedule can be computed by finding an optimal schedule for each
closure, for example by a branch-and-bound method, and then concatenating the solutions.
The algorithm described above can be used to find each closure. The overall time bound
depends upon the size of each closure. (Our algorithm will give closures of minimum

cardinality, since the algorithm is applied to the graph (G*)®; see Section 2.5.)

Mazimum density subgraph. A special case of the fractional programming problem (4.3)
is that of finding a nonempty subgraph of maximum density in an undirected graph G =
(V, E) with n vertices and m edges. The density of a subgraph of G induced by a subset of
vertices V' C V is the number of its edges divided by the number of its vertices. For this
application, (4.5) and (4.6) have the simpler forms f(z) = jzAz and g(z) = ez, where e
is the vector of all ones, 4 is the vertex-vertex incidence matrix of G, and z; = 1 if vertex
i € V' and z; = 0 otherwise. Algorithm F'P can be used to compute a maximum density
subgraph of G. It is not necessary to construct a bipartite network and solve minimum cut
problems on it. We can merely modify G by specializing the construction of [34]. Replace
each edge of G by two oppositely directed arcs of unit capacity, add a source s and a sink
t, and create an arc (s,v) of capacity §, — A and an arc (v,t) of zero capacity for each
v € V, where §, is one-half the degree of vertex v in G. We can also allow weights on the
edges and vertices. The resulting algorithm runs in O(nmlog(n?/m)) time. This bound
is better than that of Picard and Queyranne [32] by a factor of n, and better than that
of Goldberg [12] by a factor of logn; Goldberg’s bound is valid only for the unweighted

version of the problem.

31

4.3. Parametric zero-one polynomial functions

We consider the problem of computing a minimum of the function

2(A) = max { f(z) = Ndz—b) } . (4.7)

where S = {0,1}", f(z) is a polynomial in zero-one variables defined by (4.5), and d; > 0,
1€ {1,--+,n}, such that > .d; > 5> 0.

The function z(A) differs from the corresponding function (4.4) that arises in the zero-one
fractional programming application of Section 4.2 because of the term Ab in (4.7). The
function z(A) is piecewise linear and convex, and it has at most n — 1 linear segments
and n — 2 breakpoints. The network formulation of (4.7) is as defined for the zero-one
fractional programming application. The breakpoints of z()A) coincide with those of the
min-cut capacity function k() for this network. In general, no minimum of z(A) coincides
with a maximum of k(A). To compute a minimum of z(A) we can use the algorithm of
Section 3.2 for finding a maximum of k() modified to use the graph of z()) instead of the
graph of x(}) to guide the search. We have 2(0) = Y p. 4 ap + St ,a; >0 (for z =).
The slope of the leftmost line segment of z(A) is b — de < 0, and the slope of the rightmost
line segment is b > 0. The algorithm consists of the following three steps and finds a
minimum of z()) in O(n'm'log(n'?/m')) [or O(nm'log(n?/m' + 2))] time. A cut (X,X)

in this network defines a solution z by z; = 1 if vertex « € X and z; = 0 otherwise.

Step 0. Start with initial values A\; = 0, z! = ¢, 2();) = f(2') and h; = b — dz’.
Choose A, sufficiently large so that z? = 0; let z(A,) = A,b and 3, = b.

Step 1. Compute Ay = (z(A,) — z(A;)/(8;, — B,), pass A; to two invocations, I and D,
of the parametric preflow algorithm, and run them concurrently. If invocation I finds
a minimum cut (X}, X{) first, suspend invocation D and go to Step 2 (the other case
is symmetric.) Compute 3, = b — dz?, the slope of the line segment of 2()) derived

from this cut.

Step 2. If B, = 0, stop: A* = A;. Otherwise, if §; > 0, replace A, by A,, back up
invocation D to its state before it began processing A,, and go to Step 1. Otherwise,

go to Step 3.

Step 3 (B; < 0). Finish the invocation D for A;. This produces a minimum cut
(XP,XP), not necessarily the same as (X7, X/). If B, > 0, stop: A* = },. Otherwise,

32

replace A; by A;, back up invocation I to its state before processing A,, and go to

Step 1.
We now describe an application of this algorithm.

