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ABSTRACT

Shellsort is a simple classic algorithm that runs competitively on both mid-
sized and nearly sorted files. It uses an increment sequence, the choice of which
can drastically affect the algorithm’s running time. Since we would like an
optimal sorting algorithm and a trivial lower bound for Shellsort is N * (# of
increments), we require that the size of the increment sequence is O(log N) , where
N is the size of the file to be sorted. These increment sequences also tend to per-

form the best in practice, because of this lower bound. -

For some time, the complexity of Shellsort was thought to be well understood,
but Sedgewick was able to provide an increment sequence that lowered the upper
bound, and then Incerpi and Sedgewick extended the result to give an even better

upper bound. In both papers, the authors left as open the problem of whether their

bounds were tight.

We prove that Sedgewick’s bound is tight by analyzing the time required to
sort a particularly bad permutation. Extending this proof technique seems to lead
to a lower bound that matches the upper bound of Incerpi and Sedgewick for not
only their increment sequence, but also for a wide class of other increment

sequences.

Additionally, we show that the permutations which make Shellsort run slowly
are counterexamples to a conjecture that shaker-sort, a network sorting algorithm
proposed by Incerpi and Sedgewick, runs in O(Nlog N) time, again for a large class

of increment sequences, including all those that have thus far been proposed.
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1. Introduction

Shellsort is a sorting algorithm proposed by Donald Shell [She59] in 1959. It
is a simple to code, in place sorting algorithm which runs well empirically for both
nearly sorted files and mid-sized files; it is the method of choice for these applica-

tions.

Shellsort is an improvement over insertion sort, and in fact uses insertion sort
as a subroutine. Insertion sort consists of examining elements from left to right,
and for each element, finding its place in previously examined elements. This con-
sists of comparing the element to elements on its left, and exchanging with larger
elements until a smaller one is found. In the worst case an element may have to
be exchanged with all the elements on its left, and so insertion sort has an O(N .
worst case running time. In fact, analysis reveals an O(N?) average case running
time, so insertion sort is a rather bad general purpose sorting algorithm. However,
for nearly sorted files, with only a few elements out of place, insertion sort per-

forms very well.

Shellsort uses a sequence of integers h,h,_1, " - *,h; and works by perform-
ing insertion sort on subfiles consisting of elements h; apart. We call this an h;-
sort. Thus, 1-sorting amounts to insertion sort, while when a file is 2-sorted, all
elements in even spaces are sorted and all elements in odd spaces are sorted.
(There is generally no relation implied between an arbitrary even positioned ele-
ment and an arbitrary odd-positioned element.) Shellsort works by performing
passes consisting of an h,-sort , h, _;-sort , and so on until an h; =1-sort. It is both
necessary and sufficient that A; =1 for the algorithm to sort. One point of the
algorithm is that instead of comparing only adjacent elements which means that

each exchange can do only a little to sort a file, Shellsort can exchange elements
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far apart, giving potential to reduce the number of exchanges required. Another
idea of the algorithm is that each pass is made easier by the work of previous
passes, hence in the latter passes, the subfiles are rather sorted. Thus insertion
sort is used for the subfiles. Any sort could be used, but it makes sense to use a
simple algorithm that works well on nearly sorted files. Historically, insertion sort

has been the subroutine used by Shellsort, and is the method we will use here.

Shellsort is important because of its potential as a network sorting algorithm.
In this version of sorting, as described in [Knu73], each element is placed on a line
and a network is defined consisting of comparators that compare (and exchange if
necessary) two elements, passing them on to the next comparator. The rules of
this game are that one has to declare where the comparators are before the sort. If
each pass of Shellsort were to have a linear worst case running time, and only
O(log N) passes were used, this would immediately translate into a simple
O(Nlog N) sorting network. The existence of such a network was a major open
problem that has recently been answered affirmatively [AKS83], although no prac-

tical algorithm is known.

Recent papers have lowered the worst case time bound for Shellsort consider-
ably after over a decade of stagnation, so it is natural to ask how much lower these
bounds can get. In the next section, we elaborate briefly on recent progress made

in the analysis of Shellsort.

1.1. Previous Increments and Bounds

Improvements in Shellsort analysis have been made by clever choices of incre-
ment sequences. As we shall see, the choice of increment sequences can drastically

alter the running time of Shellsort.
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Originally, Shell [She59] proposed using increments of the form
IN/2|,IN/4],|IN/8|, - - -,1 . Unfortunately, this sequence fails horribly, especially
when N is a power of 2. For instance, if N =32, the increments are 16, 8, 4, 2, 1
and there are never any exchanges between elements in even and odd positions
until the 1-sort. In the worst case where all the large elements are in even posi-
tions and all the small elements in odd positions, the final insertion sort would
require quadratic time. The practical problem with this increment sequence is
that the increments duplicate work previously done and hence don’t sort enough in
each pass. Similarly, if the increments are of the form ¢’ for a constant ¢, Shellsort
has O(N?) worst case running time, although O(N?®/?) average case running time
[Knu73]. Thus it makes sense to try to have the increments relatively prime to
each other. Hibbard [Hib63] suggested using 2'—1 and it was shown by Papernov
and Stasevich [PaS65] that Shellsort has an O(N®?) worst case time for these

increments.

Pratt [Pra71] showed that Hibbard’s sequence was actually O(N*?) by con-
structing permutations that were hard for Shellsort to deal with. In his thesis,
Pratt generalized this result to show that "almost geometric" sequences of the form
ai+c (i.e. within a constant of geometric) ran in O(N?%) . Pratt also gave incre-
ments of the form 2'3/ which make Shellsort run in ©(Nlog?N) . Unfortunately,
while this is still the best worst-case asymptotic bound known, there are O(log”N)
increments as opposed to O(log N) for all the other sequences, so that these incre-
ments perform poorly in practice because of its Q(N1log?N) lower bound. As it also
does not lead to an O(Nlog N) sorting network, we choose to focus on O(log N)
increment sequences. This restriction along with Pratt’s rather general bound led

researchers in the 1970s to abandon worst case analyses. Average case analyses
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are even more difficult and only empirical results were obtained, which estimated
Shellsort’'s average running time for Pratt-like sequences at about O(N!?7) to
O(N'3%) . On the other hand, some results suggest that it is possible (but not

likely) that the form is actually O(Nlog®N) .

Sedgewick [Sed86] in 1984 was able to obtain an O(N 413y worst case bound for
Shellsort by using increments of the form 44/ +32/ 41 , which violate Pratt’s con-
dition, since these increments differ by more than a constant from being geometric.
Sedgewick immediately extended this result to O(N!*¢) , which would seem to be
as good as one can get without going to O(Nlog N) , but Incerpi and Sedgewick
[InS83] devised a sequence leading to an O(N!*¢ Viog Ny worst case bound. These
sequences are particularly messy, but they are still geometric and also perform
well in practice. Chazelle matched Incerpi and Sedgewick’s O(N!"¢/ Vi Ny with
increments of the form a‘(a+1) . When a = 2, we have Pratt’s sequence.
Chazelle was able to trade in going down in increments ( from O(log’N) to
O(log N) ) for an asymptotic increase in running time (from O(Nlog®N) to the
above time ). In none of these recent papers were the authors able to determine

how tight their bounds were.

In this thesis, we will prove that the bounds given for some of the above incre-
ment sequences are tight by constructing permutations that require the time indi-
cated in the upper bound. For the rest of the sequences, we give very strong evi-
dence that these bounds are also tight. We also show that under very general con-
ditions on the increment sequences, no O(log N) increment sequence can do better

in the worst case than those thus far discovered.



1.2. Organization

This thesis is divided into six chapters. Chapter 2 reviews the previous
results on Shellsort, and the related Frobenius problem, from additive number
theory. Chapter 3 introduces the concept of inversions and the "Inversion Conjec-
ture”. This conjecture is proven for several special cases and evidence to support
the claim for the general case is given. Chapter 4 deals with the lower bounds
themselves. In it we generate bad permutations for Shellsort based on the incre-
ment sequence used. Chapter 5 discusses a variant of Shellsort known as shaker
sort, a candidate for an O(Nlog N) sorting algorithm that was proposed by Incerpi
[Inc85]. We essentially show that the existence of an O(Nlog N) shaker sort is
dependent on the existence of an O(Nlog N) Shellsort, and is hence unlikely.

Thesis results and open problems are presented in Chapter 6.



2. Upper Bounds For Shellsort

In this chapter we introduce the century-old Frobenius problem, and present
the known results. We show its relation to Shellsort and review the upper bounds

obtained for various increment sequences.

2.1. The Frobenius Problem

2.1.1. Definitions

Suppose that a country wishes to issue only & different types of stamps. What
is the largest postage that can’t be exactly placed on an (infinite sized) envelope
and how many postages can’t be exactly placed? This is known as the Frobenius
Problem, apparently because the mathematician Frobenius mentioned it often in

his lectures [Bra42]. A more formal definition follows:

Definition: g(a,,as, - - - ,a;) = the largest integer which cannot be represented as
a linear combination, with non-negative integer coefficients of a,aq, - ' " ,a; .
Definition: n(a,as, -+ ,a;)= the number of positive integers which cannot be

represented as a linear combination, with non-negative integer coefficients of

ay,2, """ 0k .

As an example, consider g(4,7) and n(4,7). If we mark the integers 1 to 18 as

either 1 (representable) or 0 (unrepresentable), we get the pattern below:

We notice that once 4 consecutive integers are representable, all are, since if N is

representable then clearly N +4 is too. Thus we see that g(4,7) is 13 and, since
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we can count 8 unrepresentable numbers, n(4,7)=8. We call the above pattern the
Frobenius Pattern; we will see later how we can use it to lower bound Shellsort’s

running time.

We make several simple observations. First, we may assume that
a;<ag< - - <aj without loss of generality. Throughout the rest of this paper,
we shall make this assumption. Now if a; =1, then g()=n()=0 as all integers are
representable. Also, we may assume that each a; is independent of the other argu-
ments (that is it cannot be represented as a linear combination of the other argu-

ments) since otherwise it could be removed without affecting the result.

Finally, g(a,,as, - ,a;) is defined if and only if ged(ay,az, - - ,ap)=1. To
see this, note first that if a;,aq, - - - ,a; had a common divisor d #1 , then all
integers not divisible by d would be unrepresentable. Conversely, if a;,as, - - ,a;

are relatively prime, then there exists a solution (allowing negative ¢;'s ) to
Zc;a;=1 , which implies a solution with non-negative integer coefficients to
2Zc;a;=1(mod a,). This implies that for each residue class of a; , we can find a
linear combination of a;,as, - ,a; , and thus all integers can eventually be

represented.

Algorithmically, to compute g one needs to find if g is defined and if it is,
merely find the point where a; consecutive integers are representable. Somewhat
more efficient algorithms exist, for instance [Gre80], but they are of little concern
here. In some cases one can use direct formulas, but as we shall see in the next

section there are few of these.

2.1.2. Previous Results

In this section, we examine what is known about the Frobenius problem. The
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solution for two arguments has been known for over a century and is due to W.J.
Curran Sharp [Sh884]:
glay,ag)=(a;—1laz—1) -1 (2.1a)
n(ay,az)=%a;—Day—1)
provided, of course, that a; and a, are relatively prime.
The case for three arguments remained unsolved for quite some time, but in

the interim Johnson [Joh60] provided the useful result

a; aj A —1
aa

glay,ay, ++,ap)=dg( ,ap)+(d —1)a (2.1b)

where

d=ng’(a1$aZ: e ’ak41)~

Several results in this period deal with special cases such as arithmetic or

"almost" arithmetic sequences, but are seemingly useless for Shellsort analysis.

Finally, Selmer [Sel77] provided the complicated formula:

glay,as,a3)<max[(s —1l)ag+(qg —leajs,(r—1)as+gasl—a; (2.1¢)
where
ag=sag mod a;, 1<s<a;
aj =gs +r

providing that the arguments are pairwise relatively prime and independent.
Where there is not pairwise relative primeness, Johnson’s formula can be used.
Temkin [Tem83] provided an exact closed form solution for the case of three argu-
ments, but it is rather complex and involves many subcases that depend on the

relationship between the arguments.

