SIMULATING DIGITAL CIRCUITS WITH ONE BIT PER WIRE

Andrew W. Appel

CS-TR-093-87

May 1987

Appeared in IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, &(9) : 987-993, September 1988.

Simulating Digital Circuits with One Bit Per Wire

Andrew W. Appel

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

Conventional digital circuit simulators represent circuits using linked data
structures, using one or more pointers per connection. To simulate a circuit of N
nodes requires space proportional to N1ogN bits.

Many circuits have a hierarchical or repetitive nature, so their specifications can
be significantly smaller than the circuits themselves. This paper shows that such
circuits can be simulated in space equal to one bit of memory per wire of the cir-
cuit, plus space proportional to the (smaller) size of the specification; that is, the
space required is only O (V) bits.

The algorithm has been implemented; measurements of its efficiency are given.

1. A simple model of synchronous circuits

A combinational digital logic circuit is one which implements one or more boolean functions on
a given set of inputs using and, or, and not gates. These gates are connected using wires which
tie exactly one output of one gate to one or more inputs of other gates. There are no cycles, in
which the input to a gate functionally depends on the output of that gate.

The circuit can be modelled as an acyclic graph with directed edges whose nodes are
labelled by and, or, not, input, and output. The input nodes have only out-edges; they provide
the boolean values on which the graph implements boolean functions. The output nodes have
only in-edges; they represent the functions computed.

Clocked synchronous sequential circuits have, in addition to the above-described com-
ponents, latches that hold values. These latches copy their inputs to their outputs only on receipt
of a clock signal. All of the latches in a synchronous circuit must be clocked at the same instant.
It is legal to have a cycle in the graph as long as it goes through a latch. These circuits can be
modelled as combinational circuits in which the inputs to the latches are considered outputs of
the function-graph, and outputs of the latches are considered inputs to the function-graph.

This work was supported in part by NSF Grant DCR-8603453 and in part by a Digital Equipment Corporation Faculty In-
centive Grant.

-2-

Simulation of a combinational circuit is the computation of the output values from the input
values. This computation can be easily done as follows: the graph is first topologically sorted —
that is, totally ordered in such a way that each node follows all the nodes on which it functionally
depends. Then the boolean value at each node is computed in this order, using the previously cal-
culated values of its inputs.

This algorithm is relatively efficient. For a circuit of N nodes, it takes time proportional to
N and memory space proportional to NlogN bits. We will use the uniform cost model of time-
complexity, and the log cost model of space-complexity. This is appropriate for conventional
computers because (in general) a full-word instruction is just as fast as a single-bit instruction, but
it is always possible to make use of the individual bits of a memory word.

To simulate a synchronous sequential circuit, this algorithm can be executed for each simu-
lated clock cycle. In each cycle, the outputs of the latches are propagated (by the simulation
algorithm) to the inputs; then the inputs of the latches are all copied to their outputs.

Some circuits have very regular or hierarchical specifications, in which similar subcircuits
are repeated many times. The specifications of these circuits can be much smaller than the cir-
cuits themselves. We show in this paper how to simulate such circuits in much less memory than
the conventional algorithm uses: one bit per wire, rather than one pointer (logN bits) per wire.

2. Hierarchically specified circuits

Many large digital circuits have a hierarchal or repetitive nature. They can be specified using
repeated instances of ‘‘building blocks’® — smaller subcircuits. Many specification and simula-
tion languages allow the hierarchical specification of such modules[1-4]. For example, a 64-bit
shift register can be built from four 16-bit shift registers connected together. By specifying the
design of the 16-bit shift register just once rather than four times, the length of the circuit’s
description can be shortened considerably.

In fact, the 16-bit shift register can itself be specified as four 4-bit shift registers connected
together; by taking this process to the limit, a circuit of size N can often be specified in space
logN (or perhaps logzN in the log-cost model). In practice, circuits are not always so regular or
hierarchical; but even so, specifications can be much smaller than the circuits they describe.

