A PROTOTYPE FOR RESEARCH ON HETEROGENEOQUS
DATABASE SYSTEMS

Rafael Alonso

CS-TR-102-87

June 1987



A PROTOTYPE FOR RESEARCH ON
HETEROGENEOUS DATABASE SYSTEMS

Rafael Alonso

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

When two organizations decide to share the information in
their databases, it is not uncommon for them to find that the data
stored in their respective computer systems are kept in incompati-
ble database management systems. To allow users to query the
combined database in a straightforward manner, a mechanism is
needed that will mask the details of each particular systems and
present a homogeneous interface to the collection of database sys-
tems. A helerogeneous database system enables users to tran-
sparently access the data contained in a multiplicity of differing
databases. In this paper we describe some of the issues that must
be addressed in the implementation of heterogeneous database sys-
tems, and in particular we focus on resolving the conflicts that
arise in data integration. We also describe the design of a proto-
type that is currently being built to conduct research on this prob-
lem, one of whose salient features is the use of an embedded
expert system to aid in data integration.

June 1987



A PROTOTYPE FOR RESEARCH ON
HETEROGENEOUS DATABASE SYSTEMS

Rafael Alonso

Department of Computer Science
Princeton University
Princeton, N.J. 08544
(609) 452-3869

1. Introduction

When two organizations decide to share the information in their databases,
it is not uncommon for them to find that the data stored in their respective
computer systems are kept in incompatible database management systems
(DBMS’s). In some cases it may be possible for one of the two entities to con-
vert their data to the other’s system, although at a high cost in terms of time
and effort. Even this costly solution may not be appropriate if the two organi-
zations are simply co-operating on a temporary basis. Furthermore, there may
be users that want to access the separate databases as well as those who want
to query the joint one. We are currently studying this problem of logically
integrating two (or more) dissimilar databases by exploring the issues involved

in the design and implementation of a heterogeneous database management sys-
tem (HDBMS).

Designing an HDBMS is a difficult task. It is at least as difficult as con-
structing a distributed database system (for example, such as R* [Williams82]
or distributed INGRES [Stonebraker77]), since the databases to be united may
potentially reside at different sites. Previous approaches to this problem have
usually consisted of creating a global data structure that captures enough infor-
mation about the format of the participating databases such that a query deal-
ing with that global structure can be translated into queries that each local
DBMS can understand (this point will become clearer after the discussion in the
next section). For example, in Multibase [Dayal84], the designers of the
HDBMS made use of a model which captures more semantics than the rela-
tional model (see [Date75] for a description of the later model). Their model
incorporates the notion of generalization [Smith77], which essentially allows
them to abstract the properties of a data item and to categorize it as part of a
generic group. Thus, by grouping related items as a class, they can translate a
(global) query about objects in a (globally known) class into (local) queries
about each of the (locally known) components of that class.

A different approach is taken in [Motro87], which introduces the concept of
superviews. This mechanism allows the integration of different databases, but
those that are built on the same kind of DBMS (e.g., two different INGRES
databases created by two separate organizations). This technique involves the
creation of a global schema from which each of the local schemas can be



derived as a view.

Although the systems outlined above can be successfully used in some
environments, it seems to us that suffer from two drawbacks. First, they
involve very complex mechanisms; we feel that there must be simpler and more
straightforward methods for capturing enough semantics about a group of data-
bases to allow query translation. Secondly, in many situations it would be
desirable to have a technique that would allow the gradual integration of the
databases. For example, it seems reasonable to expect that, as users begin to
share data with other organizations, they might begin by asking very simple
queries dealing with foreign data, and eventually make more complex requests.
A system that can function with varying degrees of semantic information
(geared to the class of queries currently being asked by users) seems to us a
tempting approach.

We are currently exploring the use of expert system based tools for data
integration. Expert systems provide a natural framework for dealing with the
semantics of the database information. Furthermore, it is the nature of such
systems that they can be gradually extended by incorporating ever more
detailed amounts of information. In this paper we sketch the ideas behind our
approach, and briefly describe the work we have carried out to date.

In the next section, we give a brief description of what we feel are the main
design issues involved in implementing an HDBMS. In Section 3, we present an
overview of the system architecture of the general-purpose HDBMS which we
are currently implementing; one of the main features of this system is that it
will make use of an expert system to aid in query decomposition. This section
also includes some examples of how we expect our HDBMS to behave in various
situations. Section 4 provides some details about the actual software and
hardware to be used in our prototype. We conclude by sketching our research
plans for the near future.

2. Design Issues

Onmne of the design goals of a heterogeneous database system is to provide a
uniform way of accessing the data in the databases involved. By this we mean
that the users should be shielded (as much as possible) from the fact that
different databases are being queried on their behalf. Furthermore, ideally users
should not be aware of the fact that the data is possibly physically distributed
among different locations; that is, the user view of the data should be location-
independent. If these two goals are met, we say that the user is provided with
transparent access to an HDBMS.

