SOME TECHNIQUES FOR GEOMETRIC SEARCHING
WITH IMPLICIT SET REPRESENTATIONS

Bernard Chazelle
CS-TR-095-87

June 1987

SOME TECHNIQUES FOR GEOMETRIC SEARCHING
WITH IMPLICIT SET REPRESENTATIONS

by

Bernard Chazelle

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

Abstract:

There are many efficient ways of searching a set when all its elements can be represented in
memory. Often, however, the domain of the search is too large to have each element stored separately
and some implicit representation must be used. Whether it is still possible to search efficiently in
these conditions is the underlying theme of this paper. We look at several occurrences of this
problem in computational geometry and we propose various lines of attack. In the course of doing
so, we improve the solutions of several specific problems; for example, computing order statistics,

performing polygonal range searching, testing algebraic predicates, etc.

This research was supported in part by the National Science Foundation under Grant MCS83-
03925.

Categories and Subject Descriptors: E.1 [Data]; Data Structures, F.2.2 [Analysis of Algo-
rithms]; Nonnumerical Algorithms and Problems
General Terms: Algorithms, Computational Geometry

Additional Key Words and Phrases: Searching, Order Statistics, Implicit Data Structures

Author’s address: Department of Computer Science, Princeton University, Princeton, NJ 08544.

1. Introduction

We present a number of new results in computational geometry, all of which in their own way
address the same basic question: How can a set be searched efficiently if it cannot be explicitly
represented in memory? This problem arises in situations where searching is defined over a domain
that is represented by an implicit description and not by each of its elements.

The problem of computing the k™ largest element in the set X +Y = {e +y |z € X,y € Y},
where X and Y are two sets of n integers each, illustrates this point. Phrased as a selection problem,
it can be solved in O(n?) time by first expanding the set X + Y in its entirety and then applying
a linear-time selection algorithm [BI]. It is well-known, however, that the solution can be found in
O(nlogn) time [Sh]. We will see in this paper that computing order statistics in Euclidean space
raises problems of a similar, though more complex, nature.

A different, but related, phenomenon occurs when a collection of geometric objects must be
preprocessed to facilitate the answering of specific queries. The so-called locus approach is to form
the set of all possible answers in preprocessing and then search among them to find the answer. As
should be expected, such a solution is often too costly to be contemplated. Sometimes, the problem
has a simple enough structure that an implicit encoding of the search domain is sufficient to allow
fast answers. For example, orthogonal range searching among n points in E? yields a search domain
of size O(n??) via the locus approach, but it is well-known [PS] that the problem can be solved very
efficiently.

Often, however, the search domain grows polynomially in the size of the output, and yet no
truly efficient methods have been found. Given n lines in the plane, determining whether a query
point passes through at least one of them is such a problem. The lines creatc a subdivision of the
plane into O(n?) regions so, using point location, the problem is solvable in quadratic space and
logarithmic time. On the other hand, O(n'%¢") time is the best worst-case query time achievable to
date [HW], if only O(n) space may be used. Whether this problem is in the class PLOG, that is, can
be solved in O(n log® n) space and O(log® n) query time, for two constants a, b > 0, is still unknown.

This paper proposes various lines of attack to deal with the questions raised above. In Section
2, we take a sample of problems representative of a large class of geometric selection problems. We
prove that the k*" longest bridge between two convex polygons can be found in linear time (a bridge
is a segment that intersects each polygon in one vertex). We show that selecting the k" largest
interdistance between n points can be done nearly as fast as finding the largest one. We also give
an algorithm for selecting the k*® smallest-area triangle among n points in the plane within almost
the same time bound as for getting the smallest one.

In Section 3, we turn to the problem of organizing n points in the plane so that reporting which
points fall within a query triangle can be done efficiently. Although expanding the search domain

of this problem requires O(n®) space (consider all triples of positions of lines), we can show that

3

O(n log? n) space is actually sufficient for fast retrieval provided that the angles of the triangle can
be bounded below by a constant.

Section 4 is concerned with the problem of determining if among n geometric objects a subset
of them of fixed size satisfies a given property. We show that the naive algorithm can always be
improved — if only by a small margin. The speed-up achieved is only of theoretical interest, but it
is very general.

This paper should be regarded as a collection of techniques for dealing with implicit set search-

ing. These can be encapsulated in a few simple rules:

1. Investigating the combinatorial structure of a geometric problem and stripping it from its

geometry by appropriate transformations (Section 2).

2. Identifying the hard case of a problem and making minimal assumptions to rule it out and then

solving the remaining problem efficiently (Section 3).

3. Checking whether the inner loop of an algorithm can be sped up with a table look-up mechanism
(Section 4).

2. Computing Order Statistics in Euclidean Space

Using classical terminology, we call selection the operation of computing the k*! largest element
in a totally ordered set. The complexity of selection has been shown to be linear in the size of
the input set [BI]. As is well-known, however, this result is not necessarily optimal when the set is
defined implicitly. For example, selection in X +Y can be done in O(nlog n) time, where n is the
input size [FJ1,FJ3,JM,Sh], and in O(n) if X and Y are already sorted [FJ3,MA].

Other cases of implicit sets for which nontrivial bounds have been achieved include matrices with
sorted rows and/or columnns [FJ1,FJ3,GM]. The motivation for studying such problems comes from
operations research [GM], location theory (e.g. finding p-centers [FJ2,Me]) and statistics (e.g. com-
puting the Hodges-Lehmann estimator [Sh]). Other examples of searching a large domain without
explicit representations can be found in [Co2,M].

Selection in geometric sets so far has been mostly confined to extremal problems, i.e., for the
cases k = 1 or k = “cardinality of the set”. In this category, we find the following, widely studied
problems: given a finite point set S C E?, compute the smallest or largest inter-point distance
[BS,Y], or the smallest triangle with vertices in S [CGL,EOS]; given two convex polygons P and Q,
compute the minimum distance between them [CW ,MT,T], etc. In this work, we generalize these
questions into selection problems and prove nontrivial upper bounds on their complexity. We show
that, surprisingly, selection often is barely more difficult than the corresponding extremal problem.

