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ABSTRACT

In this paper we describe the implementation of a process
migration mechanism under version 3.0 of the Sun UNIXt operat-
ing system. Processes that do not communicate with other
processes and that do not take actions that depend on knowledge
of the execution environment (such as the process id), can be
moved from one machine to another while running, in a tran-
sparent way. This is achieved by signaling a process to stop, sav-
ing all the kernel and memory information that is necessary to res-
tart the process and then, by using this information, restarting the
process on the new machine. This new functionality requires
minor kernel modifications as well as the creation of a new signal
and a new system call.

T UNIX is a trademark of AT&T Bell Laboratories.
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1. Introduction

Process migration is the capability to move a process that is running on a
certain machine to another, without interrupting its execution. This is a useful
tool to have, as it can be used in various ways, ranging from system applica-
tions such as load balancing and process checkpointing, to applications for indi-
vidual users such as moving a process from a machine that is about to go down,
to another.

The interface to this mechanism should be transparent to the process that
is being migrated. Specifically, the process should not know anything about the
process migration mechanism and, after it is moved to another host, it should
continue its execution as if it were still running on the original machine. The
performance of this mechanism may vary depending on the purpose for which it
is used. If it is used to even the load among a number of machines (load balanc-
ing), then it must introduce little overhead to the system, and must be able to
move processes between machines quickly, requiring time comparable to that of
the time required to load and start a program. On the other hand, if process
migration is used for moving individual CPU intensive tasks in order to achieve
better performance for those tasks, or to remove important tasks from a
machine that is about to be halted, then it is acceptable for the mechanism to
have a lower performance.

Implementing process migration in an operating system is a non—trivial
task. One must be able to keep track of all the system resources that a process
is using and to reallocate them to the migrated process on another machine.
For example, one must know what files a process is using and have the ability
to reopen these files on behalf of the migrated process on another machine,
keeping track of the current offset within the file. If files are local to the
machine that owns the device on which they are stored, this can prove to be
very hard, if not impossible, as in many cases the file system cannot access the
files of a remote machine directly.

In this paper we start by mentioning previous implementations of process
migration and describing our implementation environment, explaining how it is
different from that of these other implementations. Then, in Section 4, we
present the user interface to the process migration mechanism and provide
examples for it. First we present the interface as a casual user might see it and
then as a programmer who wants to write new applications that use this
mechanism. In the Section 5 we describe the additions and modifications that
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were made to the Sun 3.0 UNIX kernel to add the process migration capability
to it. In Section 6 we present our measurements of the performance of the new
kernel and the applications that were written on top of it and in Section 7 we
discuss the limitations of our system. In the eighth section we describe some
applications that can be implemented using our process migration mechanism
and, in the last section, we present our conclusions.

2. Other implementations

There are only four other implementations of process migration of which
we are currently aware:

In the DEMOS/MP operating system! all interaction with the kernel is
achieved by exchanging messages with it. This extends to the kernel itself,
which can use the message mechanism to communicate with the kernel of
another machine. Process migration is achieved by having the original kernel
transfer the state of the process to be migrated, to the destination kernel. After
the process is created on the new host, all pending messages are forwarded to
the new address of the process. Finally, the old process is destroyed and
replaced with a degenerate process which acts as a forwarding address, so that
further messages to the old process can be delivered correctly.

The Locus distributed UNIX system? attempts to distribute all the
resources that a program is using, including the CPU, among all the machines in
a network, in order to achieve network transparency of all resources. This sys-
tem provides the migrate system call to change the execution site of a program
that is already running.

The V—System® also provides a network transparent environment. Each
machine runs a functionally identical copy of a distributed kernel that provides
address spaces, processes that run in these address spaces, and interprocess
communication. Address spaces are grouped into logical hosts, and processes are
bound to a logical host, which allows them to have a globally unique address.
Process migration is implemented with the migrateprog command. This com-
mand copies the state of a process to the destination machine and then repeat-
edly copies that part of the state that has changed since the previous copy,
until relatively little information is copied. At this stage, the old process is
frozen and any remaining modifications in its state are copied to the new
machine. This pre—copying is made to reduce the time that a process remains
frozen, thus increasing performance. The old process is then destroyed and the
new process is bound to the logical host of the old process, so that the new pro-
cess is indistinguishable from the old. Finally, the new process is allowed to con-
tinue. While the process is frozen, a kernel server that is executing inside the
kernel sends “reply pending” packets to all processes that have sent messages
to the process being migrated, so that these processes do not time out. .