The techniques required to provide location independence are the same as
those employed in distributed homogeneous DBMS. To hide the differences
among the databases (i.e., to provide uniform access), a variety of new research
issues must be addressed. One of the principal questions that arise is how to
present the user with a coherent view of the collective data (which may be
stored in dissimilar ways). This issue may be resolved by defining a common
data model and data manipulation language (DML). However, it may be
difficult to design a global model that captures that idiosyncrasies of each and



-3-

every one of the databases involved, and it may be inefficient to translate
queries into the common DML (especially if it is necessary to translate strictly
local queries into the global DML before executing them). In some applications
where there is one preferred (i.e., most commonly accessed) database, it may be
preferable to provide translations from the other DBMS’s to the data model and
DML of the preferred one. This has the advantage of minimizing the overhead
of executing the most common queries, but at the loss of generality in system
design; if at some point in the future another DBMS turns out to be the most
frequently accessed one, the entire system will have to be redesigned.

Some of the problems that arise in defining a common model and DML are
caused by the many conflicts that may exist among the DBMS’s. For example,
similar information may be kept in relations} with different names, or the
reverse may be true, i.e., perhaps relations with identical names have quite dis-
tinct semantics. Another type of conflict occurs if the tuples of equivalent rela-
tions use different units (such as feet in one and meters in the other). These
types of conflicts are fairly easy to resolve, but other conflicts are structural
and much more difficult to handle. For example, the branch of a corporation
may keep an inventory of office equipment for each building at its site, while
the parent company keeps such information on a departmental basis. As we
will describe later, our approach for dealing with these occurrences is to encode
the information required to resolve potential conflicts into an expert system.
We also expect that the power of an expert system will allow us to handle
situations where two or more databases have inconsistent information, as well
as the cases where the data contained in all the databases does not completely
specify the answer to a user’s query.

Once the global scheme is defined, the issue of query processing comes into
play. By this we mean that, if a user asks for a query of the combined data-
base, that query must be broken up into a set of sub-queries that will be exe-
cuted on the different DBMS’s. There are two research problems here: the first
is how do we break up the query, the other how do we make sure this decompo-
sition process results in efficient query execution. Initially, we will concentrate
on addressing the first issue only. It is clear that to devise a decomposition of
the global query the HDBMS must have the appropriate information to make
the correct decisions. This information is kept in the auziliary database. Since
this information is related to that required to resolve the conflicts described
above, currently we are also planning to integrate the auxiliary database infor-
mation into the expert system previously mentioned.

There are many other issues involved in the design of HDBMS’s. We have
only outlined a few in this section. For a more extensive commentary of the
issues described in this section, the interested reader is referred to Chapter 15
in [Ceri84].

T At this point it should be noted that throughout we will assume that all the DBMS’s,
although dissimilar, will be relational ones.



-4 -

3. Proposed System Architecture

In this section we sketch the architecture of an HDBMS which we are
currently implementing. The overall structure of the system is not radically
different from other available ones. Rather, it is the use of an expert system to
subsume the information contained in the auxiliary database previously
described which sets our work apart from earlier approaches.

In our architecture, each of the separate DBMS’s will continue to handle
requests that deal solely with the ‘“‘local” data. (We will refer to those DBMS’s
as the local DBMS or LDBMS for short.) Thus, if a user does not have any need
to access information spanning more than one DBMS he will not pay any over-
head, and is able to use the data manipulation language (DML) of the appropri-
ate LDBMS. (If the user is unsure whether the query requires only single site
data, or is more comfortable using the global DML, he may submit that query
as if it were a multiple database one; the query will then be processed in a
manner analogous to that described below.)

Whenever a user executes a query that involves the joint data, that query
will be passed to a global database management system (GDBMS). In the sim-
plest of cases, the job of the GDBMS will be to cleanly decompose the global
query into sub-queries (one per LDBMS), each posed in the actual data manipu-
lation language of their respective LDBMS. When both LDBMS’s reply with the
answer tuples, all the data will be stored in a temporary relation, perhaps after
appropriately modifying the returned tuples. Then the GDBMS will present the
answer to the waiting user (perhaps after some further modification of the tem-
porary relation).

To be more precise, consider the case where a user wants to know the
salaries of the employees that work in the computer research departments of
two entities. That query (in the DML of the GDBMS) is translated into two
queries, each in the DML of the LDBMS’s, asking for the salaries of the employ-
ees working in computer science research according to each local database.
When both queries are answered, the GDBMS puts all the data together. If
there are some minor differences in the tuple format, the GDBMS will correct
them at this point; for example, if the employee name fields happen to be of
different sizes, the GDBML will expand the size of the tuples with the smaller
size, and right-fill with blanks. When the GDBMS is done, it may perform some
final processing to discard duplicates (maybe some employees work for both
organizations), and presents the user with the result.