This section describes a simple language for specifying hierarchical circuits. The language is not
meant to be novel, it just helps clarify the explanation. Here, the curly braces are meta-syntax, so
{x} means ‘‘zero or more repetitions of x.”’

spec — {mod} mod

mod — MODULE ID {decl} BEGIN {conn} END
decl — IN: {ID}

decl — OUT: {ID}

decl — LOCAL: {ID}

decl — ID: {ID}

conn — { pin<- } pin <- exp
conn — exp->pin { ->pin }

eXxp — pin

eXp — exp+exp
exp — exp¥*exp
exp — Texp

exp — (exp)
pin —» ID

pin —» ID.ID

Each module specification gives the name of the module, followed by declarations of the input
pins, output pins, internal pins, and submodules. Between the BEGIN and END are the
specifications of gates and connections. The gates are represented using the infix operators +
(or), * (and), and ~ (not).

Figure 1 gives the specification of a half-adder. This module uses no submodules, and has
input pins x,y and output pins sum, carry.

module HalfAdder
in: % y X sum
out: sum carry
begin (x+y)*~ (x*y) -> sum
x¥*y =-> carry y carry

end
Figure 1.

Using three half adders, we can construct a two-bit full adder (Figure 2). The specification
of FullAdder describes the three instatiations of the module HalfAdder, and the wires connecting
them to each other and to the input and output pins. There is also one or-gate.

We will introduce a primitive latch component (Figure 3). The internals of this 4-bit regis-
ter cannot be specified in the language, but the intent is that on every clock cycle (after all of the
gates and connections have been fully propagated) the values of the d; will be copied to the g; of
all reg4 components. A 4-bit shift register can be made using one instance of reg4 and some

module FullAdder
in: x0 x1 g X _ sum
in: %0 x1 y0 y x0 low
out: z0 zl z2

X 1 y carry
HalfAdder: low mid high Cj“"—#)
X sSum

.

z0

begin x0 -> low.x mid |]zl
y0 -> low.y w
low.sum -> z0 0 X sump 72
x1 -> high.x y1}— | high

yl => high.y
high.sum -> mid.x

low.carry -> mid.y
mid.sum -> zl
mid.carry + high.carry -> z2

end
Figure 2.

module regé
in: d0 dl d2 d3 do q0
out: g0 gl g2 g3 d1 ql
begin d2 q2
end d3 g3

Figure 3.

additional gates. A 16-bit shift register can be made of four 4-bit shift registers; a 64-bit shift
register can be made of four 16-bit shift registers, etc.

3. Economizing on memory

A circuit with millions of connections can be specified using a hierarchical specification (with
nested modules as described in the previous section) just dozens of lines long. A straightforward
simulation algorithm would be to expand the specification by substituting module bodies for their
uses until a graph composed of just gates and wires was reached. This would take approximately
one pointer per wire. Since each pointer must be large enough to encode the range of integers
between 1 and the number of gates, an N-connection circuit takes Q(N1ogN) bits to encode in this
way.

Previous systems have avoided a similar blowup in symbol-table size by storing the
symbol-table as a hierarchical structure isomorphic to the circuit description, with repeated refer-
ence to a single description for each replicated module[4]. The space to store active circuit ele-
ments in such systems has still been proportional to the size of the circuit, however, not to the
size of the description.

.

Suppose only one bit per connection is used to record the current signal value at that node
of the circuit, and the original specification of the circuit is used as a ‘‘road map”’ to correctly
propagate the signal values. The original specification is much smaller than the number of gates,
so this method would take O(N) bits of storage.

In the new algorithm, each module of the hierarchical specification will be implemented as
a ‘“‘subroutine.”” The subroutine will be passed (as a parameter) a pointer to a block of memory
in which are stored the current signal values of an instantiation of the module. The subroutine
will propagate the module’s input signals to its outputs, and then return.

If another instantiation of the same module is used, then the same subroutine will be called.
A pointer to a different block of memory will be passed as an argument, because the signal values
of different instantiations will differ even though the connections are similar.