Finally, in the Sprite operating system,* 5 process migration is implemented
by moving a process on another machine, but having those system calls that
have different effects if executed on different machines (like get time of day, get
process id), executed on the original machine, by exchanging messages between
the process and the kernel of the original machine. In this way, although a

1 ]
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process may be physically located on a different machine, it is actually working
under the kernel with which it started its execution.

All of these implementations have relied on special features of the operat-
ing system that create a distributed environment and make it relatively easy for
two machines to cooperate in moving a process from one to the other. However,
“ordinary” operating systems such ours, a UNIX implementation which evolved
to its current state but was not designed for distributed use, do not have such
features and implementing process migration under them is more difficult.

Since UNIX does not provide means of communication between two kernels,
our implementation was somewhat limited in scope, in the sense that not all
processes can be migrated. Apart from badly behaved processes (which are dis-
cussed in Section 7), the main limitation is that our mechanism does not provide
for the migration of sockets, which are the main way of doing inter—process
communication under UNIX. In our discussion of our implementation’s limita-
tion we argue that this does not render it useless.

3. Implementation environment

Our implementation was made on Sun 2 workstations running version 3.0
of Sun O.S., which is a derivative of the Berkeley 4.2 BSD version of the UNIX
operating system. The machines were connected to each other and a file server
by a 10 Mbit Ethernet,f which provided the physical medium for moving
processes from one machine to another. Each workstation’s local files, along
with the files that reside on the file server, are available on every machine by
means of Sun’s Network Filesystem®7 (NFS). This filesystem provides the abil-
ity to place the directory structure of a physical device (mount it) on an arbi-
trary place in the directory structure of a machine other than the one on which
the device resides. On our particular system we followed the convention of the
8™ research edition of the UNIX operating system of mounting the root direc-
tory of a machine to the “n’ subdirectory of the root directory of all other
machines. For example, the root directory of machine brador can be accessed
from other machines as the directory /n/brador.

4. User level description

Our process migration system provides certain new commands that the
user can use to move processes from one machine to another. These commands
are implemented by using a new signal and a new system call that our kernel
provides. Knowledgeable users can use these new features directly to write
their own process migration commands.

In this section we start by describing the three new commands, giving a
typical example of how they can be used. These commands are easy for the
naive user to use, as all that is required to move a process from one machine to
another using them is to specify the name of the destination host and the pro-
cess id of the process to be migrated as command line arguments. We then

t Ethernet is a trademark of XEROX Corporation.
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proceed to describe the kernel interface to the process migration mechanism,
examining in some detail the implementation of two of these commands as an
example.

4.1. User commands

Most of the implementation code for process migration is at the user level.

By this we mean that all commands that have to do with process migration are
user applications. However, if the available commands do not fit a specific need,
users can easily write their own substitutes (see Section 4.3).

We have provided the following three commands, which should cover most

of the common cases:

Dumpproc — terminate a process (kill it) dumping to disk all the informa-
tion that is necessary to restart it. The process is determined by specifying
its process id with a command line option. For security reasons, only the
superuser or the owner of the process can kill a process in this way.

Restart — restart a process that was killed on some host with the dumpproc
command. There are command line options to specify the process by its
process id, and the name of the host on which the process was dumped (the
default is the current machine). The process will be restarted on the host
on which the command was given and at the terminal (or window) on
which the command was typed. All files that had been open when the pro-
cess was dumped will be available to the restarted process with the correct
access modes and offset. Terminal modes such as “raw” (process input
characters as soon as they are typed) or “noecho” (disable echoing of input
characters) are preserved, so that visual applications such as screen editors
can be restarted properly. Again, for security reasons, only the superuser or
the owner of the original process can restart a process.