Our emphasis will be in the techniques used rather than in the results themselves. The rationale
is that a considerable number of selection problems can be formulated, but not many differ funda-

mentally in the way they are solved. Indeed, our techniques can be used to solve many others. In all

4

cases, we exploit the geometric components of the problems at the outset and then focus exclusively

on their combinatorial aspects.

2.1. Preliminaries

Let S be a totally ordered set partitioned into m subsets Si,...,S,,. We assume that each
set S; is stored in a linear array, with the elements appearing in increasing order. It is easy to
adapt a technique of Jefferson, Shamos and Tarjan [Sh] to compute z, the k" largest element of
S in O(mlog %’—) time. Assume that k > 1|S|; briefly, the method involves shrinking each S; by
discarding elements from the left and /or right end. The general step consists of computing the lower
quartile y; in each S;, which is easily done in O(m) time. Then, also in O(m) steps, we find the
weighted lower quartile z of {y1,...,ym}, with each y; assigned the current size of S; as weight. We
easily find that z < z, therefore at least a quarter of the elements in each S; for which y; < z can be
discarded. This allﬁws us to remove at least l—lsth of the elements in S from further consideration,
which leads to the claimed O(mlog i:—]l) upper bound. This method was improved in [FJ1], from
which we quote the following result.

Lemma 1. (Frederickson and Johnson) — Let S be a totally ordered set partitioned into m sorted
subsets Si,...,Sy,. It is possible to compute the k*® largest element in .S in O(m + plog f,), where
p = min(k, m). This complexity is optimal.

Suppose now that S consists of the elements of an n x m matrix (1 < m < n), each of whose
rows and columns appears in nondecreasing order. Frederickson and Johnson [FJ3] have described
an O(mlog 22) time algorithm for computing the k*" largest element in S. Unfortunately this result
is a little too restrictive for our purposes. In the following lemma, we extend these methods to

handle a more general class of matrices.

Let A be an n x n matrix (a; ;). Each a;; is either a real number or an empty entry (called
a blank). We say that A is monotone if the real entries in each row of A form an interval (possibly
empty) of the form @i jy @i j41y---, @ik, With @;; < a;j41 < ... < a;;. The equivalent property
must also hold with respect to each column (Fig.1). The matrix A is said to be represented in
standard form if

1. it is stored in O(n) space,
2. each entry a; ; can be computed in constant time, and

3. there is an n x 2 array, called the map of A, which indicates for each row the indices of their
first and last real entries.

Our monotone matrices resemble the sorted matrices of [FJ3], except for the presence of blanks.
The difficulty in trying to convert them into sorted matrices is that assigning numerical values
to blanks may not allow both rows and columns to be sorted simultaneously. We go around this

problem by using ideas from [FJ3,MA] to develop a new algorithm.

Lemma 2. Let ¢ be a positive integer and A;,..., A, be a collection of n X n monotone matrices
given in standard form, and let S be the set of real entries. The k'" largest element in S can be

computed in O(n) time.

Proof: As a starter, consider the case ¢ = 1, and let A be the unique matrix under consideration.
For each row i = 1,...,n, let l; (resp. r;) indicate the index of the first (resp. last) real entry. We
set l; = r; = 0 if row ¢ has no real entry. We augment A with two columns of blanks, one with index
0 and the other with index n + 1. We treat each blank of row i as —oo for the positions left of I; and
+oo for the positions right of r;. If [; = r; = 0 then all the entries of row i are +o0, except for the
entry with index 0, which is treated as —oo. We define the trace of a real z, denoted 7'(z), as the
set of its positions among the rows of A. We have T'(z) = {t1,...,1,}, where t; is the unique index
such that a; ¢, < 2 < a;¢,41; note that ¢; = 0 if l; = 0. Next we show that T(z) can be computed
in O(n) time. We successively describe the algorithm, prove its correctness, and then establish its

complexity.

Let ¢ be initialized to the value n. For i = 1,2,...,n, perform the following case-analysis:
1. z<ai;,;: set t; to l; — 1.
2. 2> ai,;: 8et 1; tor;.

3. @iy, < z < a;y; if either ¢t < l; or t > 7; then set to ry, else leave ¢ unchanged for the time
being. In all cases, compare z and a; ¢, next, and decrement t by one as long as z < a; ;. Finally,
set 1; to .

Correctness is easily proven by induction. Whenever ¢ is updated, it ends up pointing either
to an entry equal to z or to one having to its right a real entry greater than z. Therefore if
aij; £ z < @iy, and I; < t < r;, by monotonicity, a; 441 is greater than z, so the search may
proceed towards the left. We will show now that the running time is O(n). Clearly it is sufficient to
show that if for 4, j,h (i < h) the four entries a;j,a;j41,anj,an +1 are real, then not all four are
examined during the computation (to see this, mark off the leftmost and rightmost entries visited
in each row). Assume that they are; since at row 4, the variable ¢ takes on at least one value strictly
less than j + 1 and at row h it takes on the value j + 1, it must be reset to a value greater than j
at some row f; i < # < h (this can only occur at step 3). Let a be the largest index u less than

such that ay, < z < ayr,. Since both a;; and a; j41 are examined, we have i < a. The following

6

derivations use the monotonicity of A repeatedly. Since the entries Gq,t, and ag., are respectively
real and blank, the entry aj,, is blank. Since t, < j and an, is real (at least two values in row
h are examined), we have a4, < z and ¢, < t;. Since @a,t,+1 18 greater than z, so are a4, and

hence ay 4, a contradiction (Fig.2).

With T'(z) in hand, we can perform two types of operations of great use later on.

1. Ranking z: to compute the rank of z in A, i.e., the number of real entries a;; < z,weset §; =0
if l; = 0 and 6; = 1 otherwise. The rank of z is given by the expression 3, ;c, &i(ti — l; + 1),

which can be evaluated in O(n) time.