Knapsack-constrained provisioning problems. We consider the following provisioning prob-
lem with a knapsack constraint that limits the weight of the selected items:

z(m*) — :er&a,‘i{}n { f(:::) | dz<b }, (4.8)

where f(z) is given by (4.5), d is a positive n-vector of item weights and b is a scalar, the
>b>0,V ={1,---,n}. Thus,in addition to the benefit
a; obtained for including an individual item ¢ € V in the knapsack, the model allows the

knapsack size, such that). ., d

i

possibility of an additional reward of ap > 0 for including all of the items that comprise
a given subset P € A. The (linear) knapsack problem is a special case of (4.8) in which all

subsets P € A are singletons.

This NP-complete problem was suggested by Lawler [23]. Because of its many practical
applications there is interest in the fast computation of bounds on z(z*). To this end we

consider the Lagrangean function for (4.8):
L(z,A) = f(z) — A(dz —b), for A >0,
which has a finite infimum over z € {0,1}". For each A > 0, we define the dual function:

®()) is a piecewise linear convex function of A, having at most n — 1 line segments and

n — 2 breakpoints. We wish to solve the following Lagrangean dual problem:

(A7) = min #()).

This value is an upper bound on 2(z*) and can be used to construct heuristics and search
procedures for computing an approximate or exact solution to (4.8). It can be evaluated
by the above algorithm in O(n'm'log(n'?/m')) [or O(nm'log(n?/m' + 2))] time.

A special case of considerable practical importance is the quadratic knapsack problem, for

which f(z) = zAz where A = [a;;] is a nonnegative real symmetric matrix having no

33

null rows. For this case, Gallo, Hammer and Simeone [11] proposed an O(n?logn)-time
algorithm for creating a class of “upper planes” bounding z(z). Chaillou, Hansen and
Mabhieu [4] showed that its Lagrangean dual can be solved as a sequence of O(n) minimum

cut problems in O(n?*mlog(n?/m)) time.

The problem of evaluating ®()) for a fixed A can be formulated as 2 minimum cut problem
using a graph construction similar to that described earlier for the maximum density
subgraph problem, thereby avoiding the use of a bipartite graph. Let G = (V,E) be a
directed graph with vertex set V = {1,.-.,n}, arc set E = {(v,w) : a,,, > 0,v,w € V},
and arc weights a(v,w) = a,,,. We add to G a source s, a sink ¢, and an arc (s,v) of
capacity a, — Ad, and an arc (v,t) of zero capacity for each v € V. Using this network
formulation, the above algorithm computes the Lagrangean relaxation of a quadratric

knapsack problem in O(nmlog(n?/m)) time.
4.4. Miscellaneous applications

Our last two applications both use the algorithm developed in Section 3.3 for computing the
min-cut capacity function k() of a parametric minimum cut problem. The first application
is to a problem of computing critical load factors for modules of a distributed program in
a two-processor distributed system [42]. The second application is to a problem of record

segmentation between primary and secondary memory in large shared databases [9].

Critical load factors in two-processor distributed systems. Stone [42] modeled this problem
by a graph G = (V,E) in which V' = {1,--.,n} is the set of program modules and E is
the set of pairs of modules that need to communicate with each other. The capacity of an
arc (v,w) € E specifies the communication cost between modules v and w (it is infinity
if the modules must be coresident). The two processors, say A and B, are represented by
the source s and the sink ¢, respectively, that are appended to the network. There is an
arc (s,v) of capacity Ab, > 0 where b, is the given cost of executing program module v on
processor B. There is an arc (v,t) of capacity (1 — A)a, > 0 where a,, is the given cost of

executing program module v on processor A.