Migrate — move a process from one machine to another. This is simply a
combination of the two previous commands and can be used to avoid hav-
ing to go to another terminal to type the dumpproc or restart command.
The process id of the process to be moved, the name of the host from
which the process is to be moved and the name of the destination host can
be specified by the appropriate command line options (the default for both
hosts is the current machine). The process is restarted on the terminal (or
window) that the command was typed, even though the host that the pro-
cess will run may not be the one on which that terminal is connected.
Migrate calls dumpproc and restart internally, by using the remote shell
command rsh® of the Sun 3.0 operating system, if necessary. Because of the
way that rsh is implemented, certain terminal modes can not be preserved
when moving a process to a remote host, thus, in these cases, making this
command unsuitable for the migration of visually oriented programs. For
example, a screen editor will not be able to act on keyboard input as soon
as it is typed, thus the process will become useless.



4.2. An example

In this section we provide an example of a typical user interaction with the
process migration mechanism. Thus, suppose that we are running a program on
a machine called brick and that we wish to move it to a machine called
schooner. This can be done in one of two ways. First, we must determine its
process id, which can be easily done by using the UNIX ps8 command. Let us
assume that we have determined that the process id of the program we want to
migrate is 1234. Now, we can either:

1. Type dumpproc -p 1234 on a terminal (or window) on brick, then type
restart -p 1234 -h brick on a terminal on schooner, followed, if we
are dumping a visually oriented program, by whatever command} will
cause that program to redraw the screen.

2. Type migrate -p 1234 -f brick -t schooner on any machine, not
necessarily brick or schooner. If we are migrating a visually oriented pro-
gram, the best option in this case is to type the command on schooner, so
that the restart command can be executed locally and the terminal modes
are preserved. As before, if we are migrating a visually oriented program,
we must redraw the screen by using the appropriate command.

4.3. Writing new applications

As we mentioned in the previous section, it is possible to write new com-
mands that handle process migration in a different way from that of the three
commands that we described. To do so, the following two items are available to
the programmer.

1. A new signalt, SIGDUMP. When a process receives this signal (which can
be sent using the UNIX kill system call), the process is terminated, and all
the information that is necessary to restart it will be dumped to disk. This
information is in the form of three files, which are placed in the Jusr/tmp
directory, named a.outXXXXX, filesXXXXX and stackXXXXX, where XXXXX
is the process id of the dumped process.

The first file is an executable obtained by dumping the text and data
segments of the process, and prepending a suitable header that will make
UNIX recognise the file as an executable. This file can be executed as an
ordinary program. The result of such an execution will be similar to run-
ning the original program from the beginning, except that all static vari-
ables will be initialised to the values that they had when the process was
killed. This gives us, incidentally, the undump utility for free. (This utility
creates an executable file by combining an executable and a standard UNIX
core dump.)

1 In UNIX, "L in most cases.
+ Signals in UNIX are essentially software interrupts, see references? 10
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The second file contains all the information that is not needed by the
kernel to restart the process, but must be used at user level if the process
is to restart successfully. This information consists of:

— a ‘“magic number” for identification purposes (arbitrarily set to
octal 445).
— the name of the host on which the process was currently running at
the time it was killed.
— the absolute path name of the current working directory.
— for each entry in the open file table of the process (which has a
fixed size), an indicator specifying whether the entry refers to an open
socket, open file or is unused. For open files, this indicator is followed
by the absolute path name of the file, the file access flags (e.g., read
only etc.), and the file offset. Since the process migration mechanism
does not currently support sockets, no extra information is kept in the
case of a socket.

— the terminal flags, specifying such things as raw mode, echo/noecho,

ete.

All path names in this file have been constructed by combining the names
given by the process to the kernel whenever it changed directory or opened
or created a file, and resolving any references to the current or parent
directories. This means that symbolic linkst are not resolved and this may
cause problems when trying to reopen a file when restarting the process.
Consider for example a file on a machine called classic, named /usr/foo. If
[usr is a symbolic link to /n/brador/usr (i.e., [usr is mounted via NFS to
the /usr directory of the machine named brador), then /usr/foo is actually
/n/brador/usr/foo. Now, let us assume that a program opens this file and
is then terminated with the SIGDUMP signal. When the program is res-
tarted, this file must somehow be reopened. One way would be to prepend
/n/classic to the old name and open /n/classic/usr/foo. Because of the
symbolic link, however, this would actually be /n/classic/n/brador/usr/foo.
Unfortunately, NFS does not allow this syntax, so using this file name
would not produce the desired result.