The information about the connections between different gates in the module will be
encoded once (in the subroutine) rather than many times (in each instantation). The blocks of
data on which the subroutine operates will contain only signal values (1’s and 0’s, in a digital cir-
cuit), not pointers.

If one module contains some instantiations of smaller modules in the hierarchical
specification, then the subroutine for the enclosing module will simply call the subroutines asso-
ciated with the smaller modules. Thus, nested modules in the specification correspond to nested
subroutine calls in the simulation.

4. Layout of data

To implement a module as a subroutine, the block of memory used to store the signal values at
the connections of the module must be arranged in the same way for each instantiation. As an
example, consider the half-adder example given previously. It has 2 input “‘pins’’ (x and y) and 2
output ‘‘pins’’ (sum and carry). We can allocate a 4-bit block of memory to hold the values at
these pins (figure 4).

0 x 1
1y 0
2 sum 1
3 cary | 0
Figure 4

Then the subroutine implementing the half-adder can be passed a pointer to this block, and it will
propagate the inputs to the outputs:

HalfAdder (p)
{pl2] = (p[0]Ip[l])&~(p[0]&p[1]): (x+y)*(x*y) —> sum
pl3] = (pl0l&p[l]):; x*y — carry
}
(A notation like that of the C language is used here just to illustrate the algorithm.) The Hal-

fAdder subroutine can be passed a pointer to any 4-bit block of memory, and it will assume that
these bits are to be interpreted as (x, y, sum, carry).

-6-

When one module is embedded within another, then a data block of appropriate size must
be embedded within the enclosing module’s data block. For example, the full adder described
previously would have the data block shown in figure 5.

in 0o x0 1
1 xl 1
2 y0 0
3 yl 1
out 4 z0 0
5 =gl 0
6 z2 1
low 7 X 1
8y 0
9 sum 1
10 carry | 0
mid 11 x 1
2 vy 0
13 sum 1
14 carry | 0
high 15 x 1
6y 0
17 sum 1
18 carry | 0
Figure 5

Each instantiation of the HalfAdder has a data block with the same internal arrangement, and
each of these data blocks is a sub-block of the FullAdder’s data block. The FullAdder procedure
can be implemented as follows:

FullAdder (p)

{p[7] := p[0]; x0 — lowx

pl8] := pl[2]): y0 = low.y

HalfAdder (p+7); propagate internals of low
pl4] = i8] low.sum — z0

pl15] := p[1]; x1 — highx

I

pl16] pl3]: yl — high.y

HalfAdder (p+15); propagate internals of high

plll] := p[17]: high.sum — mid.x

pll2] := p[1l0]: low.carry — mid.y

HalfAdder (p+11); propagate internals of mid

pl5]1 := p[1l3]; mid.sum — zl

pl6] := p[l4]|p[18]; mid.carry + high.carry — z2

5. Cycles and pseudo-cycles

In general, a circuit can be simulated in one pass (as shown in the implementations of HalfAdder
and FullAdder) only if there are no cycles in the circuit. If this is the case, then the gates of the
circuit can be topologically sorted; this gives an order of evaluation in which each gate is
evaluated before any other gates which use the resulting value.

Some circuits cannot be topologically sorted because they contain cycles: the input of some
gate depends functionally on the gate’s output. Figure 6 shows two examples of such circuits.

G R G

Figure 6

The circuit on the left doesn’t have any stable output, and the circuit on the right has two different
stable states. Such circuits, though not without applications, are very difficult to simulate without
using timing information (gate and wire delays), and will not be considered further here.

On the other hand, in a hierarchical specification of a circuit, there can be ‘‘pseudo-cycles.”’
A pseudo-cycle occurs when the output of a module is fed (directly or indirectly) back to an input
of that module, but in a way that wouldn’t create a cycle if the module boundaries were erased.
Figure 7 shows an example of a pseudo-cycle.

'\E__D_b
O d

Figure 7.