Incerpi and Sedgewick [InS83] provided a nice lower bound for the Frobenius

function:

1

1+
gla,ag, - ,a)=Wa; *71), (2.1d)
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provided of course that a; <ay,< ' - <ay .

One other item of interest is the formula

n(alaa2a O 1ak) <1
g(alsaﬂa e ,G;k)
due to Nijenhuis and Wilf [NiW72]. That
n‘(al’a2r S e h :ak)zé(g(GI:GQ: e ’ak)-l-]-)

is clear from observing that if x and y are positive integers with x +y =g, at most
one of x and y can be representable. It is trivially obvious that

nlay,ag, ' ,ap)<glaj,ay, ' ' ,a);

what is not so clear is whether this bound is attainable. The reader may verify

that

gla,a+l,a+2, +-+,2a-1)=n(a,a+1l,a+2, - ,2a —1)=a -1

It should be pointed out however that this is a degenerate case and in all instances

where k <<a , % tends to be very close to % .

2.2, Lemmas Used to Upper-Bound Shellsort

We need two important lemmas before we show how upper bounds for

Shellsort are obtained. The first is the fundamental result for Shellsort:
Lemma 1: If a k-sorted file is h-sorted, it remains k-sorted.

The lemma above dates back to at least Boerner [Boe55] (before Shellsort!)
and proofs can be found in [Pra71], [Knu73] or [Inc85]. The implication of Lemma
1 is that when we come to hj-sort a file, we know that it is already hj +,-sorted,
hy +9-sorted , ... , h,-sorted. Thus when we do insertion sort on a subfile and come
to a particular element x;, we know that there are many elements guaranteed to

be smaller than x;, and so the insertion sort shouldn’t take as long as its worst case
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bound would indicate. Lemma 2 tells us how many elements can be larger than x;,

and hence involved in the insertion sort:

Lemma 2: If a file is h-sorted and k-sorted, then for each i’ , x;y_; <x; whenever i

can be expressed as a linear combination with non-negative coefficients of A and k.

Proof: If i =sh +tk, then x; =x;_,= -+ =x;_,, since the file is h-sorted, and

Xi' _eh =X —gh—k= " Xi'—gh—th =X —j since the file is k-sorted. l:l

Lemma 2 can easily be extended to take into account more passes, so that if a
file is hp +1,hr +9, - - ,h;-sorted, then for any element x;, the insertion sort needs
to consider only elements that are less than g(hy +1,h4 +2, * * * ,h,) away. This fol-
lows since all elements farther away are representable as a linear combination
with non-negative coefficients of hj 1, +2, - * ' ,h, and are thus guaranteed to be

smaller than x;.

Thus with Lemma 2 we have a way to bound the running time of Shellsort.
For each hj-sort, we bound the running time and then sum over all passes. The

time to h,-sort can be bounded in two ways:

(A) Since we are running h;, insertion sorts of size B an obvious bound is
k

2
IZ—} For small h;, this is a poor bound, but for large hj it is
k

£2

0 hk' hk =0

a good bound.

(B) By using Lemma 2, we bound how many exchanges each element can be
involved in. For an element x, we have that only the other elements within

g(hg+1,hp+2, """ ,h) can be involved in exchanges. Of these, only
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g(hk+1!hk +2, " !ht)
hy

can be involved in exchanges in the h,-sort, since only

every hith element is examined. Applying this bound to each of the N ele-

ments leads to a bound of

0

N

e LTSS ,ht]I
k

For increments h, such that

g(hy+1,hp 42, - =+ ,h) <O (N) (2.2a)
bound (B) is the smaller bound of the two. Hence by summing over all h; , using

bound (B) when equation (2.2a) is satisfied and bound (A) otherwise, the running

time for Shellsort is bounded.

2.3. Upper Bounds For Shellsort

In this section we apply the lemmas of the previous section to obtain upper

bounds for Shellsort.

2.3.1. An O(N*?) Upper Bound

The first non-trivial upper bound for Shellsort is due to Papernov and Stase-

vich [PaS65]:

Theorem: The running time for Shellsort is O(N 372y for the increments 1, 3, 7, 15,

wiy 2=

Proof: For hy>0(N'"?), we use bound (A) of the previous section; for smaller hy,
we use bound (B), taking into account only two previous passes. Now, the reader
may verify that ged(hy +1,h +2)=1, so that

g (g +1,hp +2)=0(hy?).
Hence, bound (B) implies a bound of O (Nh;) for small A;. Thus the running time
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T may be bounded by

2
T< Y Nhp+ > N
hy<O(VN) O(VN)<h,=O(N) he

Since 2 =0 (N), (i.e. there are ¢ increments less than N)

T N 2/-1 + N? :
.E t ;2. 27—-1
ISJSE ?<JSi

which implies that T<0(N2/%)=0(N?*?). [

Tt should be noted that the h,-sort for hy =0 (N'?) takes O(N*/?) time. Also,
since the sums that we have in these proofs are geometric, the sums are the same

order of magnitude as the largest term.

To get a better upper bound, one might try to take into account more previous
passes. In the proof above, only two passes were used to establish the upper bound.
Of course, Pratt’s results imply that for this particular sequence, taking all passes
into account wouldn’t matter since this bound is already as low as possible. In

fact, we have that for hy=2%—1,
gy by 1, B vz, - ha)=(hp) (A +1)—1=0 ().

In the proof above, we switch sums when g(hy41,hg 42, ,h)=0({N), or
hy=N'2  which leads to an OW?¥%)  bound. If we had
ghy +1,hr +2, " R)=0(h°), we could switch sums when
g(hy+1,hk 42, - h)=0(N), which would lead to an O(N®~'/°) upper bound.
For instance, an increment sequence with g(hp +1,hp 42, " - h)=0(h%"?) would

have an upper bound of O(N*?). This is exactly what Sedgewick did for his result.

2.3.2. An O(N*?) Upper Bound
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Theorem: The running time of Shellsort is O(N*3) for the increments 1, 8, 23, 77,

281, ..., 44" +3 28 +1.

Proof: Use the technique described in the previous section. All that needs to be
estimated is g (hy +1,hp +9, * ' * ,hy), and we will use g(hy 41,hy +9,h1 +3) to do this.
Sedgewick showed that for all k, hy 4i,hp+9,h,+3 are pairwise relatively prime
and for k>1, they are independent also. Using Selmer’s formula with
s=42k*147 ¢=2F*1_1 and r =8, Sedgewick showed that

g44FFlyg okl y] 44k+2 130k +2 1 44k +3 439843 1 1)=0 (8h),
or O(h3'?) (specifically =16A;%? ).

Thus for increments smaller than O(N?3) | we use bound (B); otherwise we

hy +1,hy +9,h
use bound (A). We have that 8k +1,hh 43, hh +3)

=0(h!'?), so

hy

N2

hy<O(N9) O (N3 =h, =0 (N) B
Again, if 2 =0 (N),
T<N (4j+1 3 2J 1)1/2 N2
= +3-2/+ + - -
.zm 2;2_ 4+14392 41
lsJ(? ?SJSt

=O(N.2b'3) :O(NUS).D

Sedgewick gave a second increment sequence: hy, =(2* —3)(2% 1 —3) that also
ran in O(N*3). In this case, he was able to solve the Frobenius problem by using
Johnson’s reduction formula for removing common divisors. The natural way to
extend this would be to take h,=(2% —3)(2F*!—3)(2%*2—-3) which leads to an
O(N%*) bound. Extending this further to keep on lowering the bound doesn’t
quite work for this particular case because h;, will always be divisible by 5, and
thus the Frobenius number is undefined. Incerpi and Sedgewick used a sequence

with a similar idea to lower the bound further.
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2.3.3. An O(N'*1/e*D) Upper Bound

Incerpi and Sedgewick were able to lower Shellsort’s running time to
O(N'+1Ve+Dy ysing O(log N) increments. They invented a "Generalized Fro-

benius Function", which can be thought of as an extension of Johnson’s formula.
.. ) . log

Their increment sequence is actually a merge of ¢ sequences each of size O( 8 N).
C

Further details can be found in [Inc85] and the sequences themselves can be found

in the appendix, however we note that (hindsight being 20-20) their bound is
attainable using only O(lo—g;_ﬁ) increments, by using just one of their sequences

and extending Sedgewick’s result. As an example of how to do this (for ¢ =3), sup-
pose hy=(a,)(ay +1)(ay+2). Now if four consecutive increments are always rela-
tively prime and independent, we can use Johnson’s formula. In this case, we need

to compute

g(hy+1,hp+2,h8 +3, 08 +4) =8 (@p +10k +20k +3, Ok +20k +30k +4, Ck +3Ck +4Qk +5, Cp +4Ck +50k +6)-

Using Johnson’s formula with d =a 4, we have

g=0a3p+48 (A} +2Q% +3, Qp +3Qk +5, Ck +5Qk +6, Bk +10k +20k +3) T (ap +4 — 1)@} +105 4205 +3)

=a} +48(Qk +20k +3, Ok +30p +5, Tk +5% +6) T Cp +104 +20% +3(a5 14— 1).
Here we have removed a; ;@ 49a+3 since it is redundant. Applying Johnson’s

formula again, with d =a}, 45,
g=ay+4(ap+5 (8(ap +3, A +6, Ah+2ar+3) T (@p+5—1)ap 1205 +3)) @y +10p +20; +3(ap +4—1)

g=ap+4(ap +5 (8(ap+3, ap+6) T (@p 15— 1Dap +20; +3)) + @ +1a +2a; +3(a 44— 1)

We know that g(apys3,a;+g) is about aji3ap 46, so (tossing away insignificant
terms), we have
8§=0(a) +10p +208 +30k +4 T A} 120} 130 +40} +5 T AL +30k +4Q% +5Ck +6)

=0(ag +3ak +49k +50% +6)

i N 4
NOW, @ +1,@k +2,@k +3,Qk +4,0k +5,0% +6 are all O(ay), by +1=0(a;”) and g=00(a}*),
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g(hg 11, ke 12,k 3,k +4) =0 (R *?)
Following through with the proof as before yields an upper bound of O(N®'%).

One choice for a; is ap=2%—3, as in Sedgewick’s sequence with ¢ =2,
Another choice (the choice in Incerpi and Sedgewick) is to take a, = the smallest
prime >2%. Thus relative primeness is always guaranteed. A third choice might
be to take a,= the smallest prime >2*3, In this case the increments would be
0(2); in the first two cases the increments would be O(8'). To prove the asymp-
totic bound for the first increment sequence, one needs to show relative primeness
for four consecutive increments. To prove the bound for the third sequence, one
would have to show that you can always find a prime. It may turn out that the

sequences perform well practically, even without a proof.

This result can be extended to make h, the product of ¢ terms, with an asymp-
totic running time improved to O(N'*1©*1) This is an easy proof by induction,
using exactly the same techniques as above. Unfortunately, the big-Oh notation
hides a constant that is exponential in ¢. This is because for any c, we have
g0=0(ap+c@p +c+1 """ ap+2.). We have said that aj.=0(a), which is true up
to a constant. However, in this case we are multiplying c terms together, hence

the exponential constant is implied.

Selmer [Sel87] has recently obtained the same result using a theorem due to
Brauer [Bra42]. He has also shown that for 3<c <10, one can use a,=2%—45 in
the base sequences, but for larger ¢, 45 must be replaced by progressively larger

numbers.
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2.3.4. O(N'*&/ Ve Ny Upper Bounds

The bound of 2.3.3 is the best one can do if only a constant number of previ-
ous passes is taken into account. This is because of the lower bound (2.1d) for the

Frobenius function.

The way to bypass this is to construct increment sequences that let you take
into account more than a predetermined number of passes. Incerpi and Sedgewick
were able to construct sequences that allowed 0(Vlog N) previous passes to be
considered. The sequences are rather difficult to explain; see [Inc85] for details;

these sequences appear in the appendix.