The way to solve this problem is to resolve symbolic links before files are
reopened. The Sun 3.0 operating system provides the readlink()!! system
call, which can be used iteratively to resolve all symbolic links in a path-
name.

The third file contains all the information that is required by the ker-
nel to restart a process. This information consists of:

— A “magic number” for identification purposes (arbitrarily set to

octal 444).

— The user credentials (such as user and group id).

t Symbolic links are files containing the name of another file, so that the latter can
be accessed by a different (and, presumably, more convenient) name. For example, on
our system, a user’s home directory, which can be accessed as /u/user, is actually a
symbolic link to a directory on the file server such as, say, /n/brador/u2/user.
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— The size of the stack when the process was terminated.

— The contents of the stack.

— The contents of all the registers.

— All the information kept in the user and process structures that is
related to the disposition of signals, such as which signals are being
caught or ignored, which functions are handling those signals that are
caught, ete.

A new system call, rest_proc(), which is used to restart a process that was
terminated using the SIGDUMP signal. It takes two arguments, the names
of the a.outXXXXX and stackXXXXX files mentioned above. Its effect is to
overlay the current process with a copy of the process from which the two
files are created, resuming execution from the point where the process was
killed. Normally, there is no return from this system call, as the process
that invokes it is destroyed. If the system call does return, this means that
either the system didn’t have enough resources to create the new process,
or that something was wrong with the two files (they did not exist or they
had an incorrect format). Readers familiar with UNIX, should note that
this system call is in many ways similar to the UNIX ezecve()!! system call,
which is used in conjunction with the fork()'! system call to create new
processes.

Before issuing this system call to restart a process, a program should
do the following:

— Set its real and effective user id to that of the old process using the
setreuid()!1 system call.

— Change its current working directory to that of the old process, using
the chdir()!! system call.

— Open all files that were open when the old process was running,
assigning the same file numbers that they had in that program. These
files must be opened with the correct access modes and positioned at
the correct offset.

4.4. Example - dumpproc and restart

In this section we show as an example of using the new signal and system

call, how the dumpproc and restart programs that we described in Section 4 are
implemented.

Dumpproc:

Kills the specified process with a SIGDUMP signal.
Reads in the filesXXXXX file.
Resolves symbolic links for the current working directory and all open files.

If a file name points to a terminal, it is changed to /dev/tty, to point to the
current terminal of the process that will open it.

Otherwise, if after resolving the symbolic links, a file is found to be local to
the machine on which dumpproc is running (7.e, its name does not begin
with /n), the string “/n/<machinename>"" is prepended to its name,
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where <machinename>> is the name of that machine.
— Overwrites the modified information on the filesXXXXX file.
Restart:

— Verifies that the three files containing the information about the process
that is to be restarted exist, and that they have the correct format by
checking their magic numbers.

— Reads the old user credentials from the stackXXXXX file and establishes
them as its own. This is the only information that it reads from this file.
Everything else is read from the filesXXXXX file.

— Reads in the old current working directory and establishes that as its own.

— For each one of the files contained in the filesXXXXX file, it reads the infor-
mation contained there. If it is a file, it opens it with the correct access
modes and positions the file pointer to the correct offset. If the file does
not exist any more, or it was a socket, or it was unused, the null device
/dev/null is opened instead, so that restarted process can find an open file
where it expects one, and to preserve the order of open file numbers. In the
case of standard input, output and error output, if the file cannot be reo-
pened, the terminal is opened instead of the null device, so that the user
may have some control over the restarted program.

— Closes all files that were only opened to preserve the order of the file
numbers. Now the only files that are redirected to the null device are those
that could not be opened and those that correspond to sockets.

— Reads in the old terminal flags and sets those of the current terminal
appropriately, so that the current terminal modes are those of the original
process.

—  Calls rest_proc() to restart the old program.

5. Implementation

To make the UNIX kernel capable of supporting process migration we had
to make certain modifications and additions to it. In this section we start by
describing the modifications we had to make in order to make the kernel keep
track of certain information that we required, and then we describe the addi-
tional features we provide, which use these modifications to implement the pro-
cess migration mechanism.