Output b of the submodule is propagated to input c. If the internal connections of the submodule
were unknown, then this would looks like an apparent cycle. On the other hand, if the module
boundaries are erased, it is clear that at the gate level there are no cycles.

Since pseudo-cycles can be simulated easily by the conventional (NlogN space) algorithm,
the new, space-efficient algorithm must be made to accept them as well.

A simple approach to evaluation order for the new algorithm would be to consider the
instantiations of submodules as single nodes (just like gates) and perform a topological sort on
the gates and submodules. Unfortunately, the presence of pseudo-cycles will render this impossi-
ble. Instead, we will temporarily abandon the idea of topological sorting; the evaluations of the
gates and submodules will be ordered arbitrarily.

-8-

Now it is the case that in one evalution pass through the gates and submodules, some nodes
will be evaluated before their inputs. The values produced for these nodes will be meaningless.
However, it must be the case that some gates have all of their inputs ready — these are the gates
connected only to input pins of the entire circuit. Furthermore, the (correct) evaluation of these
gates will provide inputs to other gates in the circuilt.

If another evaluation pass is made through the circuit, then additional gates will be mean-
ingfully evaluated. Any gate which was meaningfully evaluated on a previous pass must yield
the same output, since the inputs to the circuit as a whole have not changed. If there are no cycles
in the circuit, then each pass must meaningfully evaluate some gates which previously did not
have all their inputs evaluated (unless, of course, all gates have been meaningfully evaluated).

Thus, if a circuit has N gates, then N passes will suffice to propagate meaningful values to
its outputs. In many cases, significantly fewer passes will be required.
The simulatibn algorithm for one module runs as follows:
1 Start with meaningful values at input pins, and arbitrary values elsewhere.
2. Evaluate all gates in an arbitrary but fixed order.
3. Evaluate all submodules in an arbitrary fixed order.
4. If any (gate or module) output values changed in step 2 or step 3, repeat from step 2.

The evaluation of one of the submodules may itself loop until its outputs have settled.

6. Variations on the algorithm

Even though a topological sort is impossible in the presence of loops, an approximation can still
be made. For example, the set of strongly connected components can be topologically sorted.
(Strongly connected components are those subgraphs in which there is a path from each node to
every other; a cycle is an example of a strongly connected component.)

Within a strongly connected component (which, remember, is only pseudo-strongly con-
nected) a feedback vertex set can be removed, and the remaining nodes can be topologically
sorted. (A feedback vertex set is a set of nodes (i.e. gates and submodules) whose removal leaves
no cycles in the component.)

Since the strongly connected components are the ones which impose a need to evaluate in
more than one pass, it makes sense to confine the iteration to the strongly connected components.
To evaluate a component, remove (and evaluate) one of the feedback vertices, and then evaluate
the remaining subcomponents in topological-sort order. Since the original feedback vertex didn’t
have entirely meaningful inputs, this must be iterated until the signal values settle.

By confining the repeated evaluation to the pseudo-cycles (where it is needed), the simula-
tion should require fewer gate-evaluations before it converges.

Any module with no pseudo-cycles can be simulated in one pass. In general, it is possible
to compute an upper bound b for the number of iterations i any component will require. It may
be faster to evaluate b iterations without checking for quiescence, than to iterate for i+1 passes

B

with the quiescence check — even though the actual i may be less than the bound b.

All of the analysis required to reorder the evaluations within a module take space propor-
tional to the size of the module’s description. Thus, the algorithm as a whole still uses approxi-
mately one bit per wire when the specification is smaller than the number of wires in the circuit.

7. An implementation

Because the layouts of all the instances of a module are the same, and the sequence of gate
evaluations can be predetermined, it is possible to compile the gate evaluations into efficient
machine code for a von Neumann computer. The individual gate evaluations can be done very
quickly.

The use of compiled code to evaluate modules in hierarchical circuits is not new; this is
known as "functional modelling"[5]. In the new algorithm, however, the functional model is
automatically calculated from the circuit description, which cleanly unifies the functional model-
ling language with the circuit description language.