Chazelle achieved the same upper bound by generalizing Pratt’s result. Pratt
showed that if the increments were of the form 2'3/, then each pass would require
linear work, so Shellsort would run in O(Nlog2N) time, as there are O(log®N)
increments. Chazelle extended this to increments of the form a’(a+1)/, where
each pass requires O(Na?) work. There are O(log,>N) increments. As we need
O(log N) increments, we choose a appropriately, and calculate the upper bound.
Chazelle’s arguments also use results for the Frobenius problem; more detail can

be found (as usual) in [InS83].

We also note that there is a third, easy to construct sequence that yields the
same lower bound. We know that for any c, there is a sequence that runs in time
O(NtVe+Dy hut that this bound is in reality exponential in ¢. If we rewrite the
upper bound to reflect this fact, then it is of the form O(a°N!*€*D) Now, if N
is known, what value of ¢ minimizes this bound? It is easy to solve for ¢, and one
obtains ¢ =0(/Tog,N). Thus, for any N, we choose this value of ¢ and can obtain
(as verified by substituting ¢ into the original bound) the same lower bound as

Chazelle and Incerpi and Sedgewick.
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2.4. Summary

Shellsort upper bounds have dropped significantly very quickly. Almost all
the proofs follow the same line of reasoning and involve taking advantage of large
common divisors when solving the Frobenius problem. This is similar to what
Pratt did to get an O(Nlog?N) sort, but is counter-intuitive in some sense because
the original increments used for Shellsort did poorly since they had common divi-
sors. Some of these sequences lead to others that outperform the commonly used
sequences in practice. For instance, Sedgewick’s bound leads to the increments 1,
5, 19, 41, 109, .. which is the merge of hy=4*—32*+1 and h,=94*-92k+1.
The major open question remaining is whether increments exist that make

Shellsort O(Nlog N). We shall address this question in the next two chapters.
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3. Inversions and The Inversion Conjecture

In Chapter 2, we showed how upper bounds for Shellsort were obtained for
various increment sequences. Pratt showed that for certain increments, the worst-
case upper bound obtained was actually achievable. It is natural to ask if the new
upper bounds are also tight. To do this, we need to analyze the Frobenius pattern
(sec 2.1.1) further. Thus in this chapter, we digress from Shellsort analysis per se,
and introduce the concept of inversions. We compute the number of inversions in
the Frobenius pattern for several sequences. In Chapter 4, we will see how this

relates to lower bounding Shellsort.

3.1. Inversions

First, we define what an inversion is:

Definition: Given a file of integers represented by x;,x9, - * - ,xy, an inversion is

any pair (x;,x;) such that i <j and x; >x;.

As an example, the file 3, 5, 1, 4, 2 has 6 inversions, namely (3,1), (3,2), (5,1),

(5,4), (5,2), and (4,2).

In the worst case, the file is in reverse order and there are (Ig)=0(N 2) inver-

sions. Only a sorted file has no inversions, and on average a file has N 2/4 inver-
sions. Note that exchanging two adjacent elements that are out of place removes
exactly one inversion so that insertion sort runs in time proportional to the
number of inversions. This is why it has quadratic worst and average case run-
ning time, but good running time for nearly sorted files (with few inversions).
Computationally, inversions can be counted in O(Nlog N) time. In the special case

that we will deal with where x; can take on only two values ( 0 or 1), it is easy to
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count inversions in linear time.

3.2. Inversions In The Frobenius Pattern

To lower bound Shellsort, it is necessary to count the number of inversions in
the Frobenius pattern of the increments used in the algorithm. We call this
number I(a,ay, - *,a;). We analyze this for several special cases to try and

understand what happens in the general case.

3.2.1. Two Elements (k=2)

This is the simplest case to analyze. The general technique is to write the

pattern with a, elements to a line. For instance, for 1(5, 7), we have

== = =]
ek k. O
[ B < I o [ o i e
[ =)
ok ket

The next line in the pattern would be all ones. We see that once there is a 1

in a column ¢, it remains forever. Moreover, a 1 enters a column c; only when it

a
is a multiple of a, (in this case 7). In general then, for the first l_i groups, there

ai

2(12

a
is only 1 one per line. For the next I——— :

a)

, there are 2 ones per line. We
a,

. . _ (k—Day| |k —2)a,|
can keep this pattern going up until we have that for -

T & |
there are £ —1 ones per line. Finally, we get a line with all ones, but this line
extends beyond the Frobenius pattern. For each set of lines with p ones per group
we can count p° { # of groups with p ones } - { number of zeros in all groups with
{p+1,p+2, ---,a;—1} ones }. If we sum this over p={1,2,..,a; —1}, we get a

lower bound on the number of inversions. In fact, the only inversions this count



- 20 -

misses are those within a particular group, but these are not significant so the

lower bound below is asymptotically tight. Thus

syl gy N ., @2
Iz% fl——nt (a,;—J)(a—)
1

i=10 %1 =g
a2 2(11_1 ﬂ.l—l 7
21— ¥ 4. Elac=1
31] ‘t=sy) el
a2 2(11—1 .Gl—i"
== ZP¥ &)
a1] i=1| j'=1
n b nk+1
Using 3 i* =06( ) throughout, we have
P X E+1

|

24,-1
Bal he. ”
g Haq,—i)?
a;l i=1
2-‘11‘1

5 l%algi—a1i2+12~i3

|

a1l i=1
022 a% Ei_+gi
aq 4 3 8
2 a%

24
(aiay)?

24
As g = O(a,as), we have I=Q(g?).

|

v

=

3.2.2. Arithmetic Sequences

This increment sequence has little to do with any practical Shellsort sequence,

but we investigate it because of the degenerate case that can arise from it.

We know that

gla,a +1)=0(a?)

and can show that

gla,a+1,a +2)=0(a?)

and in fact can seem to extend this on a computer for an arbitrary amount of
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terms. But we also know that

gla,a+l,a+2, ++,2a—1)=0(a)
is the sort of degenerate case that makes general proofs difficult, since
I{a,a+1,a+2, - -+ ,2a —1)=0. We seek to determine

gla,a +1,..;,a+{k —1)),a0d Hag *1,...a+{k—1))

so that we can perhaps gain some insight into why this sequence degenerates.

To get the values of g() and I(), we again look at the Frobenius pattern in

groups of a. In what follows, we fix &, and let a get large.

We have all 0s up to a —1. Numbers from a to a +(k —1) are representable,
and then all numbers up to 2a —1 are unrepresentable. Numbers from 2a to

2(a +(k —1)) are representable, and then numbers until 3a —1 are unrepresent-

able, etc. Continuing, we have that numbers from

a
k-1
2

¢ _(a+(k—1)=

r—1 ka 1 +a are representable. This is a consecutive numbers, so

we now can stop. This tells us that

a2

k-1

gla,a+1l, - - ,a+{k —1)=0( ).

Notice that for k£ =2, this gives the correct answer. Also, for the degenerate

case, this gives the correct answer that g=0(a).

To compute I, we take, for each set of ones, the product of the # of ones in the
set and the number of zeros that follow them. In this calculations, as in the others
of this section, the big-Oh notation is implied, and insignificant terms are liberally

tossed away. Thus,

a a

k-1 k-1
I= 3 lik-1) 3 a—(k-1)j

i=1 j=i
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since the number of zeros between the group of ones that start at pa is

=a—(p —1)k. Thus,

a
k1
a

I= i~ 1)~
2"1 l k-1

k—1
2

a
k-1

Ry =)
T
+21]

Taking dominating terms only,

e
I=k-1) 3

i=1

9.
2. .9 a’t k""]..3
a“t+tai 2k —1) 9 r,]

These sums are standard to do, and the result is

04

R i
24(k —1)
2
This implies that [ = £
24
In the degenerate case there are no sums to take so these asymptotic argu-

ments don’t work. In all other cases, the result for the number of inversions is

independent of k.

3.2.3. Hibbard’s Sequence

In this section, for @, =2* —1, we will compute I(a,a;+1, * ' ,ax). We need
really only compute I(ap,ap+i,' ' ,ass—1), since it is known that
g(ap,ap+1, " " ,a0-1) = aplap+1)—1>ag.

To do this calculation, we once again write hj elements to a line and estimate

the number of 1s per line. Below is the pattern for 2 =4 ( a,=15).
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-00000000000000
100000000000000
110000000000000
110000000000000
111100000000000
111100000000000
111110000000000
111110000000000
111111110000000
111111110000000
111111111000000
111111111000000
111111111110000
111111111110000
111111111111000
111111111111000

We place a - in position 0 because the pattern is easier to see with multiples

of h; on the left, instead of the right.

While writing down the exact number of 1s in line & is somewhat difficult due
to the slightly irregular distribution, it is clear (and easily proved) that the
number of 1s in line k is approximately k. In fact, since we are using big-Oh nota-
tion, we may just take the number to be k. Thus the number of ones in line & is k

and there are a; —k zeros. There are about a; lines, so

I= %|i§(ak—j)|

i=1|j=i

= % _L_(a ""i)2
i=12 *

ap
=4 % i3—2ak;'2+a§i]
i=1
4 4 4
a 2a a
1| 8k B, Ok

= +
14 3 2

Since g =ai, we have I=§—4, once again.
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2
It seems as though I is always 5—4, but what actually seems to be the case is

2
that I Z%Z when g=0(a,%). This is the case you get when you take almost

geometric a;, such as those sequences covered by Pratt. In fact, if you pick random

2
numbers and compute I and g (by computer), the ratio gT is always near 24 for

reasonably sized numbers. In the next case we examine, we see what happens

when we have g =0(a;*?).

3.2.4. Sedgewick’s Sequences

We look at two cases here. The first computes the number of inversions in the
Frobenius pattern of three consecutive increments as given by Sedgewick. The
second allows a whole string of consecutive Sedgewick increments much like the

previous section did with Hibbard’s increments.

3.2.4.1. 3 Increments

Sedgewick’s sequence 1, 8, 23, 77, 281, ... , a; =4-4%4+3-2+1 .. has the pro-
perty that g(as,a; +1,a; +2)=0(a;*'?). Thus in some sense, the 0Os and 1s are com-
pacted into closer patterns. Whereas in the previous sequences we expected to add
about a constant number of ones per group of a, elements ( for instance in
Hibbard’s sequence, =1 one was added per line ), we know that at least some line
in the Frobenius Pattern for Sedgewick’s increments must have at least O(a,''?)
elements as there are only O(a;'’?) lines in which to add O(a;) ones. Moreover,

there are no obvious patterns forming as in previous cases.

9

As we hope that I(ay,a;, +1,a; +2)=O(%), or at least still O(g?), we resort to

a computer to evaluate I and g for small values. The results follow:
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3 2 ga,”

ay g(a1:a21a’3) I(alaa2:03) ng 3/92 T
ai

8 153 1309 17.883 6.761 2.644

23 1055 40964 27.170 9.564 2.840

77 8251 1917790 35498 12.211 2.906

281 65651 105053186 41.027 13.937 2.943

1073 524515 6210219274 44300 14.923 2.968

4193 4194755 381754387994 46.092 15.449 2.983

16577 33555331 23940751076410 47.031 15.721 2,991

65921 268437251 1516648328239226 47.511 15.860 2.995

262913 2147480061 96570256514494714 47.754 15.929 2.997

)
From this data, it is very clear that I tends to % The value —5372— should
ai

asymptotically equal 16; the fact that the last column (apparently) converges to 3
quickly reinforces the denominator 48, as a simple calculation will show. This

leads to obvious speculation as to what the denominator is in general ( assuming

that I=0(g?2) ). More on that later.

In the mean time, we can prove that I(a;,aq,a 3)=0(g?) for three consecutive

increments of Sedgewick’s sequence. Unfortunately, the proof achieves 0(g?) with

a constant no where near 4_18’ but the evidence for % is so compelling that this

really doesn’t matter all that much. Further, an extension of this 0(g?) bound is
sufficient to show that Sedgewick’s O(N*/?) Shellsort bound is tight and we do this

in the next chapter. For now,
Theorem: If a; =4-4' +3-2:+1, I(a;,a; +1,8; +2) =0(g%(@;,a; +1,a; +2)).