5.1. Kernel Modifications

The main problem in the Sun 3.0 UNIX implementation is that the kernel
does not keep enough information about a process’ current working directory
and open files to enable us to deduce in a non-trivial way what these files are.
Instead, it keeps information about where the file is located physically on disk,
in a structure called an inode.12:13 To overcome this, the kernel structures were
augmented to include the names of these files in the following way:

One of the most important structures in the kernel, is what in UNIX terms
is known as the wuser structure, which contains all the swappable information
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about the process that is currently being executed. A character string of fixed
size was added to this structure, which contains the full path name of the
current directory. By keeping this field up to date, the kernel can now know the
name of the current working directory at any time and output it when dumping
the state of a process during the execution of the SIGDUMP signal. This field is
updated as follows. After each successful call to chdir(), which is the UNIX sys-
tem call to change the current directory, we do the following: if the argument to
the chdir() system call is an absolute path name, it is simply copied to the user
structure; if it is a relative path name, it is combined with the value of the old
current working directory in the user structure and the result is copied back.
This field is initialised when the first call to chdir() is made with an absolute
path name, with the updating procedure being skipped if the field has not been
vet initialised. Since such a call is made early on during the UNIX startup pro-
cedure at boot time, and new processes inherit this field from their parent, we
conclude that this field is correctly maintained for all processes.

Information about open files is contained in an array of pointers to file
structures, one for each of the maximum number of open files that is allowed.
Each file structure has been augmented with a pointer to a dynamically allo-
cated character string containing the absolute path name of the file to which it
refers. Again, by keeping this field up to date, the kernel knows at any moment
the names of all open files, and can produce them during processing of the SIG-
DUMP signal. Dynamically allocated strings were used instead of fixed length
strings, because file structures are not swappable and there is more than one
process being executed at any time with, usually, more than one open file each.
If we had used fixed size strings, they would have had to be large enough to
accommodate large path names, even though most path names are usually of
small length. This would have led to wasting large amounts of kernel memory,
which is clearly undesirable. The field containing the path name of the open
file is initialised after either a successful open()!! (open a file) or a creat()!!
(create a file and open it for output) system call. In either case, the file name is
copied from the arguments of each of these system calls into the entry of the
file structure that is associated with the file that is being opened. If the file
name is a relative path name, its name is combined with the name of the
current working directory in the user structure to create the required absolute
path name.

The required memory for the string that contains the file name is obtained by
calling the kernel’s memory allocator. When the file is closed, using the
close()!! system call, this memory is released. To make sure that the pointer to
the name always has a correct value (either null or a valid pointer), the subrou-
tine which allocates new file structures has been changed to initialise this
pointer to a null value.

5.2. Kernel additions

Since the kernel now keeps track of all the information that we want to
have about a process in order to migrate it, implementing the SIGDUMP signal
is simply a matter of dumping the appropriate data from the kernel structures
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onto disk. The code is similar to that of a signal provided by standard UNIX
(SIGQUIT), which causes a process to terminate (dumping a subset of the infor-
mation we dump for our new signal) in a file named core.

In standard UNIX, new processes are created by first creating an identical
copy of an old process by using the fork() system call and then overlaying the
copy with an image of a new program, obtained from an executable file that is
stored on disk. This system call cannot be used as it presently exists to restart
a process that was dumped with the SIGDUMP signal. This is because ezecve()
initialises the stack and clears the registers. To overcome this, we have added
the rest_proc() system call to our kernel. This has been built upon the execve()
system call which we have just described. For this purpose, the ezecve() system
call has been slightly modified, to check a global flag which, if set, indicates
that it is called from within rest_proc(). In that case, instead of calculating
how much initial stack to allocate for the process, based on the command line
arguments and the environment, it simply allocates as many bytes as are indi-
cated in another global variable, thus making it possible to allocate as much
stack as the process that is being restarted had when it was stopped.

Using this, the rest_proc() system call works as follows:

— It opens the stackXXXXX file, checking access permissions and verifying its
format by checking the magic number at the beginning.

— Reads the user credentials and the size of the stack from that file.

— Sets the global flag indicating process migration and sets the variable that
indicates the desired stack size.

— Calls execve() to execute the a.outXXXXX file, with the environment set to
null. (As the environment of the old process was stored in its stack, it will
be automatically restored when the stack is read in.)