This section describes an implementation of the simple algorithm described in section 5
(that is, without any topological sort). The input language is is exactly that described in section

2. An ad-hoc lexical analyzer and a recursive-descent parser are used. A separate symbol tables
is kept for each module.

The circuits are compiled into machine code for the VAX. The VAXs bit-field instructions
are used to extract and insert binary values from memory. These instructions are expensive; a
one-byte-per-wire implementation would use more memory but would run much faster.

Several registers are reserved for special uses:

Cv One register is used to keep track of whether any pin has Changed Value in an itera-
tion of a module.

DP One register is used to point to the data area (containing the signal values of an
instance) of a procedure.

SP The stack pointer points to the top of the runtime stack, which is used to keep return

addresses of procedure calls, and to save copies of register CV.
Here is a summary of how each of the operators is translated:

pin Individual pins (represented as ID or as ID.ID) are translated as extract-field instruc-
tions. The byte-offset from the data pointer (DP), and the bit-position with the byte,
are known at compile-time. The fetched value is put into a register.

+ The two subexpressions are evaluated into registers, and then a bitwise-or instruction
is used.
i Similar to +, except that bitwise-and is done.

The single subexpression is evaluated, then complemented.

— The two versions of arrow are really the same operator with reversed syntax. In either
case, the old value of the destination pin is fetched and exclusive-or’ed with the new

-10-

value. This yields a boolean value specifying whether the pin has changed value; this
boolean is inclusive-or’ed with register CV. Thus, when the end of a module is
reached, register CV contains a 1 if any pin has changed value.

Each module’s subroutine must also call the subroutines for the instances of included modules.
This is quite straightforward; the data-pointer register (DP) is adjusted, a jump-to-subroutine is
done, and then the data-pointer is restored. The subroutine returns a flag indicating whether any
internal pins changed value; this is then or’ed into register CV.

In this implementation of the algorithm, an entire boolean expression (and not just one gate)
is evaluated before being stored back into the data area. This means that the intermediate ‘‘simu-
lated wires’” will not require storage space. Thus, a space usage of significantly less than one bit
per wire can be achieved.

For technical reasons, the data for each module must begin on a byte boundary. Unused
bits are inserted into the data spaces to ensure this.

A four-bit clocked latch module is introduced as a primitive. This has four inputs (dg, d;,
d,, d3) and four outputs (9o, ¢1, g2, ¢3). In each clock cycle, the g; are treated as constants, and
the circuit is evaluated (and modules are iterated) until all pins settle. Then the d; are copied to
the g; of all latches in the system by a recursive traversal of the symbol table.

8. Performance of the implementation

The two characteristics of performance for any implementation of the algorithm described in this
paper are:

1. How fast is the simulation of one gate?
2. How many times must each gate be iterated in a clock cycle?

The first question can be approximated accurately by simply looking at the instruction sequence
generated for a gate. In any case, it is a parameter of the implementation and is mostly indepen-
dent of the circuit being simulated.

The second question is independent of the implementation; it is a function of the circuit
being simulated. On the whole, it is a more interesting question than the first, because its answer
has implications for any iterative simulation.

Two small but nontrivial circuits were simulated using the implementation described in the
previous section. The first circuit implements a chess clock using several sychronous divide-by-n
counters and some ‘‘random logic’’ state circuitry. The second circuit implements a Turing
machine (with finite tape size) using a RAM and a shift-register. In each case, the specifications
were built just using the 4-bit latch primitive and and, or, and not gates.

The measurements were done on a VAX-8600; the results are given below.

=1t

Chess Clock Turing Machine

Specification (lines) 111 178

Gates 986 17570
Wires 1989 35973

Data space (bytes) 70 968

Spec. space (bytes) 8k 19k
Translation Time (msec) 100 300
Simulation Time (msec) 11 49
Time/Wire (usec) 1.48 1.34
Iterations 4.07 1.01

The timings above (except the Translation Time) are for each clock cycle of the simulation.
“Iterations’” measures the total number of wires evaluated divided by the total number of gates in
the system, so it is the average number of times each wire is evaluated. This is the parameter of
interest; if it is small, then the new algorithm will be competitive and useful; if it very large, then
the new algorithm will be much slower than conventional algorithms. For these two example cir-
cuits, the number of iterations is small.