The parameter A € [0,1] is the fraction of the time processor A delivers useful cycles,
commonly known as the load factor. For a fixed value of)\, a minimum cut (X, X) in this
network gives an optimum assignment of modules to processors. For A = 0, a minimum

cut (X, X) with |X| minimum has X = {s}, i.e. all modules are assigned to B. For A =1

34

a minimum cut (X, X) with |X| maximum has X = {t}, i.e. all modules are assigned
to A. The objective is to find the best assignment of program modules to processors for
various values of), or to generate these assignments for each breakpoint of the min-cut
capacity function x(A). Lemma 2.4 implies that, at each breakpoint, one or more modules
shift from one side of the cut to the other. By listing, for each module, the breakpoint
at which it shifts from one side of the minimum cut to the other, one can determine
what Stone calls the critical load factor for each module. The operating system can then
use this list of critical load factors to do dynamic assignment of modules to processors.
The algorithm of Section 3.3 will compute the critical load factors of the modules in
O(nm'log((n + 2)?/m')) time, where m' = m 4 2n. Stone does not actually propose an

algorithm for this computation.

Record segmentation in large shared databases. Eisner and Severance [9] have stated a
model for segmenting records in a large shared database between primary and secondary
memory. Such a database consists of a set of data items S = {1,---, N} and serves a set
of users T = {1,---,n}. Each user w € T retrieves a nonempty subset S, C S of data
items and receives a “value” (satisfaction) of b, > 0 whenever all of the items in S, reside
in primary memory. The cost of transporting and storing a data item v € S in primary
memory is Aa, > 0, where a, > 0. The scalar A > 0 is a conversion factor such that A
units of transportation and storage costs equals one unit of user value. The objective is to

find a segmentation that minimizes the total cost minus user satisfaction.

For a fixed value of) the problem can be formulated as a selection or provisioning problem
[2,35] as follows. Construct a bipartite graph having the data items S as its source part
and the users T as its sink part. Construct an arc (v,w), v € S, w € T of infinite capacity
if data item v belongs to the set of data items S, retrieved by user w. Create a supersource
s and a supersink ¢, and append an arc (s,v) of capacity Aa, for each v € S and an arc
(w,t) of capacity b, for each w € T. A min-cut (X, X) separating s and ¢ in this network
necessarily partitions S and T into (Sy,Sy) and (Tx,Ty), respectively. It is easy to see

that

oX,X)= min (A a,+ > b,

SxUTx,5xuUT -
xUlx,oxVlx vESy weTx

The value of A plays an important role in this linear performance measure, and it depends
upon the system load. In practice it is necessary to create a list of primary storage assign-

ments for all critical values of A. The database inquiry program can then select and imple-

35

ment the best assignment at appropriate times. This table consists of all the breakpoints of
the min-cut capacity function () and, for each data item and user, the parameter value
at which it moves from one side to the other of a minimum cut. This information can be
computed by the breakpoint algorithm of Section 3.3 in O((n 4+ N)mlog((n + N)?/m)) [or
O(min{n, N}mlog((min{n, N})?/m + 2))] time. The algorithm proposed by Eisner and
Severance for solving the parametric problem requires the solution of O(min{n, N}) mini-
mum cut problems. Our algorithm improves their method by a factor of min{n, N}. They
also consider a nonlinear performance measure, for which an algorithm like that in Section
4.3 can be used to derive bounds on an optimum solution. This bounding method gives
an approximate solution, and the method can be used in a branch-and-bound algorithm

to give an exact solution.

5. Remarks

We have shown how to extend the maximum flow algorithm of Goldberg and Tarjan to
solve a sequence of O(n) related maximum flow problems at a cost of only a constant
factor over the time to solve one problem. The problems must be instances of the same
parametric maximum flow problem and the corresponding parameter values must either
consistently increase or consistently decrease. We have further shown how to extend the
algorithm to generate the entire min-cut capacity function of such a parametric problem,

assuming that the arc capacities are linear functions of the parameter.

We have applied our algorithms to solve a variety of combinatorial optimization problems,
deriving improved time bounds for each of the problems considered. Our list of applications
is meant to be illustrative, not exhaustive. We expect that more applications will be
discovered. Although we have only considered a special form of the parametric maximum
flow problem, most of the parametric maximum flow problems we have encountered in the

literature can be put into this special form.