Proof: We show that there are O(8') = 0(g(a;,a; +1,a; +2)) ones in the first 2° lines.
This implies at least an equal number of zeros in the last 2! lines, as there are
16°2 lines total (i.e. these ones are entirely in the first half of the pattern). Thus
there will be O(g?) inversions if we consider only these zeros and ones. (This will

be a gross underestimate).
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Now we have the increments:

a;= 44"+ 32'+1
ay =164+ 62 +1
a3;=644'+12:2'+1
Consider a 1 on line L =2°. It clearly must have the form
4L-4'+3M 2" +N.
Thus we only need estimate the cardinality of (L, M, N) for L =2°. Fix L, and sup-

pose some element in line L =pa, +qays+raz. Then

p+4q+16r=L (3.24.1a)
p+2q+ 4r=M (3.2.4.1b)
ptq+ r=N (3.2.4.1c)

Now, any (p, q, r) that satisfies (3.2.4.1a) yields a unique triple (L,M,N). To
see that, fix L, M and N. Then there are three independent equations in three
unknowns, hence a unique solution. So how many solutions, with non-negative

integers are there to (3.2.4.1a)? The equation

p+4q=L'

clearly has about LT solutions, so for each 0=r= TLé_ , there are

L-16r

solutions,

Thus (with big-Oh implied)

LI16 5 _
I(L,M,N) - L—16r
r=0 4
2 Lns
== - 34
64 r§0 '
Lt B
T 64 128
LZ
— 128,
. L2
Thus each line L =2* has about 128 ones. Thus there are
2 LZ Si

2 128 384
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ones in the first 2 lines, proving the theorem. []

It should be noted that only a small part of the pattern has been looked at to
establish this bound; this accounts for the absurd constant (especially absurd when

it is squared to get I).

3.2.4.2. Infinite Increments

Suppose we compute g(a;,a;+1, ' ,ax) and I(a;,@;+1, ** ' ,@,) as was done

with Hibbard’s sequence. Do we get the same asymptotic result?

If we proceed as before, we get

p+4q+16r+64s+256t+ - -+ =L
p+2q+ 4r+8s+ 16t+ - - - =M
pd¥ Fh gt it i =N

Suppose L =2', What is that maximum |(M,N)| ? Clearly, L=M =N =0 so

that |(M,N)| <L?2. Thus line 2 has at most 4’ ones by this bound. As a;=0(44),

it is clear that g(a;,a; 11, * * ' ,a.) =(8") (i.e. more than 2! lines of 4'4 elements).
Of course we know that gl(a;,a;4+1, ' *,0=)<g(a;,a;4+1,a;+2)=0(8') so that
g, ai+1, " ,a0) = O8) = O(g(a;*?)). Also, we have |(M,N)| =6(L?) for any

line L =2}, so the argument in section 3.2.4.1 holds and 1=01g*).

We present below the same table as in 3.4.2.1 for the case of arbitrarily many
consecutive increments from the Sedgewick sequence, that we have just discussed.
Unfortunately, this data doesn’t converge quite as fast, and calculations with

larger numbers seem beyond the computing power available.
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] a ala

a; glay,ag, )  Ilag,ag, ) % algsfz £ }
8 153 1309 17.883 6.761 2.644
23 1055 40964 27.170 9.564 2.840
(i} 8251 1917790 35498 12211 2.906
281 61458 88885244 42493 13.047 3.256
1073 432659 4147357900 45135 12.309 3.666
4193 3266443 239175467622 44610 12.030 3.708
16577 24590846 13438742458592 44997 11.521 3.905

The theoretical value of ——5372— is unknown, but a conjecture is that it
ai

32
approaches ——

3 OF 2/3 the value of the previous case. The proof above can be

extended to the case a8 +b4'+c¢2+d for constants

a,b,e,d. As
(20 —3)(2° 1 —3)(2: 72 —3) is of this form, we can show that I =0(g?) for this partic-
ular example of an O(N*?) Frobenius number. In fact this can be extended as in
Chapter 2 to continue to obtain I=0(g?), but in the case where the polynomial in
2/ is obtained by extending the multiplications as in section 2.3.3, the constant in
the denominator implied by the big-Oh notation can be exponential in ¢, This is
due to the proof technique which uses less and less of the Frobenius pattern
(always 2! even though the pattern gets longer). A more careful proof wouldn’t

suffer from this problem. Of course, this would only prove a result for the case

where the increments were polynomials in a'.

3.3. The Inversion Conjecture

We've seen that when g=0(a,?) we can prove for several cases and confirm
empirically that the number of inversions in the Frobenius Pattern (I) tends to

g

2
5% We've also seen that when g =0 (a;%2), I seems to tend to £—. What hap-

48

pens when g=0(a;"#)? Do we still have I=0(g?) with a small denominator

or does the denominator double every time we raise k? The answer from somewhat
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scant empirical data is that I tends to LZ i For instance, when g=0(a,"""), we

2
see that I is always at least 5—2 Unfortunately we can’t prove this result, so

instead we will offer some empirical evidence.

3.3.1. Empirical Results

For the case where g =0 (a;*"?), we have the sequence 1, 5, 65, 1885, 22997,
221123, 1921125, ... , a;=(21—3)(21*1 -3)(2°*? —3). We summarize the results

below. Unfortunately, the increments grow rather quickly and thus we are unable

to see the asymptotic growth of I.

a4

a glay,ag,a3ay) I(a,as,a3 a4) gI—
5 91983 528816016 15.999
65 2745423 342801348496 21.987
1885 56535103 129518018602656  24.677

We need to try other sets of increments that don’t grow quite as fast as the
ones above. Another set of increments that can be tried is ... , 24679, 50431,
102601, 202429, 383323, 734161, 1397923, 2717311, ... which is formed by multi-
plying together three consecutive terms of the sequence ... , 17, 23, 29, 37, 47, 59,
73, 89, 113, 139, 173, ... . The numbers in the latter sequence are primes spaced
out in multiples of 213, Thus the increments we test are O(2). This sequence

asymptotically has g=‘-(4+8'21"3+42"3)(ai‘l3)215.64a1“3. It also doesn’t quite

2
reach its asymptotic point either, but we still have [ = %
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I(a 2

a; glay,az,a3 ay) : l!a223:103,‘14) gI—
11339 4365835 201.024 44152
24679 11245075 1285.263 45814
50431 27742699 7554.051 47.444
102601 67399039 43775.560 48.322
202429 160662223 244705.081 49.119
383323 381971839 1373060.312 49481

A third set is

aq =8
as=8"+4'
ay=8'+4'+2'
a, =8 +4'+21+1
These obviously don’t make good increments for Shellsort since they are all
very close to 8°, but applying Johnson’s formula gives a good, small value for g.

Also, since ay =ai, these are a little easier to compute for larger a,. I converges

much faster for these arguments as the table below shows:

Z
i a glay,az,a3 ay) I(ay,a2,a3 a4) %_
1 8 33 51 21.352
2 64 683 12413 37.580
3 512 11703 2647750 51.727
4 4096 192239 605971900 60.986
5 32768 3111903 146161413176 66.255
6 262144 50065343 36292446477168 69.065
7 2097152 803192703 9148486063407840 70.516

2
When i =7, we have [(2097152,2113536,2113664,2113665) is very nearly %

Similar extensions are possible, using the sequences similar to the one above.
(Extensions to the other sequences don’t come close to converging. This isn’t

surprising since the other sequences weren’t converging well anyway.) If we take
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a; =16

ay=16"+8
a;=16'+8'+4
ay=16"+8"+4' +2
as=16'+8 +4' +2 +1

we get the following results:

p4
i ay glay,ag,a3a4as) Il(ay,az,a3ayas) gI—
1 16 97 343 27.431
2 256 3755 274877 51.295
3 4096 126391 227285702 70.284
4 65536 4124399 207072634300 82.148
5 1048576 133135327 199609919614008 88.798

2

We begin to see a convergence of I to g_ﬁ The extensions to £ =6 and 7 are

2

2
summarized below. The convergence to 3% and 5—45 isn’t quite as fast but it

seems implied. As a; grows exponentially, it is difficult to extend this further.

Nonetheless, the pattern seems very clear.

g”

i a; glay,az,a3ayas,ag) I(ay,a3,a3a4as5,a6) I

1 32 257 1935 34.133

2 1024 19115 5583037 65.445

3 32768 1273271 18231065286 88.926

4 1048576 82767599 66302953235900 103.320

g

i a, glay,ag9,a3aqas,aq,a7) Ila;,a9,a3a4as,a6,a7) i
1 64 641 9951 41.290
2 4096 92843 108074173 79.758
3 262144 12283319 1402432191174 107.584

3.3.2. The Conjecture

If we combine the results of the previous section, with the known lower

bounds for the Frobenius function, we can get a lower bound for the number of



-32.

inversions in the Frobenius pattern.

We know that

g(al,a2, R ,ak)zg(all+l/(k—l))

so the inversion conjecture becomes:

INVERSION CONJECTURE:

g(a]_,(lg, e !a‘k)2

I(alaa%'”’ak)zg( k—1

)

3.4. Summary

We have analyzed the number of inversions in the Frobenius pattern for

several useful (as we shall see later) cases. We conjecture that the number of

g2

k—~1

inversions in the pattern is at least € ) when there are k arguments to the

Frobenius function, based on some empirical evidence. This data is hard to come
by, since most patterns don’t converge to what we think is the theoretical value
fast enough. One pattern comes close and we use it to look at the number of inver-
sions for several values of k. In these cases, the last pattern we look at for a given

k begins to require a lot of computing power, so we can’t get much more data.

Proving the conjecture for the general case is difficult. One reason is that
there is at least one degenerate case for which this conjecture isn’t true ( a —1 con-
secutive numbers starting at a). On the other hand, we have strong evidence that
for the cases we are interested in, with k <<a, the conjecture is true because the
zeros and ones are well distributed. Data suggests that the pattern is always
nearly symmetric (sometimes entirely so) for all cases but the degenerate example
mentioned. We also seem to have a reasonable fraction of ones in the top half. If

there are k arguments behaving as the lower bound on the Frobenius function
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allows, then simulation suggests that 1 of every 2k elements in the top half is a

2
one. This in itself implies that I is at least O(%). Proving even this relaxation

seems hard, but it would be an important theoretical result, since for asymptotic

Shellsort analysis, the two forms are equivalent.
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4. Lower Bounds For Shellsort

In this chapter, we u.se the results of Chapter 3 to obtain lower bounds for
Shellsort using various increment sequences. We analyze the running time for
Shellsort on a particular permutation and obtain an Q(N*?) lower bound for
Shellsort using the original increments suggested by Sedgewick. Extending these
results, we can produce a lower bound that matches the upper bound for all the
increment sequences discussed in Chapter 2, providing that a weak form of the
Inversion Conjecture is true. We also provide a lower bound for any "geometric"
increment sequence that matches the best known upper bound for these types of

increment sequences.

4.1. Attempts At Bad Permutations

What does a bad permutation look like? For insertion sort, the algorithm
which Shellsort improves on, the worst case is a file in reverse order. For our
examples, we will take N =10, and the increments will be 5,3,1. If we run

Shellsort on this file, the results (13 exchanges total) aren’t nearly as bad as inser-

tion sort.
Original 10 9 8 7 6 5 4 3 2 1 exchanges
After 5-sort b- 4. 3 2722 #+10.9. 8 7 6 5
After 3-sort 2 1 3 5 4 7 6 8 10 9 4
After 1-sort 1 2 3 4 5 6 7 8 9 10 4

The reason Shellsort does well on this file is that this kind of permutation is
exactly the type Shellsort is meant to deal with. In its first pass, it puts all the big
elements on the right and all the small elements on the left; after that the file is
nearly sorted. An obvious strategy then is to try to neutralize the first pass. Our

second attempt is to put large numbers 5 apart. Thus the first pass still makes 5
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exchanges but now the file is not nearly as sorted as in the first example.