““Time/Wire’’ is just the total runtime divided by the number of wires evaluated; this
number should be independent of the circuit simulated, since it just measures the speed of the
VAX instructions used to simulate each gate.

‘‘Data space’’ is the total memory used to store the state of all the wires in the circuit; it is
less than one bit per wire because not all wires need their state saved. ‘‘Spec. Space’ shows the
total memory overhead attributable to the specification, including the symbol tables of the
modules, and the machine code that implements them. This can be expected to be roughly pro-
portional to the number of symbols in the input specification. There is also a constant space over-
head of about 45 kilobytes for the compiler/simulator program itself. The program is imple-
mented in the C language using 1066 lines of code.

For these small examples, the specification size is larger than the data space; but for large,
strongly hierarchical circuits, the data space can be expected to dominate the specification size.

9. Worst case execution time

The simulations of the previous section show that the number of iterations required in typical
problems is small. However, it is possible to construct artificial examples which require a
number of iterations equal to the number of wires in the circuit. This is done by using deeply
nested pseudo-cycles.

Define the module Ay to have two inputs and two outputs, and simply copy the inputs to
the outputs. For any i >0, we can make the module A;,; using two instantiations of the module
A;, each with a pseudo-cycle (figure 8).

« 13-

Figure 8

Now it turns out that if all the internal pins have the value 0, and a 1 value is put at the input
of a module A,, then ©(2%) gate evaluations are required (using the algorithm described in this
paper) before quiescence is reached. This can be proved using a simple induction argument.

This circuit, however, has ©(2%) wires. Thus, the number of iterations is equal to the
number of wires. Thus, evaluating a combinational circuit of n wires using the hierarchical algo-
rithm can take n? time; the conventional algorithm takes O (n) time.

Without a topological sort, the conventional algorithm can take n? time; the deeply nested
nature of the modules A, prevents the appropriate re-arrangement from taking place. Deeply
nested pseudo-cycles are probably rare in real circuits, so that the time will be close to linear in
the number of wires (the number of iterations will be small). The empirical results of the preced-
ing section are reassuring.

10. Conclusion

Synchronous digital logic circuits can be simulated in space proportional to one bit per wire, as
long as the specification has a hierarchical nature. The simulation algorithm is simple to imple-
ment, and runs relatively quickly. Although the algorithm has a quadratic worst-case running
time, empirical results show that the running time for typical circuits is close to linear.

It is easy to extend this algorithm to work on multi-bit datapaths instead of single-bit
values. It would be harder, though probably possible, to make the simulation event-driven, so
that large quiescent parts of the circuit are not re-evaluated on every clock cycle.

15

References

References

1. N. Giambiasi, A. Miara, and D. Muriach, *‘SILOG: A practical tool for large digital network simulation,”” 16th Design Auto-
mation Conference, pp. 263-271, ACM, 1979,

2. Dwight Hill and Willem vanCleemput, ‘“SABLE: A tool for generating structured, multi-level simulations,’”” 16th Design
Automation Conference, pp. 272-279, ACM, 1979.

3; Dan Holt and Steve Sapiro, ‘““BOLT - A block oriented design specification language,’” 18th Design Automation Conference,
pp- 276-279, ACM, 1981.

4, Mahesh H. Doshi, Roderick B. Sullivan, and Donald M. Schuler, **Themis logic simulator: a mix mode, multi-level, hierarchi-
cal, interactive digital circuit simulator,”” 21st Design Automation Conference, pp. 24-31, ACM, 1984,

5

Phil Wilcox, *‘Digital logic simulation at the gate and functional level,”” 16th Design Automation Conference, pp. 242-248,
ACM, 1979.