We have discussed only sequential algorithms in this paper, but our ideas extend to the
realm of parallel algorithms. Specifically, the preflow algorithm has a parallel version
that runs in O(n?logn) time using n processors on a parallel random-access machine.
This version extends to the parametric preflow algorithm in exactly the same way as the

sequential algorithm. Thus we obtain O(n? log n)-time, n-processor parallel algorithms for

36

the problems considered in Sections 2 and 3 and for each of the applications in Section 4,

where n is the number of vertices in the network.

There are a number of remaining open problems. One is to find additional applications.
Possible applications include computing the arboricity of a graph [29,32] and computing
properties of activity selection games [44]. Gusfield [18] has recently found a new ap-
plication, to a problem considered by Cunningham [5], of solving the sequence of attack
problems involved in the computation of the strength of an undirected graph. (This prob-

lem is related to the strength problem considered in Section 4.2 but is harder.)

Another area for research is investigating whether an arbitrary maximum flow algorithm
can be extended to the parametric problem at a cost of only a constant factor in running
time. One algorithm that we have unsuccessfully tried to extend in this way is that of
Ahuja and Orlin [1]. Working in this direction, Martel [25] has recently discovered how to
modify an algorithm based on the approach of Dinic [6] so that it solves the parametric

problem with only a constant factor increase.

37

6. References

[1] R.K. Ahuja and J.B. Orlin, “A simple O(nm +n? log c,,,,) sequential algorithm for the
maximum flow problem”, Unpublished report, M.I.T. (1986).

[2] M. L. Balinski, “On a selection problem,” Man. Scie. 17 (1970), 230-231.
[3] J. R. Brown, “The sharing problem”, Operations Research 27 (1979), 324-340.

[4] P. Chaillou, P. Hansen, and Y. Mahieu, “Best network flow bounds for the quadratic
knapsack problem,” presented at the NETFLO 83 International Workshop, Pisa, Italy,
1983. To appear, Lecture Notes in Mathematics, Springer-Verlag, Berlin.

[5] W. H. Cunningham, “Optimal attack and reinforcement of a network”, J. Assoc. Com-
put. Mach., 32 (1985), 549-561.

[6] E. A. Dinic, “Algorithm for solution of a problem of maximum flow in networks with
power estimation”, Soviet Math. Doklady 11(1970), 1277-1280.

[7] W. Dinkelbach, “On nonlinear fractional programming”, Man. Scie. 13 (1967), 492-
498.

(8] J. Edmonds, “Minimum partition of a matroid into independent subsets”, J. Res. Nat.
Bur. Standards 69B (1965), 67-72.

[9] M. J. Eisner and D. G. Severance, “Mathematical techniques for efficient record seg-
mentation in large shared databases,” J. Assoc. Comput. Math. 23 (1976), 619-635.

[10] L. R. Ford, Jr. and D. R. Fulkerson, Flows in networks, Princeton University Press,
Princeton, NJ 1962.

[11] G. Gallo, P. Hammer, and B. Simeone, “Quadratic knapsack problems,” Math. Pro-
gramming 12 (1980), 132-149.

[12] A. V. Goldberg, “Finding a maximum density subgraph,” Technical Report No. UCB
CSD 84/171, Computer Science Division (EECS), University of California, Berkeley,
CA 1984.

[13] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow problem,”
J. Assoc. Comput. Mach. to appear; also Proc. 18'h Annual ACM Symp on Theory
of Computing (1986), 136-146.

[14] M. Gondran and M. Minoux, Graphs and algorithms, (translated by S. Vajda), John
Wiley and Sons, New York, (1984).

[15] M. D. Grigoriadis, “An efficient implementation of the network simplex method”, Math-
ematical Programming Study 26 (1986), 83-111.

38

[16] M. D. Grigoriadis and K. Ritter, “A parametric method for semidefinite quadratic
programs”, STAM J. Control 7 (1969) 559-577.

[17] D. Gusfield, “On scheduling transmissions in a network,” Technical Report YALEU
DCS TR 481, Department of Computer Science, Yale University, New Haven, CT,
1986.