2. Computing Intervals: Let z; < z5 be two arbitrary reals and let N be the set of entries in A
comprised between z; and z2. Once the traces of z; and z3 are available, it is trivial to compute
the set N (in its full expansion) in O(n + |N|) time.

We now discard the dummy columns of A (indices 0 and n + 1), which are no longer useful.
Let P be the ([%] x [4]) matrix obtained by picking every third row and every third column in A.
We have p;; = asi—23j—2, with 1 < 4,j < [2]. Note that it is possible to compute P (in standard
form) in O(n) time. Let z be an arbitrary real number. We define r,(z) and r,(z) as the ranks of z
among the real entries of A and P, respectively. Let A = r,(z) and L be the set of) real entries in
P less than or equal to . An element pi,j of L is said to be covered if p; j_1, pi—1,; and pj_y j—; are
real entries (hence, lie in L). We next show that most elements of L are covered. For convenience,
we call undefined entries such as pgo blank. Each row of P has at most one real entry pi,j with
Pij-1 blank. Also, it is impossible to have p; ; and p; ; both real and uncovered (i # k), with both
Pijj—1 and pg j_; real. Therefore there are at most 2[n/3] — 1 uncovered real entries in P, hence at
least A —2[n/3] + 1 covered entries in L. We now exploit the one-to-one correspondence between
- each covered element a;,; in L and the set A;j = {aap |i—2<a <iandj—2< g < j}. Since a;;
is covered and A is monotone, A; ; consists exclusively of real entries. This implies that A contains
at least Q(A -2[8]1 + 1) real entries less than or equal to z, i.e.,

n

ra(z) 2 9(rp(a) - 2[5] +1). M

We say that a real entry a; ; is protected if each element of A; ; is real. Each row of A has at most
two real entries a; ; such that a; j_; or a; j2 is blank. Also, it is impossible to have a; ;,a; ;, a; j real
and unprotected (i < k <), with a; j_1, @i j—2, ag -1, agj—2, aij—1, and a; j_s all real. Therefore
there are at most 2n + 2(n — 2) unprotected real entries in A. Let M be the set of real entries in
A less than or equal to . Obviously, for each element a; ; of M which is protected, there exists

one element of L in A; ;. We can then partition M into its subset of non-protected elements and a

7

subset mapping to L. Since at most nine elements of M can map to the same element in L, we have
|M| < 9|L| + 4(n — 1). Combining with (1) and simplifying a little, we obtain

Irp(2) — 6n — 9 < re(z) < Irp(z) + 4n — 4. (2)

Let p be the number of real entries in P, and let k; = [k'—‘g‘"'—‘*J and ks = [k/9+ 2n/3] + 1.
To compute z, the k*! largest element in A, we will compute recursively z; and z», the kh and kP
largest elements of P, respectively. This is assuming that 1 < ky, ks < p; otherwise if k; < 1, set z
to be the smallest real entry in A. Similarly if k2 > p, set 22 to be the largest real entry in A. From
(2), we derive that z lies in the set N = {a;; | z1 < a;j < z2} and that in all cases |N| = O(n).
The idea is then to determine the set N, compute the rank of z; in A, and then use a linear-time
selection algorithm to derive the (k+1—ry(21))*® largest element in N, which is also the k™ largest
element in A. As shown earlier, each of these operations can be executed in O(n+|N|) = O(n) time.
As a result, the overall complexity of the algorithm follows a recurrence of the form T'(1) = O(1)
and T'(n) = 2T([n/3]) 4+ O(n), from which we derive T((n) = O(n).

For the case ¢ > 1, we simply line up the diagonals of each matrix with the diagonal of a en x en

matrix (Fig.3). g

2.2. Selecting a Bridge-Length

Let P = {vg,...,vm-1} and Q@ = {wm,...,wn—1} be two disjoint convex polygons. We define
a bridge between P and @ to be any segment v;w; which does not intersect the interior of P or Q.
McKenna and Toussaint [MT] have described a linear time algorithm for computing the shortest
distance between any v; and w; (see also [CW,T]). Although it is easily seen that the nearest pair
of vertices does not necessarily form a bridge, it is simple to determine the shortest bridge in O(n)
time using the ideas behind McKenna and Toussaint’s algorithm. How hard is it to compute the
k*™® longest bridge between P and Q? Note that there are in general on the order of n? bridges, so
applying a linear-time selection algorithm to the explicit set of all bridges requires at least quadratic
time. We will show that computing the k*" largest bridge is no more difficult than computing the
smallest one.

The basic idea is to encode all bridge lengths into a constant number of monotone matrices,
and then apply Lemma 2. Let A be the m x (n — m) matrix, where a;; is the length of v;w; if this
segment is a bridge, or a blank otherwise. Unfortunately, A is in general not monotone, so some
refinement is in order. We say that A is decomposed into matrices Aj, ..., A, if there is a one-to-one

correspondence between the real entries of A and those of A4, ..., A..

Lemma 3. The matrix A can be decomposed into four or fewer monotone matrices, each of which

can be computed in standard form in O(n) time.