— Resets the variable indicating process migration, so that further calls to
execve() will work properly.

— Sets the user credentials to those already read. The old credentials were
used to execute the a.outXXXXX file, so that only the owner of the process
or the superuser is able to do it.

— Reads in the contents of the stack and registers.

— Reads in the information on the disposition of signals, and establishes it as
that of the current process.

— Returns. At this point, the process running is a copy of the old process.

6. Performance evaluation

In this section we present the various measurements we made on our imple-
mentation. First, we compare the performance of the system calls we have
modified to that of the unmodified ones in the original UNIX kernel. Next, we
compare the performance of the new SIGDUMP signal and the dumpproc pro-
gram to that of the SIGQUIT system of the original UNIX kernel, which is simi-
lar in function. We then compare the performance of the new system call
rest_proc() and the restart program to that of the execve() system call, which is
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the closest to the new system call that the original kernel had. Finally, we com-
pare the performance of the migrate application in various instances, as com-
pared to running the dumpproc and restart applications separately.

6.1. System overhead

As we mentioned in the implementation section, the open(), creat(), close()
and chdir() system calls were modified to keep track of the names of the current
working directory and all open files, inside the kernel. For the open()/close()
system calls, we gauged the overhead by measuring the system CPU execution
time of a program that opens and closes a certain file for a hundred times, both
under the standard UNIX kernel and under our new kernel. Since the creat()
system call simply calls the same internal routine that open() calls, with slightly
different arguments, we did not consider it necessary to measure its perfor-
mance. For the chdir() system call, we measured the overhead by measuring the
system CPU time of a program that executed one hundred sets of three calls to
chdir(), one with an absolute path name as an argument, one with the parent
directory “..”” as an argument and one with a path relative to the current direc-
tory *.”, in order to make certain that all cases of combining the new value of
the current directory with the old one, kept in the user structure, were con-
sidered. The results are summarised in Figure 1, with the performance of the
original UNIX kernel normalised to 1 shown on the left vertical axis and the
actual times (average for one of open()/close() pairs or set of three chdir() sys-
tem calls) shown on the right vertical axis. Our measurements show an over-
head of about forty per cent (44% for open()/close(), 36% for chdir()).

1.44 — — 67.4 1.36 - — 150.4
1 L 46.8 1 — 110
Old New msecs. Old New msecs.
open/close, old vs. new chdir, old vs. new

Performance of modified system calls

fig. 1

6.2. Dumping a process

Since the SIGDUMP signal that is used to stop a process in order to move it
to another a machine is so similar to the SIGQUIT signal that is used to ter-
minate a process in order to obtain a core dump for debugging purposes, it is
appropriate to compare the performance of the former to that of the latter. A
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program was started and then killed repeatedly in the following ways:
— By killing it with a SIGQUIT signal.

— By killing it with the new SIGDUMP signal.

— By killing it with the dumpproc application program.

Since we were measuring the performance of the process migration mechanism,
and not that of the file system, the program was chosen to be a small one, but
which could still be used to verify that our mechanism was working correctly.
The program increments and prints three counters (a register, a static variable
allocated on the data segment and a variable allocated on the stack). On each
iteration it inputs a line and appends it to an output file. This program, was
always killed after its first prompt for input.

For each case, we measured the CPU and real time required to kill the process.
The results are summarised in Figure 2, where the performance of the SIGQUIT
signal is normalised to 1. SIGDUMP requires roughly three times as much time
(both CPU and real) as SIGQUIT. Considering that SIGDUMP produces three
dump files instead of the one that SIGQUIT produces, the result is very satisfac-
tory. Dumpproc requires roughly four times as much CPU time and six times as
much real time as the SIGQUIT signal. The extra CPU time is to be expected,
as, in addition to using SIGDUMP to kill the process, the program has to modify
the filesXXXXX file. The large discrepancy between CPU and real time can be
explained by noting that the three files that are produced by SIGDUMP are
created by the process that is being dumped. When dumpproc tries to open the
a.outXXXXX file, it has to wait until the kernel switches its context to that of
the process being dumped, so that the file can be created, and then wait again
until the kernel switches its context back to it. To avoid busy loops, dumpproc
simply sleeps for one second after each unsuccessful attempt to open
a.outXXXXX (aborting after ten tries). Since the order of magnitude of the times
involved is that of executing a UNIX signal (about 0.6 seconds for killing our
particular test program with SIGDUMP), we feel that the performance of the
new signal is quite adequate.