Original 10 8 6 4 2 BT g 3 1 exchanges
After 5-sort 8. T & .8 153500 8 8 4 2 5
After 3-sort 2 1 -4 .3:8 Gl LT 10 9 9
After 1-sort 1 2 3 4 5 - S SR 9 10 5

This strategy clearly increases the work Shellsort must do (19 exchanges).
The result here is that the 3-sort does most of the sorting; the file is nearly sorted

when the 1-sort comes around.

The final strategy is to make both the 5 and 3 sort do work, but not allow
them to nearly sort the file and let the 1-sort have an easy time. Thus the 1-sort
does a lot of work; more than twice the work than in the previous examples, thus

22 exchanges total.

Original 10 4 3 9 2 8 7 1 6 5 exchanges
After 5-sort 8 4 1 6 2 10 7 3 9 5 3
After 3-sort 5 2 1 6 3 9 7 4 10 8 7
After 1-sort 1 2 3 4 5 6 7 8 9 10 12

Actually, switching the 4 & 7 and the 6 & 9 in the last permutation gives 2
more exchanges, but it turns out that this doesn’t matter asymptotically. The
obvious trick in here is that elements a distance 3 or 5 from a large element are
also large. An extension to this type of permutation will be what we use to lower

bound Shellsort.

4.2. Correlation To The Frobenius Pattern

The permutation above has a connection to the Frobenius problem. To see
this, let’s divide the numbers 1—10 into big and little numbers. It happens in this
case that little is 1—4 and big is 5—10. If we call a big number a 1 and a little

number a 0, then the permutation is
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Notice that in the world of big and little numbers, nothing has happened. After

the 3-sort, we have

There is still no change in the 0-1 pattern. Of course after the 1-sort we have

4 5 6 7 8 9 10
0o 6 0 6 1 1 1 1 1 1

i
Do
o

and we see that the 0-1 pattern is moved quite a bit, indicating that a lot of

exchanges were required.

A careful look at the (original) 0-1 pattern shows that it is the Frobenius Pat-
tern for g(3,5) with a 1 prepended at the start (in position 0) and some ones at the
end (because g(3,5)=7, not 9). In fact, this is how the permutation is formed: The
Frobenius Pattern with leading 1 is written, along with as many trailing Os as are
needed. Going from left to right, large numbers are assigned in decreasing order
as 1s are encountered in the pattern. At the end, we go back from right to left
assigning small numbers in increasing order as Os are encountered. We will gen-
eralize this in the next section to form more general permutations. We will also
now deal exclusively with 0-1 permutations., We will show later that this is
linear-time equivalent to the general case, thus justifying this simplifying

approach.
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4.3, Definitions and Lemmas

In this section we will define our permutations more formally and prove two

simple lemmas that enable us to lower-bound Shellsort.

Once again, suppose our increment sequence is hj,,h,_q, '+ *,h; =1, and our

permutation has N elements to sort. Our bad permutation will be P (k), defined as

follows:
Definition: P(k)=agajas - - ay_; such that a;=1 iff a; is representable as a
linear combination in non-negative integer coefficients of h; 1), Ay~ —9), = * " ,he

and 0 otherwise.

Thus, P(k) is the Frobenius Pattern, with a 1 prepended at the start and trailing
1s added if necessary, of the k largest increments. With the increments 1,2,3,5
and N =8, we have P(1)=10000100, P(2)=10010110, P(3)=10111111. It is clear
that P(3) is not a bad permutation while P(1) and P(2) have some disorder in
them. That P(3) is ordered is not surprising since g(2,3,5)=1, so there are many
trailing  1s. It is important then to choose k so that

8hi—x-1,hi— -2, ,h)=N.

We now prove two simple but important lemmas.

Lemma 3: For the permutations P(k), no exchanges are performed by Shellsort for

the increments hhht—la v )ht—(k—l)'

Proof: Trivially obvious because for any hy such that ¢t —(k —1)<t'<¢, if a,=1

then a, +,, must also equal 1, so the lemma follows. []

Lemma 3 tells us that no exchanges can be performed in the early passes of
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Shellsort. Thus all the exchanges are performed by the smaller passes. The next

lemma tells us how many inversions these exchanges can remove.

Lemma 4 (The Swapping Lemma): Swapping a 0 and 1 a distance d apart in a

0-1 permutation removes exactly d inversions.

Proof: Consider an element between the 0 and 1 before the swap:

1. .80

If e =0, one inversion is removed because the ¢ and the first element (1 before
the swap, 0 after) will no longer be inverted after the swap. Similarly, if e=1,
then one inversion is removed because e and the last element will no longer be
inverted. There are d —1 elements of this type. This plus the inversion that is
removed by actually swapping the 0 and 1 accounts for a total of d inversions.
This is all there can be since none of the elements to the left of the 1 or right of

the 0 will be "uninverted". []

4.4. Proofs of Lower Bounds For Known Increment Sequences

We are now ready to lower-bound Shellsort’s running time for various incre-
ment sequences. Our strategy will be to use a permutation, P(k), where k& is
dependent on the increment sequence. Our measurement of time will be the

number of exchanges needed to complete the sort.

The method of attack is illustrated by bounding the running time for
Hibbard’s increments. Of course Pratt showed sometime ago that this lower bound
is Q(N?32), but our method is simpler and easier to extend, because our permuta-

tions are simpler.



-39.

4.4.1. Hibbard’s Increments

Theorem: The running time for Shellsort is O(N?2) for the increments 1, 3, 7, ...,

261, ...

Proof: We have already shown the upper bound in sec. 2.3.1, thus we need only

prove the lower bound.

We have h;=2'—1, so we choose N to be of the form h;(h;+1) for any i. We
analyze the running time for the permutation P(k) of size N, where in this case we

choose k=1.

Now, the largest increment less than N is hgy _y, so P(k) consists of all
integers represented as a linear combination with non-negative integer coefficients
of hj,h; 1, ** ,hai 1. We use the fact that g(h;,h; 41, *** ,hei—1) = hi(h;+1)—1
to conclude that our permutation is exactly the Frobenius pattern with a one
prepended. Thus we know that there are O (N %) inversions, since N =g and we
have proven that the Inversion Conjecture is true for this case. We also know, by
Lemma 3, that after the h;-sort there are still O(N?) inversions since the
hoi—1 hoi —g, -+ * ,hi-sorts do not affect the permutation. Moreover, by the swap-
ping lemma, all subsequent exchanges remove at most O(h;_;) inversions, since
this becomes the largest distance that any two elements can be exchanged. Thus

we have a lower bound on the number of exchanges, and hence the running time:

T=Q

N2
hi -1
h; _1 is easy to estimate. We have

h;_1=0(h;)=0N2),

hence,

T ZQ(NS"g)
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and thus

T=0WN¥%)[]

If we are concerned with permutations of the integers 1 - N, it is easy to
show that this bound still holds if we assign integers as suggested earlier in this

chapter.

We know that when we come to h; _;-sort, we have at least as many permuta-
tions in the 1..N permutation as in the 0-1 permutation, since every inversion in
the 0-1 permutation corresponds to an inversion in the 1..N permutation. Now,
when exchanging elements d apart in the 0-1 permutation we remove exactly d
inversions. In the 1..N permutation we remove between 1 and 2d —1 inversions,
but still O(d). Thus the key step (the division between total inversions and max-
imum inversions removed in an exchange) is the same. Thus we may use 0-1 per-
mutations instead of permutations over the integers 1..N in all applications of this

proof technique. Thus, all future proofs involve only zeros and ones.

Pratt used the same ideas in obtaining his lower bound. His permutations are
also h;, h;+1, ... , hoj_1-sorted. However, his permutations are far more compli-

cated and very difficult to generate by hand. Moreover, the constant implied in

, .1 " ey
Pratt’s lower bound is 128" while our constant is Th

4.4.2, Sedgewick’s Increments

If we apply the same techniques, we can get a tight lower bound for Shellsort

using the original increments suggested by Sedgewick. We have

Theorem: The running time for Shellsort is O(V 4/3) for the increments 1, 8, 23,

77, ..., 44 +3-21+1,
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Proof: We have already shown the upper bound in sec. 2.3.2, thus again we need

only prove the lower bound.

We have h;=44'+32'+1, and we choose N to be of the form
g(hi,hit1,  +* ,hs) for any h;. We will analyze the running time for the permuta-
tion P(k) where k is the number of increments at least as large as h; and smaller
than N. As an example, if Ah;=23, we Thave (sec. 3.24.2)
2(23,77,281,1073, - - - )=1055, so we take N =1056, h;=23 and k =3 and use the

permutation P(3). Again, our permutation is exactly the Frobenius Pattern with a

2

one prepended. Thus we start with (asymptotically) % = O(N?) inversions.

After the h;-sort we still have O(N?) inversions, since no exchanges have taken

place. Now, all subsequent exchanges remove at most O(h; _;) inversions, hence
NZ
hi -

as before. The difference is the size of h; ;. We have

T =Q )

hi _1=0h;)

and
g (hihi 1,42, )=0(h3*)=N

so that

h; =0(N?3),
Hence,

TEQ(N‘HS)

and thus,

T=6(N*3

Below, we show some statistics for Shellsort at the values of N used in the

above proof (The permutations are over the integers 1..N). Nonexchanging
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comparisons are a function of the increment sequence used, not the permutation.
They are a lower bound for Shellsort’s running time (for instance when the input is
already sorted) and are O(Nlog N). The random file is just that -- one random file.
Previous studies show that there is not much gained by taking a lot of samples for

each permutation size.

N Non-exch. Comparisons Exch. for random file  Exch. using P(k)
154 507 1078 3662
1056 4890 11006 28739
8252 52108 134073 427644
61459 469439 1343998 5998465
432660 3975533 12218514 77273940

We see that our permutations take considerably longer to sort than average

permutations, and that exchanges dominate the running time.

We've shown that for the increments invented by Sedgewick, we can construct
bad permutations that make Shellsort take O(N*?) time. On the other hand,
we've only shown this for a few values of N. For N <1000000, we only have
shown the 5 bad permutations above. It would be nice (but not necessary for the

theoretical result) to show that for any N we can construct a permutation that

takes time O(N*3).

Formally, suppose

Ni=ghj,hit1,  +* Jha)+1
Ny=g(hit1,his2, """ ,has)+1
and
N,;=N=N,

Thus we are between values of the Frobenius function so we don’t know which one
to use. If N=N,, it makes sense to just choose k to include A;, and use the permu-

tation P(k) which will include the Frobenius pattern with a prepended one and
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some (N—N;—1) ones. This shouldn’t be too drastic and shouldn’t affect the
asymptotic running time if Ny =0 (N). If N=N,, then we choose k to not include
h;, but start at h; .;. Then we will have an incomplete Frobenius pattern, but if
Ny=0(N) it will only be missing mostly ones at the end, and the result won’t be

drastic.

What if N is really between N; and N and not O(N ) or O(N3)? Can we
still use the permutation and get a tight lower bound? The answer is yes and the
method is simple. Choose k to not include h;, but start at h; ., as in the case
where N=0(N,). However, the trick (and it can and should be applied to the case
N =0(N3)) is to use the middle N elements of the Frobenius pattern instead of the
first N. Intuitively this is because the middle of the Frobenius pattern is more
"scrambled", with a greater inversion density than the Frobenius pattern in gen-
eral. The Frobenius pattern starts out with mostly zeros and ends with mostly
ones hence the ends don’t add many inversions relative to the added length they

contribute to the pattern.

Proving that there are O(N?) inversions in this case for Sedgewick’s incre-
ments is trivial since the general proof looked at only the first few and last few
lines and not the whole file. As lines closer to the middle of the file from above
have more ones than lines on the top, and lines closer to the middle of the file from
the bottom have more zeros than lines on the bottom, we are guaranteed to find
enough inversions. Proving this in the general case seems to be as hard as prov-
ing the Inversion Conjecture, but we know that for this and similar cases the

theorems we prove are not for just a few scant values of N.
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4.4.3. Extension to Incerpi and Sedgewick’s Increments

Let's look closely at how the lower and upper bounds for Shellsort were
obtained for Hibbard’s and Sedgewick’s increments, and extend this for the

sequences invented by Incerpi and Sedgewick.