Proof: Using for example the merge part of Preparata and Hong’s convex hull algorithm [PH],
compute the two outer tangents common to P and @ in O(n) time. We refer here to each line
tangent to P and @ with both polygons on the same side. For convenience, we will assume that no
three points are collinear. The points of contact partition P (resp. @) into two chains; one of these
chains has each of its points visible from at least one point of its counterpart in Q. We label these
two visible chains P* = {p1,...,p,,} and Q* = {g1,...,¢n,}. The former turns counterclockwise
around P* and the latter clockwise around Q* (Fig.4). The real entries of A are identical to the
real entries of the (ny X ny) matrix B = (b;;): bi; = |pig;| if pig; is a bridge else b;; is blank.
Consider the effect of a tangent line rolling clockwise around Q* starting at ¢yp;. This line will
pass successively through p;,ps,. .., until it becomes tangent to P*; let AB be the segment thus
obtained with A (resp. B) a vertex of Q* (resp. P*). At this point switch the polygon on which the
rolling takes place from Q* to P* and pursue a counterclockwise rotation around P* until the line
passes through pp, gn,. It is easy to simulate these two rotations in O(n) time. This puts each p; in
correspondence with one or several consecutive vertices of Q* (one at first and then possibly several
past AB). Let a(i) be the smallest index such that qa(i) 18 in correspondence with p;. The function
a(i) is well defined for each value of i. It indicates one of the limit bridges in the interval of bridges
emanating from p;. A symmetric rolling process starting at py,¢s, —counterclockwise around Q*
and then clockwise around P* past C'D— leads to the function b(i). We omit the proof that, for
each i, we have a(i) < b(i), and that both functions are nondecreasing (proof partially based on the
uniqueness of AB and C'D). Another way of characterizing these two functions is to show that the
set of bridges adjacent to p; is precisely {Pida(i), - - -, Piqiy}. From this result, we derive the useful
information that within each row of B the set of real entries forms a consecutive interval. Of course

a similar reasoning leads to the same fact concerning each column of B.

From the fact that @ is convex and p; is visible from da(i), - - - » Qo) outside @, it easily follows
that the sequence of distances { |Piga(i)l; - - -» |Piga(iy|} is unimodal. It can be rewritten as a nonempty
decreasing sequence {|pigaci)|, - ., |Pige(iy|}, followed by an increasing sequence (possibly empty)
{1Pigeiy1ls - - 5 IPigsiy|}. The first sequence is of horizontal type 0 and the latter of horizontal type
1. Next we show that, like a(i) and b(7), the function (i) is nondecreasing. Assume that it is not;

then for some i, we have ¢(i) > ¢(i + 1). The sequence of inequalities
a(i) <a(i+1)<e(i+1) <e(d) <b(i) <b(i+1)

implies that p; and p;4;, are both visible from ey and git1). This implies the convexity of
the quadrilateral p;pi11¢c(i)qc(i+1), which in turns contradicts the fact that [Pigeqiy] < IPidegivr)] and

9

|Pi+19ei+1)] < |Pit19c(iy]- The fact that ¢(i) is nondecreasing and that each row is unimodal suggests
a straightforward O(n) method for computing ¢(1),...,¢(n1).

The same reasoning applied to the columns of B leads to the definition of a function ¢'(i), which
puts in correspondence each g; with its shortest bridge. For the same reasons, ¢/(i) is nondecreasing.
An entry of horizontal type ¢ and vertical type j is said to be of type ij. The matrix B is thus
partitioned into regions of type 00,01,10, and 11 (Fig.5). To compute the boundaries between these
regions is easily done in O(n) time. Also, each collection of regions of a given type forms a matrix
whose real entries appear consecutively in both rows and columns. Why is that so? Obviously, the
horizontal types of two consecutive entries on the same row cannot be 1 and 0 in this order. We
claim that the two vertical types cannot give the sequence 0,1. Indeed, doing so would contradict
the fact that ¢/(i) is nondecreasing. This shows that although the regions of a given type may be
made of disconnected pieces, the whole collection consists of consecutive (possibly empty) intervals
of real entries on each row. A similar reasoning leads to the same conclusion with respect to the
columns. As a result, we can decompose B into four matrices (or fewer) of respective type 00, 01,
10, 11. Each of these matrices is monotone (after appropriate rotations for all but those of type 11,

because our definition of matrix monotonicity requires increasing rows and columms). g

Combining Lemmas 2 and 3, we conclude:

Theorem 1. Given two disjoint convex polygons with n vertices, it is possible to compute the k'h

longest bridge between them in O(n) time and space.

2.3. Selecting a distance between n points

Let S be a set of n points in d-dimensional Euclidean space, E%. How difficult is it to determine
the pair of points whose distance to each other is the k*" largest? Yao has shown that the two points
furthest apart can be found in less than quadratic time [Y]. We will show that selecting the k!

largest interdistance can be done with little added cost.

Theorem 2. Let S be a set of n points in E4. The k' largest interdistance between points of S
can be found in O(n?~/(*"* =1 Jog n) time.

Proof: Let py,...,p, be the points of S and let Si,...,S, be a partition of S into a groups of
at most p = [n/a] points each. Let h;; be the hyperplane bisecting p; and p;. We begin by
applying Dobkin and Lipton’s method for point location [DL] separately to each set of hyperplanes
{hx,i | pr, 21 € S;}. For each i between 1 and « this produces a search tree T}, whose leaves we label
1,2,... in arbitrary order. Note that the regions corresponding to the leaves of T} are a refinement

of the Voronoi diagram of S;. Next we use T} to locate each point of S among the bisectors of

10

Si. Let L; ; be the set of points of S whose path in T} ends at the leaf labelled j. Because of the
structure of T; each point of L;; lies in on the same side of the bisectors of S;. This implies that,
for each j, there exists an ordering of S; such that the k*" point in the ordering is the k'™ furthest
point of S; from any point of L;;. This ordering, denoted .S',gj), can be computed by sorting the
distances between the points of S; and an arbitrary point of L; ;. This scheme allows us to partition
the set of interdistances between the points of S into sorted subsets. Each subset belongs to a class
characterized by an ordering of the form .S',-(j). Random access into the subset is done via ng), which
is stored in full in an array. We now satisfy the conditions of Lemma 1 for computing the k*" largest
interdistance in S. (We leave it as an exercise to the reader to show how to deal with the fact that

distances appear twice.) What is the complexity of this algorithm?

Applying Dobkin and Lipton’s method to m hyperplanes in d-dimensional space produces a
search tree of O(mzd_l) leaves at the cost of O('mzd‘1 log m) preprocessing. It follows that all the
trees T; can be constructed in a total of O(cn:pzul‘2 log p) time. Since the trees have height O(log p),
computing the sets L;; can be done in a straightforward fashion in O(anlogn + ap2d+1‘2) time.
Computing the orderings Ssj) requires O(cx‘pTHﬂ"1 log p) operations and application of Lemma 1

O(anlogn). This gives a total running time of

0(&1)2“1"1 logn + anlogn).