(18] D. Gusfield, “Computing the strength of a network in O(|V|*|E|) time”, Technical
- Report CSE-87-2, Department of Electrical and Computer Engineering, University of
California, Davis, CA (1987).

[19] D. Gusfield, C. Martel and D. Fernandez-Baca, “Fast algorithms for bipartite network
flow”, STAM J. Computing 16 (1987), 237-251.

[20] T. Ichimori, H. Ishii and T. Nishida, “Optimal sharing”, Mathematical Programming
23 (1982) 341-348.

[21] A.Itaiand M. Rodeh, “Scheduling transmissionsin a network,” J. Algorithms 6 (1985),
409-429.

[22] J. R. Isbell and H. Marlow, “Attrition games”, Naval Res. Logistics Quart. 2 (1956),
71-93.

[23] E. L. Lawler, Combinatorial optimization: Networks and matroids, Holt, Rinehart and
Winston, New York (1976).

[24] E. L. Lawler, “Sequencing jobs to minimize total weighted completion time subject to
precedence constraints,” Ann. Discrete Math. 2 (1978), 75-90.

[25] C. Martel, “A comparison of phase and non-phase network algorithms”, Technical
Report CSE-87-7, Department of Electrical and Computer Engineering, University of
California, Davis, CA (1987).

[26] N. Megiddo, “Optimal flows in networks with multiple sources and sinks”, Mathematical
Programming 7 (1974), 97-107.

[27] N. Megiddo, “A good algorithm for lexicographically optimal flows in multi-terminal
networks,” Bull. American Math. Soc. 83 (1979), 407-409.

[28] N. Megiddo, “Combinatorial optimization with rational objective functions,” Math. of
Oper. Res. 4 (1979), 414-424.

[29] C. St. J. A. Nash-Williams, “Decomposition of finite graphs into forests,” J. London
Math. Soc. 39 (1964), 12.

[30] M. W. Padberg and L. A. Wolsey, “Fractional covers and forests and matchings”,
Mathematical Programming, 29 (1984), 1-14.

39

[31] J.-C. Picard, “Maximal closure of & graph and applications to combinatorial problems”,
Man. Scie. 11 (1976), 1268-1272.

[32] J.-C. Picard and M. Queyranne, “A network flow solution to some nonlinear 0 — 1
programming problems, with applications to graph theory,” Networks 12 (1982), 141-
159.

[33] J.-C. Picard and M. Queyranne, “Selected applications of minimum cuts in networks”,
INFOR, 20 (1982), 394-422.

[34] J.-C. Picard and H. D. Ratliff, “Minimum cuts and related problems,” Networks 5
(1974) 357-370.

[35] J. M. W. Rhys, “A selection problem of shared fixed costs and network flows,” Man.
Scie. 17 (1970), 200-207.

[36] K. Ritter, “Ein verfahren zur losung parameterabhangiger, nichtlineare maximum prob-
leme”, Unternehmensforchung, 6 (1962), 149-166.

[37] S. Schaible, “Fractional programming II: On Dinkelbach’s algorithm,” Man. Scie. 22
(1976), 868-873.

[38] J. B. Sidney, “Decomposition algorithm for single-machine sequencing with precedence
relations and deferral costs,” Oper. Res. 23 (1975), 283-298.

[39] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,” J. Comput.
System Sci. 24 (1983), 362-391.

[40] D.D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J. Assoc. Comput.
Math. 32 (1985), 652-686.

[41] C. Stein, “Efficient algorithms for bipartite network flow”, unpublished technical report,
Deaprtment of Computer Science, Princeton University, Princeton, NJ (1986).

[42] H. S. Stone, “Critical load factors in two-processor distributed systems,” IJEEE Trans.
on Software Engineering SE-4 (1978), 254-258.

[43] R. E. Tarjan, Data structures and network algorithms, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 1983.

44| D. M. Topkis, “Activity selection games and the minimum-cut problem ”, Networks 13
P g
(1983), 93-105.

40