Suppose we have increments chosen so that g(h;,h;+q, L hive-1) =
O(h;'T1€ =)y  Thus, in Hibbard’s case we have ¢ =2 and in Sedgewick’s case we

have ¢ =3.

In Hibbard’s case we have

g(hi,h;+1)=2h?

and

g(hi7hi+1: e :hm)zh’?‘

In Sedgewick’s case we have

g(hi,hi +1,hi +2)=16R%?

and

g(hhhi+la e ,hw)zph:igm:
where p seems to be 32/3 or 2/3 of 16. What appears to happen in general is that if

ks, < hisip =i =0 e~ 1)
then

ghihivy, - ho)=0(h1T1/C—D)

also. This certainly isn’t a major surprise, since it takes a lot of care to lower the
asymptotic growth of g and thus one wouldn’t expect a smaller value than planned.
The other fact we will use is the Inversion Conjecture. If we assume it is true,

then if

g(h'iahi+17 S ,hi—{c—1}):O(hi1+1f(c"1)),
then
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Ihihi 11, * * ha) =O(—h 1+ D),
c—1
Now, lets look at the upper and lower bounds for these sequences using these

assumptions if we tailor ¢ consecutive increments so that the Frobenius number is

asymptotically minimal. This is because we have

ghi 11,k 2, kit ) =0 R
Thus,
(h,h y T Jh_ o= )
g\, N +1 = i+(c—1) ZO(hiU(C_l)),
1A
and as in sec. 2.3,
2
T< E Nh%/(c_l)'i" 2 -IV—
hy<NE-Vle ON'c-Viey<ph, <O(N) hi
1+1/c

Both sums are geometric with largest term O(N' )), hence this is the sum also.

For the lower bound, we choose N to be of the form g(h;,h; +1, " " ,h)+1 for

any h;. As before,

N2
=0

S P
Now,

hi -1 =0(h)
and

g(hi,hi+1: L )hm):O(hi(l-*—U(C_l)):N

S0

h; ZO(N([C —l)fc)) and

hence T=Q(N1*1/9) Thus in these case,
T =N 1+1/e)
The upper bounds of sec 2.3.3, namely O(N1*/+1)) fa]l into this case. (In
these bounds ¢ refers to the number of multiplicands, which is one less than the

number of consecutive increments taken into account by the Frobenius function.
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Hence the slight difference in the exponent. Thus, h;=(2'—3)(2'*! —3) has two

multiplicands while the Frobenius function for three arguments is used to bound.)

This tight bound also applies to the O(N1*¢/YI6 ¥y sequences of Incerpi and
Sedgewick since they in effect use the Frobenius function for 0(Vlog N) incre-
ments. It should be noted that this bound assumes the Inversion Conjecture and
also assumes that adding the extra arguments to the Frobenius function doesn’t
asymptotically alter the value of g. For this increment sequence, we show statis-

tics for this permutation as compared to a random ordering.

N Non-exch. Comparisons  Exch. for random file = Exch. using P(k)
134 733 577 886
1734 15656 13322 44424
3142 31008 28118 111176
4022 40688 35732 149998
67382 948383 938215 6156640
128582 1929067 1964555 18397296
182438 2844619 2925135 28408082
216098 3416839 3577776 33461851

The values of N in the above table do not grow at a smooth rate. Instead,
they hover near a value and then jump sharply. This is because the of the way the

increment sequence is chosen -- many of the increments are multiples of each

other.

4,44, Chazelle’s Increments

The increment sequence suggested by Chazelle doesn’t quite fall into the class
above, so we prove the lower bound separately. Again we assume the Inversion
Conjecture. Now, the increments are of the form a'(a+1). Let hy=a* for some k,

and suppose hp =a*Tl,

Consider g(hy,hp+1, """ ,he). It is clear that
glhy,hp +1, " - ,ha) = g(hy,hp 41, ,hp—1) since all larger increments are

merely multiples of either h;, hy 41, -+, or hy_;. Now there are at most k



o 17

].Og hk
increments between h, and hy inclusive, and since i = , we have
g a
B e hl)f[l )
0
g(hk:hk+1) R Jhm)ao(h’k Sk . )

Again, hy, _; =0(h;), and we solve for h,. Big-Oh notation is implied,

loga
+logh; ' ~
h'k loga+logh =N

For constant a, this eventually implies

hk = E
a
Thus, since by the Inversion Conjecture
2
T=0-Y—)
hy -1
we have
T=Na.

Now, as we want O(log N) increments instead of O(log®N), Chazelle chose a such

that

log’N _ log N
loga a'

or,
a=0(NValRiy

This yields

TEQ(Nl"'V“'““g N)
29(N1+£IV10gN)

for e=Va'. Again this result assumes the Inversion Conjecture. One note: The
functional form of the lower bound matches the upper bound, although given o,

the value of € in the lower bound is half that of the upper bound.
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4.5. Lower Bounds For General Increment Sequences

We have shown that all of the analyzed upper bounds for Shellsort are prob-
ably tight and thus clever analysis won't help lower them further. Thus, if we
want to get better bounds, new increment sequences will have to be invented. We
now discuss the kinds of increment sequences that might be tried. These

sequences fall into two categories: uniform and non-uniform.

A uniform sequence is an infinite sequence of increments that is cut off when
the size of the increments becomes larger than the permutation size. Thus,
Hibbard’s, Sedgewick’s and Incerpi and Sedgewick’s sequences are uniform, as is
Pratt’s 2°3/ sequence. Non-uniform sequences are allowed to choose increments
based on the permutation size, N. Examples are Shell’s original sequence,

7 ?

Chazelle’s sequence and a sequence due to Gonnet [Gon84] |N a],[[N ala

with a=5/11. Uniform sequences have been studied more heavily because non-
uniform sequences can have bad behavior for certain file sizes, N, unless designed
carefully. Moreover, the current state of affairs is that uniform and non-uniform

sequences are asymptotically equivalent in the worst case.

All increment sequences used or bounded have h;<hy< - - <h,. Moreover,
almost all sequences have O(log N) increments with the hope of obtaining an
O(Nlog N) sort, and because this performs better in practice. For uniform incre-
ment sequences, this has the effect that all sequences of this type studied have

been "almost geometric". That is, the increments are of the form O(a’).

Our next theorem shows that this is probably a hopeless attack on finding an

O(Nlog N) Shellsort.

Theorem: (If the Inversion Conjecture is true,) the running time for Shellsort is



- 49 -

QN1te/VIg Ny (with e=VTog a) for increments that are O(a’).

Proof: We choose N to be of the form g(h;,h;+1, " ,he)+1 for any h;. We form
the permutation P (k) and solve for the minimum value of k by using two facts.

First, since the increments are geometric,

N
h;=0(—)
a
Also, by the lower bound for the Frobenius function,

hi1+1/(k =1) =N.

Combining these equations,

Nk/(k =1)

_._._2—2
ak /(B —1)

And thus we can solve for k:

k=Q(+/Tog, N)
by plugging the first equation into the second. Now,
hi-1=0(h)=0(- ) SOW' VP& )
where we have used the equality
a\/l(:ig‘Jt N =N\/logN a .
Now, if the Inversion Conjecture is assumed, we may use the bound

2

T2

)

which yields

TEQ(NI-H':/Vlog N)

for e=Vlog a, since it is easily verified that the value of k is asymptotically unim-

portant. []
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4.6. Strength of Assumptions For The General Lower Bound

We now look more closely at the assumptions made to prove the lower bound

of the previous section.

4.6.1. Inversion Conjecture

The first assumption is the Inversion Conjecture, which says that the number

2

of inversions is O(—%—). Clearly if the N? part of the conjecture is untrue, the

2 2
proof falls through, but what if the correct form is really O(%) or 0(%) for

some p? Let’s use this form in the proof and see how large p can grow without

affecting the result. We have

k=0(y/Tog, N)

and we need to make sure that

kP <N
Thus
1
plogk < Elog N
or
& log N
klog k

Since k =Q(Vlog N), it follows that log N=0(k?). Thus, we need

L
log k™

2 2
2 ) 29(%—) inversions, the proof

p<O(

Hence, as long as there are more than Q(W
will go through. This means any constant power of & can be in the denominator;

2
Sscbally. ik 1=9(%), the proof is still valid. This is important since it seems

that this value of I might be somewhat easier to prove. This weaker form of the
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Inversion Conjecture is also valid for the other O(N'T¢/ VI8 Ny sequences of Incerpi

and Sedgewick. In the other proofs, £ is a constant throughout, so as long as

I=0(N?), the proofs work.

4.6.2, Increment Sequences

The other item of interest is to see how reasonable it is to assume that the
increments are geometric and what ways there might be to get around the lower

bound and produce a sequence that yields an O(Nlog N) Shellsort.

As we have noted already, virtually all O(log N) sequences studied satisfy
h;=0(a’). The notable exception is Chazelle’s sequence with increments 23/,
Now, it seems that uniform O(log N) sequences have to be of the general form
assumed although there may be ways to get around this. One way is to use a stan-
dard sequence but stick in some small (or mid-sized) increments as early passes, or
jumble the increments so that the h;-sorts are not necessarily in decreasing values
of h;. Thus instead of 255, 127, 63, 31, 15, 7, 3, 1 doing 15, (225 is useless), 127,
63, 31, 7, 3, 1 would bring the Frobenius number down to a small value quickly,
and imply a large value of h; (and hence a weaker lower bound). Thus the lower
bound arguments wouldn’t work as written. It is easy to do another argument for
this case, however, by just choosing a permutation that makes the 15-sort take
quadratic time immediately. Thus, the strategy of mixing up the increments will
bypass the original proof, but then a slight modification of the ideas used in the

proof will reestablish the bound.

With this in mind, it may be the case that the condition that the increments
be of the form O(a’) is too strong. What might suffice would be "O(log N) uniform
increment sequence"(a far stronger statement, although it doesn’t include non-

uniform geometric sequences -- this can be added), since it seems difficult to invent
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a sequence of this type that bypasses the original version of the proof and slight
modifications also. Moreover, it seems almost impossible that even if this type of

sequence could be invented, it could be shown to make Shellsort run in O(Nlog N).

The non-uniform case is slightly different because Chazelle’s sequence is
O(log N) increments that are not O(a‘). It is easy to invent non-uniform O(log N)
sequences that are not geometric, and it is certainly possible to invent very reason-
able sequences for which the lower bound proof won't work. These still can’t be
geometric or "scrambled geometric", etc. Another idea is to put a big gap in the
increment sequence at O(N !¢/ Vig Ny in the hope of forcing the Frobenius number
way down, but this doesn’t work. The counter-strétegy is to use all the increments
larger than O(N'~¢/VI6¥) t5 form the pattern, and use the middle of the pattern
as the permutation. This guarantees O(N?) inversions (with an appropriate

denominator that is insignificant) and h; <N!7¢V1%6 ¥ hence the required bound.

Since non-uniform sequences have never been asymptotically better in the
worst case than uniform sequences, it is easy to speculate that an O(Nlog N)
Shellsort with non-uniform increments implies one for uniform increments. The

latter seems unlikely.