/(20

Setting p=n =1 completes the proof.

It is easy to improve the upper bound for d = 2 and d = 3, and in general, in any situation

where point location can be done more efficiently than in [DL].

2.4. Selecting a triangle among n points

Given n points in the Euclidean plane, it was shown independently in [CGL] and [EOS] that
the smallest-area triangle formed by any three points —or any of them if there are several— can be

found in O(n?) time. We will show that selecting the k*® largest triangle is barely more difficult.

Theorem 3. Let S be a set of n points in the Euclidean plane. The k*! largest-area triangle formed
by the points of S can be computed in time O(n? logn log(2[k/n?])).

Proof: Let A be the arrangement formed by n lines in the plane. Let (Oz,0Oy) be an orthogonal
system of coordinates such that no line is parallel to the y-direction. We turn our attention to
the sequence of lists obtained by sweeping the plane with a vertical line. For each vertex v of
the arrangement, consider the points of the lines of A that have the same z-coordinates as v; let
L(v) denote the list of these points sorted in nondecreasing order of y-coordinates. (It suffices that

L(v) contains the indices of the corresponding lines of A.) Note that v appears twice in L(v). Let

11

v1,...,Up be the vertices of A in nondecreasing order of z-coordinates (p = (’2‘)), ties are broken
arbitrarily. Observe that, for every i > 1, the list L(v;) differs from L(v;—;) in only two places. A
recent result of Cole [Col] shows that in these conditions it is possible to preprocess the set of lists
in O(n? logn) time so that for any pair ,j the j*® item in L(v;) can be found in O(log n) time. To
see the connection between this discussion and our selection problem, transform every point p : (a,b)
of S into the line T, : y = az + b. Let v be the vertex formed by the intersection of two lines T},
and T, where p and q are two points of S. The list L(v) can be partitioned into two subsets, L*(v)
and L~ (v), which contain all the points of L(v) respectively above and below v. Note that every
element of L(v) can be associated with a triangle formed by three points of S: p, ¢, and the point r
such that 7, contributes the element of L(v) in question. It is straightforward to prove that L~ (v)
and L*(v) correspond to triangles of either decreasing or increasing area (we assume for convenience
that the points of S are in general position). This allows us to apply Lemma 1 to find the k' largest
triangle. (Note that the multiple occurrence of any triangle is easy to deal with.) Random access
into the sorted subsets of Lemma 1 can be done in O(logn) time, provided that the cardinality
of, say, L™(v;) has been computed for each i. This can be done in O(n?logn) time by applying a
standard sweep-line algorithm. It can also be done in O(n?) time but we do not really need a faster

method at this point. Lemma 1 shows that the complexity of the algorithm is

O(n?logn + min(k, 2 (;))log nlog(k/ min(k, 2 (;)))) = O(n®log nlog(2[k/n?])).

2.5. Discussion

We will limit ourselves to the three problems discussed above because they illustrate some of
the different techniques one can use to solve selection problems in implicit geometric sets. In the
first case, we used a reduction to selection in a monotone matrix: this was the best we could hope for
since it can be solved optimally. In the second and third cases we reduced the problems to selection
in a collection of sorted sets represented implicitly. For the selection of interdistances, we tried to
break down the problem into highly structured subproblems. In the case of the triangle areas, we
used a simulation of random-access to draw the benefits of Lemma 1.

As one can easily imagine, many other selection problems are solvable by these techniques —
see [Ch3,Sa] for additional examples. We close this section here as our objective was less solving
selection problems for their own sake than presenting general lines of attack for problems of that

nature. We summarize the two-pronged approach used:

1. Decompose the underlying (implicit) set into strongly structured components, and map the

original problem into a collection of selection problems on sorted sets or monotone matrices.

12

2. Implement the random-access primitive required in the solution of the selection problems.

However large the class of problems amenable to this treatment may be, some selection problems
seem inherently more difficult. For example, we submit the following open problem: given n points
in the Euclidean plane, how hard is it to compute the k*! largest-area convex polygon formed by any
subset of the points? Note that the smallest polygon can be computed in O(n?) time (disregarding
2-gons), while the largest (i.e., the convex hull) can be found in O(nlogn).

3. Triangular Range Search

Let S = {p1,...,pn} be a set of n points in E2. The triangular range search problem, or triangle
problem for short, is to preprocess S so that for any given query triangle T' the points of S that lie in 7'
can be computed efficiently. To date, the most efficient solutions to this problem require O(n) space
and O(k+n-%") query time [HW] (using probabilistic preprocessing), or O(n) space and O(k+n-95)
query time [EW], or O(n**¢/log n) space and O(k + log nlog1/¢) query time [CY], where k is the
number of points reported, which is also the size of the output. Obviously the problem is at least as
difficult as the point-on-a-line problem: given n points, determine if a query line passes through any
of the points. This problem can be restated in dual space by transforming points into lines and lines
into points [Ch1]. Then it becomes the problem of deciding whether a query point lies on any of n
given lines. The lines form an arrangement which subdivides the plane into O(n?) convex regions,
and can thus be searched efficiently with appropriate preprocessing [PS]. Unfortunately the search -
domain is quadratic in size, which is excessive in many applications. Whether it can be represented
implicitly — after all it is defined only by n lines — and still accommodate fast searching is open.
What we can show, however, is that this degenerate version of the triangle problem seems to be
the most difficult subproblem. Indeed, if the angles of the query triangle are bounded below by a
constant, then the problem falls in the class PLOG, that is, can be solved in O(nxpolylog(n)) space
and O(k+polylog(n)) query time. Our next result is one step towards a practical solution to the
triangle problem. It involves a geometric construction of independent interest. In the following, the
term bounded-angle triangle problem refers to the restricted version of the triangular range search

problem where no angle of a query triangle is allowed below a constant a.