Of course, the situation may be much more complex than in the simple
case described above; for example, the computer science research department
may go by different names in the two companies, or it may not exist as a
separate entity in one of the organizations. This is one example of the class of
database schema incompatibilities that we described in the previous section.
Our strategy for integrating the database schemas is to make available to the
GDBMS an expert system that can be used to resolve conflicts. For example, in
the case where the two departments have different labels, the expert system can
easily point this out, and the GDBMS can then account for this fact while form-
ing each local sub-query, as well as while preparing the final output for user



-5-

viewing. If computer science researchers work within some larger department
(say Electrical Engineering and Computer Science), the expert system can then
inform the GDBMS of this, as well as of what criteria could be used to pinpoint
the correct employees (for example, that employees work within the EECS
department and that the phrases ‘““computer science’ and ‘‘research” appear in
their job description).

To complicate the situation further, suppose that a consultant happens to
work for both companies, and receives a different compensation from each.
After the GDBMS collects the tuples from the local queries executed by the
LDBMS’s, it is faced with an inconsistency in the data it has. The expert sys-
tem could then suggest a number of approaches, perhaps to average the two
salaries or to list the individual twice. For more sophisticated users, a better
approach might be to let them know that there is an inconsistency in the data;
another possible heuristic here might be to provide the user with a partial
answer (and advise him of this), and automatically notify the global database
administrator that perhaps the expert system’s information should be enhanced
to provide help for this kind of global query.

It should be clear from the comments above that we expect quite a bit of
functionality from our expert system, since it will have to embody the heuristics
we deem appropriate to integrate the different data models of the LDBMS's into
the data model of the GDBMS. We also expect that this expert system will be
used not only for run-time global query decomposition, but also to aid database
administrators in designing an integrated global data model. Whether such an
expert system is possible to construct, and whether it is an efficient method for
database integration are two of the most important issues our research will
address.

4. Prototype Design

We expect to build an HDBMS following the architecture described above
by using the facilities of the Princeton Distributed Computing Laboratory. This
laboratory consists of a wide assortment of computers (Sun workstations, DEC
Vaxes, IBM PC’s, NCR Towers, AT&T 3B2’s, etc) connected by an Ethernet.
Our section of the network can be physically disconnected from the departmen-
tal network, which will ensure a quiescent network for performance measure-
ments.

Our plans presently call for the HDBMS software to be developed on both
SUN workstations and IBM PC’s. We expect that the initial HDBMS will
bridge an INGRES database residing on a Sun and a DBASE DBMS running on
an IBM PC. The communication between the two databases will be carried out
in two ways. First, by using the TCP / IP communication protocols, but also by
making use of SUN Microsystems PC NFS software, which allows PC users
access to files residing at SUN workstations.

The expert system will be developed using Prolog. We feel that this
language will be appropriate for this task, and is an especially adequate tool for
building system prototypes. Some of the members of our project have already
built an object-based query language using Prolog to develop expertise with



that language in system applications.

5. Conclusions and Future Work

Although we are not aware of any such attempts in the available litera-
ture, we feel that the use of an expert system can be of great help in resolving
the conflicts inherent in data integration. By actually implementing a hetero-
geneous database system we expect to provide our ideas with a reality check
that is not possible from a purely paper design.

We plan our work to proceed along three distinct directions, the first two
of which we are already exploring. The first is to consider a set of possible com-
patibility problems (such as those discussed above), and try to devise solutions
(or, more likely, reasonable heuristics) for them, and attempt to capture the
ideas behind the solutions in a simple Prolog-based expert system. The second
aspect of our work will focus on choosing examples of database applications in
order to guide our selection of data modeling languages (DML’s). We will
explore the usefulness of existing languages, and determine if they are suitable,
or if extensions (such as object-oriented descriptions) need to be developed.

Finally, after the issues have been explored to our satisfaction in the two
initial phases of our work, we will start on the implementation effort described
in the previous section. In this phase (as well as in the previous two aspects of
the work just described), we expect to collaborate closely with members of the
technical staff of SRI's David Sarnoff Laboratory.

6. References

[Ceri84]
S. Ceri and G. Pelagatti, “DISTRIBUTED DATABASES Principles and
Systems,” McGraw-Hill, 1984.

[Date75]
C. J. Date, “An Introduction To Database Systems,” Addison-Wesley,
1975.

[Dayal84]
U. Dayal and H. Y. Hwang, “View Definition and Generalization for Data-
base Integration in a Multidatabase System,” IEEE Transactions on
Software Engineering, November 1984.

[Motro87]
A. Motro, ‘““Superviews: Virtual Integration of Multiple Databases,” IEEE
Transactions on Software Engineering, July 1987.

[Smith77]
J. M. Smith and D. C. P. Smith, ‘“Database Abstractions: Aggregation and
Generalization,” ACM Transactions on Database Systems, June 1977.

[Stonebraker77]
M. Stonebraker and E. Neuhold, ‘‘A Distributed Database Version of

INGRES,” Proceedings 1977 Berkeley Workshop on Distributed Data
Management and Computer Networks, 1977.



[Williams82]
R. Williams et al, “R*: An Overview of the Architecture,” Proceedings of
the International Conference on Databases, Israel, June 1982.