4.7. Summary

For all increment sequences previously analyzed, we have shown that the
upper bounds derived for Shellsort are almost certainly tight. For Sedgewick’s
sequence and some of the sequences that yield O(N'*¢) Shellsorts, this is proved;
in other cases the proof is conditional on a very weak form of the Inversion Conjec-
ture that essentially requires a quadratic number of inversions, but allows the
number of inversions to drop dramatically as more arguments are added to the

Frobenius function.
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If we assume the weak form of the Inversion Conjecture, we can then prove a
very general theorem that shows that the sequences of Incerpi and Sedgewick that
yield O(W*¢/VIs ¥) ypper bounds are the best O(log N) sequence possible if we
use "almost geometric" increment sequences. More importantly, this makes the
prospect of an O(Nlog N) Shellsort very dim. This is because it would follow that
the only hope would be a non-uniform increment sequence that didn’t have incre-
ments of the form O(a’). On the other hand, it seems that if this bound were
attainable for non-uniform sequences, it would be attainable for uniform sequences

as well, thus making it highly unlikely that this will work.
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5. Shellsort Variations - Shaker Sort

In this chapter we discuss a variant of Shellsort invented by Incerpi and
Sedgewick [Inc85] known as Shaker-sort. Shaker-sort uses an increment sequence
like Shellsort, but fixes the work done in each pass to be linear. At the end of the
algorithm there is an insertion sort mop-up to finish the sort. If an O(log N) incre-
ment sequence is used and the mop-up requires less than O(Nlog N) time, then
this algorithm runs in O(Nlog N). Incerpi tried various increment sequences on
random permutations and found that for some sequences the mop up time was
always zero (empirically). This led to the conjecture that Shaker-sort was
O(Nlog N) for certain increment sequences. Moreover, Shaker-sort is easily con-
verted into a network sorter. Finding a practical network sorter with O(Nlog N)

boxes is a major open problem.

5.1. Network Sorting

In network sorting, we have comparators that take as input two numbers and
output them in sorted order. Outputs from comparators can be connected to more
comparators, but nothing else is allowed. It is not possible to tell for instance if a
comparator has actually switched the elements it compared or not. Moreover, the
placement of the comparators is fixed; at the start of the algorithm. This can be
viewed as general sorting on a real computer that uses the following rules: 1) The
permutation is stored x,,xg, - -+ at all times, 2) The only operation allowed is to
compare and exchange if necessary x; and x;, and 3) The set of such (i, ) is fixed at

the start of the algorithm.

Efficient networks are known for small N, but for large N network sorting
seems intrinsically harder then general sorting. Floyd [Knu73] showed that net-

work merging of two sorted lists is Q(Nlog N), while in general merging can be
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done in O(N), hence divide and conquer strategies can yield at best O(Nlog®N).
Recently, the asymptotic result for network sorting has been lowered to O(Nlog N)

[AKS83]. Unfortunately, the constant implied by the big-Oh notation is large; the

ek

best known practical networks run in g

Nlog®N time. Based on empirical evi-

dence Shaker-sort seems to have the potential to be a practical O(Nlog N) network

sort, and the recent results of [AKS83] suggest that a simple O(Nlog N) network

sort exists.

5.2, The Shaker-Sort Algorithm

Shaker-sort works by performing k-shakes on a permutation; hence we define
a k-shake. A k-shake is analogous to a k-sort, except that a k-shake doesn’t neces-
sarily k-sort. In fact, it generally doesn’t k-sort unless it starts with a nearly k-
sorted file. Algorithmically, a k-shake goes left to right comparing (and exchang-
ing if necessary) x; and x; ;. After this is done, it goes right to left comparing x;

and x; _;. Thus the time to take a k-shake is roughly 2N.

Shaker-sort works by using an increment sequence h;,h,_;, - ,hy=1 and
doing an h,-shake, h,_;-shake, ... , 1-shake. As the file is not guaranteed to be
sorted, we continue using 1-shakes. On a general computer, we use as many 1-
shakes as required to sort the particular permutation. In a network, we have to
use as many l-shakes as required in the worst case. If the increment sequence is
O(log N) in size, and O(log N) 1-shakes guarantee a sort, then the algorithm runs

in O(Nlog N).

5.3. Empirical Evidence For Shaker-Sort

Incerpi ran tests for various increment sequences and was able to eliminate

her new increment sequences from being possible candidates. These sequences



- 56 -

worked for Shellsort because increment sequences with large common divisors in
general work by ensuring that an element can’t mover far during an insertion sort.
Since only two comparisons are made for a particular element per pass, this condi-
tion is already ensured and the fact that these increments are not relatively prime

makes them bad. The best sequences for an O(Nlog N) sort seem to be of the form

Iai]. For increments of this type, Incerpi ran 10 permutations per file size per

increment sequence to estimate the number of mop-up 1-shakes. Some of the

results are below:

o 5000 10000 20000 40000
141 0
1.5 1
1.6 0
: 4 0
1.8 2
1.9 3

NMNOOoONO

DO O -
WO o=

Other tests were performed relating to how many inversions were present
after each pass. Further tests compared Shaker-sort’s running time on a real com-

puter to other sorting methods; the interested reader can consult [Inc85]. The
important item is that for the increments of the form [1.71, after millions of runs
for various file sizes, no permutation was found to require any mop-up work.

Our own tests have confirmed that for N <32, Shaker-sort always sorts using
this increment sequence. In fact, for N=<11, the sequence { 1, 2, 3 } suffices, for

N=23,1{1,2, 3,5} suffices, and for N <at least 32, {1, 2, 3, 5, 9 } suffices.

5.4. Lower-Bounding Shaker-sort

We will use techniques similar to those used to lower bound Shellsort to show

that Shaker-sort is not O(Nlog N) for any of the increment sequences suggested.
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In testing network sorters, we can use 0-1 permutations in the same way we

used to bound Shellsort. In fact we have the famous theorem:

Theorem (0-1 Principle): If a network with N input lines sorts all 2" sequences of
0’s and 1’s into non-decreasing order, it will sort any arbitrary sequence of N

numbers into non-decreasing order.

Proof: See Knuth [Knu73].

Thus we will only consider 0-1 permutations, and we will use the exact same
permutations to lower bound Shaker-sort as we did to lower bound Shellsort. We
now prove an easy lemma that will enable us to count how many inversions

Shaker-sort can remove from the permutation in each pass.

Lemma 5: A k-shake removes at most kN inversions from a permutation of size N.

Proof: For 0-1 permutations it is easily observed that a 1-shake merely swaps the
left-most 1 with the rightmost 0. For a k-shake, in each of the k subfiles, the left-
most 1 is swapped with the rightmost 0. For each of these k swaps possible, at
most N inversions can be removed because that is as far apart as two elements can

be in a file of size N. Hence at most kN inversions can be removed. []

For the permutations that have been used to bound Shellsort, Lemma 5 shows
that Shaker-sort will have problems. We know that we will start out with O(N +)
inversions, and that Shaker-sort will not be able to remove this with the early
shakes. It will thus have to rely on the later k-shakes which can’t remove as many
inversions, since k is smaller. If the Frobenius number of the increments is O(N°),
then the first shake that can actually swap elements is O(N'/°), and the total

amount of inversions that all the shakes smaller than this can remove is
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O(N'*t1¢). Since there are O(N?) inversions to start with, when it comes to mop-
up, there will still be O(N?) inversions. This means Shaker-sort will be doomed
because the mop-up phase consists entirely of 1-shakes that can remove only a
linear amount of inversions per shake. Since only a few increment sequences (the
ones that are simple) seem to work well empirically for Shaker-sort anyway, rather
than prove the above more formally, we show in the next section what happens to
Shaker-sort when presented with the permutations that we expect to make it run

slow.

5.5. Empirical Evidence Against Shaker-Sort

The easiest test to run on Shaker-sort is the test Incerpi ran -- try random
files. If we start running Shaker-sort on files larger than Incerpi’s, we can get
examples where one extra mop-up l-shake is required. For permutations of size
N =250000, this happens about once every 75 tries (the sample space here is
small). Of course, we are allowed O(log N) mop-up passes, so this still isn’t bad.
However, the algorithm’s running time deteriorates when we use the specific per-

mutations that we expect Shaker-sort to die on.

Using the I1.7 il increment sequence throughout this discussion, we start by

trying to find the smallest permutation that requires mop-up time. We know that
this permutation has at least 32 elements, since an exhaustive search has been
run. This should not be taken too positively, however, because the number of com-
parisons used to sort 32 elements is quite high. It turns out that the following per-

mutation of 57 elements requires a mop-up pass:

57, 30, 18, 34, 29, 17, 33, 28, 16, 56, 27, 15, 32, 26, 14, 55, 25, 13, 54, 24, 12, 31, 23,

11, 53, 52, 10, 51, 22, 9, 50, 21, 8, 49, 48, 7, 47, 20, 6, 46, 45, 5, 44, 43, 4, 42, 19, 3,
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41, 40, 39, 38, 37, 2, 36, 35, 1

If the permutation is written in 0-1 form, it can be seen as the start of the Fro-
benius pattern of { 9, 15, 25, 42 }. We can try extending this to get more mop-up

passes.

Next, we run Shaker-sort on the 0-1 permutations that we have already dis-

cussed. The results are summarized below:

N Mop-up 1-shakes
71 1
189 9
284 3
1026 62
1430 61
2988 83
8749 564
15580 878
27093 1293
49974 2299
96626 4286
184706 8233
417449 23473
734702 35956
1360732 63522
2480239 114561

We see very clearly that Shaker-sort isn’t going to run in O(Nlog N) for these
increments. One idea to try would be to put an extra k-shake near the start,
where k is small. This would make it impossible to generate a long Frobenius pat-
tern, and hence our permutation. Since, unlike Shellsort, we are guaranteed to
only do linear work per pass, we can freely duplicate k-shakes and mix them up in
any manner we want without worrying about counter-strategies that force all the
work on a small early pass. Actually, it is hard to come up with a sound analytical
reason why this idea wouldn’t work, so we resort to simulation. What we have

done is run Shaker-sort twice, and then do the mop-up. Thus, to sort N =32, the
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increments are in effect 25, 15, 9, 5, 3, 2, 1, 25, 15, 9, 5, 3, 2, 1, and as many more

1-shakes as needed. The results are summarized below.

N Mop-up 1-shakes
71 0
189 0
284 0
1026 2
1430 0
2988 0
8749 277
15580 392
27093 483
49974 888
96626 1878
184706 4140
417449 16516
734702 24142
1360732 43425
2480239 80400

The extra run through Shaker-sort doesn’t help much at all. Of course, we
have duplicated shakes in the second pass. This might not be the best thing to do.
What would happen if the second pass was slightly different from the first? One
easy variant to try is using (k —2)-shakes in the second pass instead of k-shakes.
Thus, to sort N =32, the increments are 25, 15,9, 5, 3,2,1,23,13,7,3,2,1,1,1
and as many l-shakes as needed. The results (on the same permutation that we

have been using) are below:
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N Mop-up 1-shakes
71 0
189 0
284 0
1026 21
1430 0
2988 2
8749 292
15580 406
27093 480
49974 907
96626 1917
184706 4262
417449 16547
734702 24165
1360732 43460
2480239 80437

This actually does a little worse than just running two passes with the same
increments. Yet another plan is to throw in 1-shakes between increments. For
N =32, the sequence would be 25, 1, 15,1, 9, 1, 5, 1, 3, 1, 2, 1, 1, 1, plus mop-up.

Again, we summarize the results below:

N Mop-up 1-shakes
71 0
189 4
284 0
1026 55
1430 53
2988 74
8749 554
15580 867
27093 1281
49974 2286
96626 4272
184706 8218
417449 23457
734702 35939
1360732 63504
2480239 114542

We still see no change, however if we intersperse a larger shake instead of a

l-shake, we can see some improvement (although not enough to make the
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algorithm useful). If hj is the smallest increment used in the Frobenius pattern to

construct the permutation, we will intersperse h;—1.