Theorem 4. The bounded-angle triangle problem on n points can be solved in O(n log® n) space

and O(k + log® n) query time, where k is the size of the output.

Proof: The main idea is to decompose the query triangle into O(log n) grounded triangles. A triangle
is said to be grounded with respect to a line L if it has a right angle and one of the edges adjacent
to it is collinear with L. Let S be a set of n points in the plane and let L be an arbitrary line. From

[CG] we know that there exists a data structure of linear size, T7(S), such that for any grounded

13

triangle ¢ all k points of S ¢ can be reported in O(k+logn) time. Suppose now that g is still a right
triangle but that one of its non-hypothenuse edges is parallel to L (and not necessarily collinear with
it). We will show that the problem can be solved just the same, although at an extra multiplicative
cost of logn in time and space.

Let p1,...,pn be the points of S sorted along a line normal to L. We define a binary tree 7

with various auxiliary structures attached to its nodes. The construction is recursive.
1. If n =1,2 then T is a simple node with a pointer to a list of the points in S.

2. If n > 2 then let m = |n/2| and let D be a line parallel to L which intersects the segment
PmPm+1. The root v of T has a pointer to Tp(S); its left and right subtrees are defined
recursively with respect to {p1,...,pm} and {pm+41,...,Pn}-

Given any query triangle ¢ (satisfying the conditions indicated above), the points of S[¢ can
be found by the following procedure. If S consists of one or two points, check each of them for
inclusion in g. Otherwise, check if ¢ intersects the line D associated with the root of 7. If not, then
recur in the appropriate subtree. Else, the intersection of ¢ with one of the halfplanes delimited by
D is a triangle grounded with respect to D. The points of S falling in it can be retrieved by using
Tp(S). Once this has been done, the algorithm can recur with respect to one of the root’s children.
It is elementary to verify that if k points must be reported then the algorithm will take O(k+log® n)

time. The storage required is O(nlogn).

Next we can turn to the general bounded-angle triangle problem. We assume that each angle of
the query triangle g is at least as large as a. Let Dy be an arbitrary line in the plane; we construct

a data structure of the previous type with respect to each direction in the collection
A={Dq,..., D},

where D; is a line forming an angle ia with Dy and p = [7/a]—1. Angles between lines are measured
in [0, 7). The theorem will follow once we show how to partition ¢ into a constant number of right
triangles with one non-hypothenuse edge parallel to some line in A. Let ABC be an arbitrary
triangle, each of whose angles is greater than or equal to a. We can always assume that each angle
is at most 7/2. If this is not the case, there is a unique vertex, say A, displaying an angle larger
than /2 (Fig.6-A). Let D be the point of BC which bisects the angle Z(AB, AC) and assume
without loss of generality that £(DC, DA) is larger than or equal to 7/2. If it is equal we are done,
since £(AC, AD) and £(AD, AB) are between 7/4 and /2. Note that in that case we must have
the preassigned condition a < w/4. If Z(DC, DA) is not equal to 7/2, then we draw the altitude
DE from D to AC. It is now easy to prove that each angle among the triangles ADB, AED,
and ECD is between « and 7/2. Obviously Z(DA, DB) is larger than £(AD, AC) (think of the
line parallel to BC' passing through A), therefore Z(DA, DB) > %L(AB,AC) > /4 > a. We

14

also have Z(AD, AE) > w/4 > a. Now, since neither Z(BC, BA) nor £(CA,CB) are less than «,
L(AB, AC) is at most equal to 7 — 2a, therefore Z(AD, AE) does not exceed 7/2 — a. This implies
that Z(DE,DA) is at least as large as . Finally, since £(DC, DA) is at least /2, L(CE,CD)
cannot exceed Z(BD, BA), hence it is no larger than 7 /4. This shows that £(DC, DE) is at least
m/4 > a. Checking the other angles is trivial, so let’s now assume that ABC has all of its angles

between « and w/2.

There must exist a segment AA’ parallel to some D, in A with A’ € BC (Fig.6-B). Let Ip
(resp. Ic) be the intersection of the line passing through AA’ with the normal to AA’ passing
through B (resp. C). Since Z(AB,AC) < %, the triangle ABC lies entirely on one side of the
normal to AA’ passing through A, therefore we have Ip € Alc or I € Alg. Without loss of
generality, assume that Ip € Alc. Let B’ be the intersection of AC with the line passing through
Blp. There exists a segment CC’ parallel to some D, € A with C' € BB'. Since AIgB’ forms
a right triangle, Z(B’'B, B'C) is obtuse, therefore the normal to CC’ passing through B’ intersects
CC" at some point, denoted Jp:. Let D be the intersection of BC with the line passing through
B'Jp:. Since C'Jp:D forms a right triangle, Z(DB’, DB) is obtuse, so the normal to BB’ passing
through D intersects BB’ at some point I € BB’. This completes the partitioning of ABC into six
right triangles {AIpB, AIgB', BD'D, B'D'D,DJp:C, B'Jp:C}, each with one (non-hypothenuse)
side parallel to a line in A. The initial splits make 18 a trivial upper bound on the number of pieces

in the partition. g

4. Computing Algebraic Predicates

Hopcroft has posed the following problem: Given n lines and n points in the plane, check
whether any line passes through any the points. One could also ask slightly more esoteric questions
such as: given n points in E3, are 5 of them cospherical or do 17 of them have their mass center
coincide with one of the points? In lower dimensions (as in Hopcroft’s problem) there is always hope
for efficient, ad hoc methods. In higher dimensions, however, it is clear that only fairly general lines
of attack can bear fruit. We will propose a general approach to this problem, reminiscent of the
“Four Russians” algorithm for boolean matrix multiplication [AHU]. The approach is inspired by a
technique of Yao [Y]. The general question which we ask is: Given n geometric objects in arbitrary

dimensions, do k of them interact in a prespecified manner?

This general class of questions can be easily formalized. Let S = {V4,...,V;} be a collection of
k sets of the form V; = {vg"), vy v.,(,';.)}. Each vg") is a vector € Q% of the form v}") = (mgtg, 5 =z§:2.)

The set S is the input and the quantity n = Y, ;. pici is the input size. Let Qa(yiq,...,
Yl,e0: Y2155 Y2,e05-++5 Yk1s---5 Yk,cns Z1,...,2n) be a rational A—variate polynomial of degree
diA=h+) cicpcio I wg = (%i1,...,Vic.), we use the abbreviation Qa(w1,...,w;21,..., z3). In

the following, the quantities d, k,e;,...,ci, h are considered to be constants.

15

Problem K: Does there exist a k-tuple (j1,...,jr) € Ii<i<k{1,...,p;} and an h-tuple (zy,...,2;) €
R* such that Qd(vﬁ), sEE v}f);zl,. v y®p) =07

There is a trivial O(n*) solution involving the testing of all possible k-tuples (f1,---,Jx). Each
test involves checking if a polynomial of constant degree, with rational coefficients and a constant
number of variables, has real zeros. As is well-known [Ta] this can be decided effectively. The
following result asserts that it is always possible to do (a little) better. Before proceeding, we now
observe that the previous problems can be easily rephrased as instances of Problem K (one will also
see the role of the z;’s, which might not be obvious at first sight).

1. Let {a;z+bijy+c; =0|1<i<n}and {(z;,y:) | 1 <i< n}berespectively n lines and n points
in the plane. Whether a point passes through a line is equivalent to Problem K for: k = 2,
Vi = {(a1,b1,¢1),.., (@n,bnyen)}, Vo = {(21,51),-- -, (Tn,¥n)}, B = 0, and Q2(y1,1,¥1,2, Y13,
Y21, 312,2) =¥Y1,1Y2,1 + Y1,2¥2,2 + ¥1,3.

2. Let {pi = (#i,9i,2) | 1 < i< n} be n points in E3. Whether 5 points are cospherical can
be expressed by the sentence: there exist 4, j, k,I, m such that P(p;,i,p;,J, pr, k, o1, |, pm,m) is
true. P(...) is the first-order sentence: “i # j, i £ k, i # L, i#m, j#k, j# L, j#m k #1,
k # m, 1 # m and there exist reals a,b,c,d such that (z; — a)? + (y; — b)? + (2z; — ¢)? = d2,
(zj—a)®+(y;—b)?+(zj—c)? = d?, etc.” Each statement of the form i # j can be written as “there
exists z such that (i —j) —1 = 0.” To have both A = 0 and B = 0 one will write A?+4 B2 = (.
This leads to an equivalent form to the previous statement: “there exist reals a, b, ¢, d, x1, .. ., X10
such that Q4(pi,i,pj,J, pe, k,p1,1,pm,m;a,b,c,d, x1,...,x10) = 0. Therefore we will have
Vi = {(z1,0,21,9), ..., (20, U0, Zn,i)}, fori=1,...,5,and (21,...,21) = (a,b,¢,d,x1, ..., X10).

Theorem 5. Problem K can be solved in O(n*~¢) time, for some real ¢ > 0.

Proof: Consider the m (h + c)-variate polynomials of the form Qd(b}(—i);-- ; ,v}t::),m, o T
Z1,...,2n), Where xy,...,2.,, 21, ..., 2, are the variables and (ji,...,ji—1) € Micick-1{1,...,0:};
note that m < n*F~1. Divide up this set of polynomials into subsets of size roughly «, denoted
Wi,...,W, (t = O(n*~1/a)). In [Ch2] a method is described for preprocessing a set of polynomials
so that determining whether a query vector is a subvector of a zero of one of them can be done
in logarithmic time. More precisely, let F' = {Py,..., P,} be a family of « fixed-degree r-variate
polynomials with rational coefficients (and r a constant), and let S = {z € E" | I;<i<aPi(z) # 0}.
In O(a®™)) time and space, it is possible to compute a set of algebraic points, one in each connected
region of S, as well as set up a data structure for computing the predicate [Ji (1 < i < a) | Pi(¢) = 0],
for any ¢ € E". In O(loga) time, the algorithm will return an index i such that P;(¢) = 0
if such an index is to be found, otherwise it will return the algebraic point associated with the
unique region of S that contains q. Furthermore, we can adapt the data structure so that for

any (q1,...,q), we can determine in logarithmic time whether there exist (g41,...,¢-) such that

16

for some ¢, we have P;(q1,...,¢-) = 0. Applying this method to each set Wi,...,W; requires
O(n*~1a9(M) preprocessing time. On the other hand, this will allow us to test the pj vectors of Vj
in O(pitlog o) = O((n* loga)/ax) overall query time. Setting « so as to balance preprocessing and

query times leads to a time complexity of O(nk"‘), for some € > 0.

5. Conclusions

The aim of this work has been to present various techniques for (partially) circumventing the
difficulty of searching implicit sets without expanding the search domain in full. Qur approach has
been almost exclusively algorithmic (except for the triangle problem). We feel that more geometric
insights will be needed to produce further improvements in this area. The work in [W,EW,HW,YY]
is illustrative of the kind of geometric and topological facts needed for future breakthroughs. We
close with an open problem which seems to elude the techniques presented in this paper: organize
two sets of numbers X and Y so that for any number ¢ the pair (z,y) € X x Y that minimizes

|z + y — q| can be found efficiently.

17

REFERENCES

[AHU] Aho, A.V., Hopcroft, J.E., Ullman, J.D. The design and analysis of computer algorithms, Read-
ing, MA, Addison-Wesley, 1974.

[BS] Bentley, J.L., Shamos, M.I. Divide-and-conquer in multidimensional space, Proc. 8th Annu.
ACM Symp. on Theory of Comput. (1976), pp. 220-230.