Thus, for N =32, the

sequence would be 25, 4, 15, 4, 9, 4, 5, 4, 3, 4, 2, 4, 1, 4, plus mop-up. The results

are below:

N
71
189
284
1026
1430
2988
8749
15580
27093
49974
96626
184706
417449
734702
1360732
2480239

Mop-up 1-shakes

cCooooOoQ

25

14

69
136
301
780
2103
5029
7515
13617

While the number of mop-up passes is greatly reduced, it is still too high to

make these increments useful. Further, if we form the permutation by including

hy—1 in the Frobenius pattern, thus getting a smaller value of N, the reduction

will be neutralized, since the early h, —1-shakes won't do anything. Thus, this

doesn’t seem to be a workable solution. One final attempt is when using the origi-

nal increments, do an h; +1-sort, an h,-sort, and an h, —1-sort instead of just an

hy-sort. Thus for N =32, the sequence is in effect 26, 25, 24, 16, 15, 14, 10, 9, 8, 6,

5,4,4,3,2, 3,2,1, 2,1, 1, plus mop-up. Below are the results are sorting with

increments of this form:
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N Mop-up 1-shakes
71 0
189 0
284 0
1026 0
1430 0
2988 0
8749 0
15580 0
27093 0
49974 0
96626 0
184706 56
417449 9558
734702 12329
1360732 23331
2480239 46238

This seems to make mop-up take about one-third the time compared to the original

increments (eventuallly), but of course there are three times as many increments.

In all these cases, we have tried variants of an increment sequence, and none
of these variants come close to producing sorts requiring only a little mop-up work.
Moreover, these variants fail on the same permutation - we don't even have to

tailor-make new permutations for the new increment sequences.

5.6. Summary

We have shown by counter-example that Shaker-sort is hopeless as a network
sorter for the specific increments suggested by Incerpi. The number of extra 1-
shakes required seems to make the algorithm quadratic in the worst case, and sim-
ple variations of the increments don’t make shaker-sort do significantly better.
The average case is entirely different matter, especially for reasonably sized files.
In addition to Incerpi’s tests, we have run more tests on random permutations and
can’t produce counterexamples randomly for files on the order of 10-100 thousand

elements. It may be the case that Shaker-sort is an excellent probabilistic sorter.
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6. Conclusions

In this chapter, we will summarize the results of this thesis and list some of

the many open problems that still remain.

6.1. Thesis Results

We look closely at the Frobenius pattern, marking representable numbers as
0 and unrepresentables as 1, and attempt to estimate the number of inversions in
the pattern. In some cases, we are able to prove that the number of inversions is

quadratic in the pattern length and in all the other cases that we investigate, the

2

number of inversions seems to asymptotically approach ?‘Ii——l)’

where g is the

Frobenius number and k' is the effective number of arguments. Thus if, for exam-
ple, 10 arguments to the Frobenius function yield a pattern length quadratic in the
smallest number (for instance, ten consecutive numbers do this), then the 10 argu-

ments are essentially behaving as two. We conjecture that the number of inver-
g?

sions is always more than SZ(H), where k is the number of (real) arguments.

Our results on Shellsort are still obtainable with weaker assumptions.

We use the Frobenius pattern to generate bad permutations that make
Shellsort perform slowly. We assign large numbers to the ones and small numbers
to the zeros. Our permutation is then assumed by the Inversion Conjecture to
have quadratic inversions, but it is also h,-, A, _;-, ... , h; _( —1)-sorted for the value
of k& that makes g(h;_ —1),ht—r -2, ' * ' ,h)=N —1. Thus the early passes are
rendered useless. As this runs completely counter to Shellsort’s strategy, we can
then easily show (with the Inversion Conjecture) the lower bounds for Shellsort.
These bounds in general match the upper bounds since the latter also depend

heavily on the Frobenius function. We look at how these bad permutations
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perform on a real computer and then show a very general lower bound for Shellsort
that matches the best known upper bound (for O(log N) increment sequences).
This lower bound suggests that no "almost geometric" increment sequence will
make Shellsort run faster than those of Incerpi and Sedgewick. Here, "almost
geometric" means that the increments are O(a'), as are virtually all analyzed
O(log N) increment sequences. Thus an O(Nlog N) Shellsort would seem to

require a completely different approach.

Finally, we look at a variant of Shellsort, Shaker-sort. Shaker-sort is a net-
work sorting algorithm that was empirically shown by Incerpi to run well for some
increment sequences on random data. The key to its running time is how much
mop-up work it needs to do to finish the sort. We are able to make it take huge
amounts of time to sort by feeding it the exact same permutations that lower
bound Shellsort. While for particular increments, Incerpi was not able to find any
permutations (looking at millions as big as 130K) that required any mop-up work
at all, we find permutations as small as 57 elements that require some mop-up and
permutations of 2 million elements that require a hundred thousand mop-up passes
(almost certainly a linear number of mop-up passes in general). We conclude that
Shaker-sort is quadratic in the worst case for increment sequences that were

thought to produce an O(Nlog N) sort.

6.2. Open Problems

While our results suggest that neither Shellsort nor Shaker-sort is likely to
run in O(Nlog N) worst-case time, there are still several interesting questions
remaining.

First of all, the Inversion Conjecture is exactly that -- a conjecture. Can we

prove the lower bound on the number of inversions to be Qg?/k), or equivalently
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for Shellsort purposes, something slightly less than Q(g?/2%)? One approach is to
show that in the top half of the pattern, at least one of every O (k) elements is a

one. This would lead to an Q(g%/k?) bound. Another approach might be to show

that g —n (the number of representables) is Q(g). It seems, empirically, that n :%

almost always. If the Inversion Conjecture can be proved, it is probably easy to
prove that the center of the pattern also has a quadratic number of inversions

(relative to the size of the center).

Assuming the Inversion Conjecture is proved, and thus all the bounds are
true, can it be proven that even if only some subset of increments is O(a') in some
order, then Shellsort is not O(Nlog N). Another interesting conjecture is that uni-
form and non-uniform increment sequences are asymptotically equivalent. Can it
be shown that any bound obtained with a non-uniform sequence is obtainable with
a uniform sequence? If this was proven, it would almost certainly kill prospects
for an O(Nlog N) sort since it seems difficult to design a uniform O(log N) incre-
ment sequence that doesn’t have "almost geometric" increments. Also, the ques-
tion of whether or not Shellsort can be O(Nlog N) on average is still open. From a
practical point of view, the new sequences in Chapter 2 may outperform the com-
monly used sequences and thus it seems like some empirical studies ought to be

done for them.

As for Shaker-sort, we have an algorithm that seems to take O(Nlog N) for
random files, but is disastrous on bad permutations. We also start to see mop-up
passes on random 250K permutations, so perhaps even larger random files don’t
work well either (we need more computer cycles to answer this). In this sense, it
performs much like Shellsort: good for random, mid-sized files and good for nearly

sorted files -- bad worst case. Shaker-sort seems to have potential as a
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probabilistic sorter for mid-sized permutations. Can we show that it sorts with no
mop-up almost all of the time? This seems like a very difficult question since it
would appear the for large files, bad things may start to happen even if the permu-
tations are random. The average case performance of Shaker-sort doesn’t seem
like a pressing issue, but could likely be answered if its performance as a proba-

bilistic sorter was analyzed.

Finally, we note that the door on an O(Nlog N) worst-case Shellsort is not
entirely closed. Chazelle’s increments which turn out to have the same worst-case
performance as any O(a’) sequence isn’t an O(a’) sequence itself. It is possible,
although we think unlikely, that an O(Nlog N) Shellsort might still exist, using a

very clever increment sequence.
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8. Appendix

Listed below are some of the increment sequences that have been discussed in

this thesis.

Hibbard’s Increments (2 —1)

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535,

131071, 262143, 524287, 1048575, 2097151, 4194303, ...

Pratt’s Increments (2:37)

1,23, 4,689, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128,
144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864,
972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2187, 2304, 2592, 2916, 3072,
3456, 3888, 4096, 4374, 4608, 5184, 5832, 6144, 6561, 6912, 7776, 8192, 8748,
9216, 10368, 11664, 12288, 13122, 13824, 15552, 16384, 17496, 18432, 19683,
20736, 23328, 24576, 26244, 27648, 31104, 32768, 34992, 36864, 39366, 41472,
46656, 49152, 52488, 55296, 59049, 62208, 65536, 69984, 73728, 78732, 82944,
93312, 98304, 104976, 110592, 118098, 124416, 131072, 139968, 147456, 157464,
165888, 177147, 186624, 196608, 209952, 221184, 236196, 248832, 262144, 279936,
294912, 314928, 331776, 354294, 373248, 393216, 419904, 442368, 472392, 497664,
524288, 531441, 559872, 589824, 629856, 663552, 708588, 746496, 786432, 839808,
884736, 944784, 995328, 1048576, 1062882, 1119744, 1179648, 1259712, 1327104,
1417176, 1492992, 1572864, 1594323, 1679616, 1769472, 1889568, 1990656,
2097152, 2125764, 2239488, 2359296, 2519424, 2654208, 2834352, 2985984,

3145728, 3188646, 3359232, 3538944, 3779136, 3981312, 4194304, ...



.

Sedgewick’s Increments T (44’ +3:2°+1)

1, 8, 23, 77, 281, 1073, 4193, 16577, 65921, 262913, 1050113, 4197377, ...

Sedgewick’s Increments IT ( (2'—3)(2° "1 -3))

1, 5, 65, 377, 1769, 7625, 31625, 128777, 519689, 2087945, ...

Sedgewick’s Increments III (merge of 4 —3'2/+1 and 94'—9-2°+1)

1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, 8929, 16001, 36289, 64769,

146305, 260609, 587521, 1045505, 2354689, 4188161, ...

Largest Prime Smaller Than 2°

1, 2, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,

65521, 131071, 262139, 524287, 1048573, 2097143, 4194301

Smallest Prime Greater Than 2°

1, 2, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771,

65537, 131101, 262147, 524309, 1048583, 2097169, 4194319

Incerpi and Sedgewick Increments (Sec 2.3.3)

A base sequence @i, ag, .. is used with the condition that the a;s are rela-
tively prime. An increment is formed by multiplying c¢ different terms of the base
sequence with the condition that the base sequence terms used must be consecu-
tive, except for at most one point, where you can skip an element of the base
sequence. Thus, with ¢ =3, the increments are of the form a;a; +1a; +2, a;a; +10; +3,
or a;a; +9a; +3. As we noted in Section 2.3.3, if the sequence is formed by multiply-

ing ¢ consecutive increments, and not allowing the one skip, you can still prove the
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same asymptotic result. For ¢ =3, and using a; = the largest prime less than or

equal to 2¢, the sequence suggested by Incerpi and Sedgewick becomes

1, 6, 14, 21, 42, 78, 182, 273, 651, 1209, 2821, 5551, 13237, 24583, 51181,

100711, 240157, 474641, 988181, 1944497.
The sequence

1, 6, 42, 273, 2821, 24583, 240157, 1944497 yields the same asymptotic result,
but performs poorly in practice because the increments are 0(8"). If we choose a;
= the largest prime less than 23, the increments are O(2'). There seems to be a

lot of empirical work do be done along these lines.

Incerpi and Sedgewick Increments (sec 2.3.4)

Again, a base sequence ay, as, ... is used with the condition that the a;s are
relatively prime. An increment is formed by multiplying different terms of the
base sequence with the condition that the base sequence terms must be consecu-
tive, except for at most one point, where you can skip an element of the base
sequence, and the additional condition that the first term in the multiplication is
always a,. Note that there is no restriction on how many consecutive terms can be
multiplied, per se, although it is dependent on how big N is. Thus, the sequence
essentially is @y, a1asy, aia3, aia9a3, aiagay, a@1a3ay, @1A2a3a,, A1A2a30a5,
@a1a9a4as5, a1a3a4as, ... . Multiplying 1 term, then 2 terms, etc. builds the incre-
ment sequence in increasing order, thus it is easy to construct the increments by
hand. If we choose a; to be the smallest prime greater than or equal to 2°, the

sequence generated is

1, 2, 5, 10, 22, 55, 110, 170, 374, 935, 1870, 4070, 6290, 13838, 34595, 69190,

125290, 272690, 421430, 927146, 2317865.
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Shaker-sort Increments (ll.’i"l}

1, 2, 3, 5, 9, 15, 25, 42, 70, 119, 202, 343, 583, 991, 1684, 2863, 4867, 8273,
14064, 23908, 40643, 69092, 117457, 199676, 339449, 577063, 981007, 1667712,

2835109, ...