[Bl] Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E. Time bounds for selection,
JCSS, 7 (4), pp. 448-461, 1972.

[Ch1] Chazelle, B. Filtering search: A new approach to query-answering, SIAM J. on Comput., 15
(3), pp. 703-724, Aug. 1986.

[Ch2] Chazelle, B. Fast searching in a real algebraic manifold with applications to geometric complexity,

Proc. CAAP’85, Berlin, West-Germany, LNCS, Springer-Verlag, pp. 145-156, March 1985.

[Ch3] Chazelle, B. New techniques for computing order statistics in Fuclidean space, Proc. ACM
Symp. on Comput. Geometry, June 1985, pp. 125-134.

[CG] Chazelle, B., Guibas, L.J. Fractional cascading: II. Applications, Algorithmica, 1 (2), pp. 163~
191, 1986.

[CGL] Chazelle, B., Guibas, L.J., Lee, D.T. The power of geometric duality, BIT, 25 (1), 1985, pp.
76-90.

[CW] Chin, F., Wang, C.A. Minimum vertez distance between separable convez polygons, Info. Proc.
Lett., 18 (1984), pp. 41-45.

[Col] Cole, R. Searching and storing similar lists, J. of Algorithms, 7, pp. 202-220, 1986.

[Co2] Cole, R. Slowing down sorting networks to obtain faster sorting algorithms, Proc. of 25th Annu.
IEEE Symp. on Foundations of Comput. Sci., Singer Island, FL, pp. 255-259, 1984.

[CY] Cole, R., Yap, C.K. Geometric retrieval problems, Information and Control, Vol. 63, Nos.1-2,
pp. 39-57, Oct/Nov 1984.

[DL] Dobkin, D.P., Lipton, R.J. Multidimensional searching problems, SIAM J. on Comput. 5 (2),
pp. 181-186, 1976.

[EOS] Edelsbrunner, H., O’Rourke, J., Seidel, R. Constructing arrangements of lines and hyperplanes
with applications, SIAM J. on Computing, Vol. 15, No. 2, pp. 341-363, May 1986.

18

[EW] Edelsbrunner, H., Welzl, E. Halfplanar range search in linear space and O(n°%%) query time,
Rep. F111, Inst. Inform. Proc., Tech. Univ. Graz, Austria, 1983.

[FJ1] Frederickson, G.N., Johnson, D.B. The complezity of selection and ranking in X + Y and
matrices with sorted columns, JCSS, 24 (1982), pp. 197-208.

[FJ2] Frederickson, G.N., Johnson, D.B. Finding kth paths and p-centers by generating and searching
good data structures, J. of Alg., 4 (1983), pp. 61-80.

[FJ3] Frederickson, G.N., Johnson, D.B. Generalized selection and ranking: sorted matrices, SIAM J.
on Comput., 13 (1), pp. 14-30, 1984.

[GM] Galil, Z., Megiddo, N. A fast selection algorithm and the problem of optimum distribution of
effort, J. of ACM, 26, pp. 58-64, 1979.

[HW] Haussler, D., Welzl, E. Epsilon-nets and simplez range queries, Proc. 2nd Annu. ACM Symp.
on Computational Geometry, pp. 61-71, June 1986.

[JM] Johnson, D.B., Mizoguchi, T. Selecting the k-th element in X +Y and X1+ Xo+ ...+ B,
SIAM J. on Comput., 7 (2), pp. 147-153, 1978.

[MT] McKenna, M., Toussaint G.T. Finding the minimum vertezx distance between two disjoint convez

polygons in linear time, Tech. Rep. SOCS-83-6, McGill University, April 1983.

[M] Meggido, N. Applying parallel computation algorithms in the design of serial algorithms, J. of
ACM, pp. 852-865, 1983.

[Me] Meggido, N., Tamir, A., Zemel, E., Chandrasekaran, R. An O(nlog® n) algorithm for the kth

longest path in a tree with applications to location problems, SIAM J. on Comput., 10 (2), pp.
328-337, May 1981.

[MA] Mirzaian, A., Arjomandi, E. Selection in X +Y and matrices with sorted rows and columns,

Info. Process. Lett., 20, pp. 13-17, 1985.

[PH] Preparata, F.P., Hong, S.J. Convez hulls of finite sels of points in two and three dimensions,
Comm. ACM, 20, 2 (1977), pp. 87-93.

[PS] Preparata, F.P., Shamos, M.I. Computational geometry, New York: Springer-Verlag, 1985.

[Sa] Salowe, J.S. Efficient geometric selection in the plane, M.Sc. Thesis, Rutgers University, Aug.
1985.

19

[Sh] Shamos, M.I. Geometry and statistics: problems at the interface, Algorithms and complexity:
new directions and recent results, ed. J.F. Traub, Academic Press, New York, pp. 251-280,
1976.

[Ta] Tarski, A. A decision method for elementary algebra and geometry, Univ. of Calif. Press, 1948,
2nd Ed., 1951.

[T] Toussaint, G.T. An optimal algorithm for computing the minimum verter distance between two

crossing convezr polygons, Proc. 21st Allerton Conf. on Comm. Control and Comput. (1983),
pp. 457-458.

[W] Willard, D.E. Polygon retrieval, SIAM J. Comp., 11 (1982), pp. 149-165.

[Y] Yao, A.C. On constructing minimum spanning tree in k-dimensional space and related problems,
SIAM J. Comput. 11 (4), 1982, pp. 721-736.

[YY] Yao, A.C., Yao, F.F. A general approach to d-dimensional geometric queries, 17th Ann. ACM
Symp. on Theory of Computing, Providence, RI, May 1985, pp. 163-168.

20

A

PR

NN

A/

AN

NN

A/

AN

/IW/ 7/ //

NN

NN

G4 Y Y

#

KBTS

h

F;ﬁuf‘c,- . 58 ‘

i

n

00

|0

Ol

00

Ol

Ol

10

Il

>

F;gure_ =3

Basi