6.3. Restarting a process

Since the rest_proc() system call that restarts processes that had been
stopped on another host with the SIGDUMP signal is so similar to the ezecve()
system call that executes new processes, it is again appropriate to compare the
performance of the two, along with the restart application. For each case we
measured the CPU and real time required by the system call or program in ques-
tion to restart a test program (for ezecve() we measured the time required to
execute the a.outXXXXX file). The performance of the system calls was obtained
by adding timing code inside the kernel, as these system calls destroy the pro-
cess that invoked them, making it hard to measure their performance at user
level. The performance of restart was measured by timing its execution up to
the point where it called rest_proc(), and adding to it the value already
obtained by timing that system call. This is summarised in Figure 3, where the
performance of ezecve() has been normalised to 1. The dotted line in restart’s
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We note that rest_proc() takes only slightly longer than ezecve(), which is
entirely satisfactory. The restart application takes significantly longer (roughly
five times more CPU time and six times more real time) than ezecve(). This can
be justified by the fact that the application has to check the existence and ver-
ify the format of the three dump files and, most importantly, set that part of
the process environment that can be set at user level, including the open files,
which requires a large number of open() system calls. Nevertheless, considering
the amount of work that is being done, the delay is not unacceptable, especially
when we consider that our unit of measurement is the time required to execute
a process, which, for our test program was less than 0.2 seconds, both in real
and CPU time.
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6.4. Migrating a process

In addition to the dumpproc and restart applications, we have the migrate
application which combines the actions of dumpproc and restart, so that the
user need not move to another terminal to kill or restart his or her process.
Migrate has been implemented by executing the other two applications inter-
nally, by means of the UNIX remote shell facility rsh, if any of those programs
needs to be executed on a remote machine. Rsh requires a lot of time to estab-
lish a connection with another machine, so, depending on where the process was
originally running and to where it is to be restarted, migrate may take as much
as ten times more as it would take to run dumpproc and restart on the
appropriate machines. For our test program, this amounts to almost half a
minute, which may be too large a sacrifice for having the capability to avoid an
extra command. Still, the functionality is there if it is needed and, since the
problem lies with the application and not with the process migration mechan-
ism, it is always possible to write a better application which, by use of a UNIX
daemon process and a well known port can achieve more satisfactory results:
instead of using rsh to start processes remotely, applications will simply send
messages to the daemon, who will start the processes on their behalf. The
measurement results are summarised in Figure 4, where the performance of the
dumpp'roc/restart combination is normalised to 1. (The difference between the
local—remote and remote—local cases is due to the fact that, in each case,
different programs are executed with a remote shell. In the first case, dumpproc
is executed locally and restart remotely. In the second case, it is dumpproc that
is executed remotely and restart is executed locally.)

7. Limitations

Although our system has been fully implemented, not all processes can be
successfully migrated under our current design. The main limitation is the ina-
bility to redirect pipes and sockets to the migrated process. This means that, if
a process was communicating with another by means of a socket, then, when it
is migrated, it will no longer be able to do so. The best we can do in our current
implementation is to redirect socket I/O to a file, which is probably of little use.
However, processes that qualify for process migration are those that have lots of
CPU activity and little I/O activity and are probably running by themselves
without communicating with other programs. This means that, even without
preserving sockets, the process migration mechanism is still useful.

The other limitation has to do with programs that ‘“know’ things about
their environment, such as their process id or the name of the host in which
they are running. For example, if a process repeatedly opens a temporary file
whose name consists of a fixed prefix to which the process id is appended, then,
after the process is migrated and the process id is changed, it will no longer be
able to locate that file. (This will happen if the program requests the process id
from the system every time, instead of doing so only once and then storing it in
a variable for later use.) A more serious example is that of a process that acts
differently depending on which machine it is running (e.g., uses hardware float-
ing point operations if running on host A, otherwise emulates them in software
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— if that process is migrated from host A to some other host after it decides to
use hardware operations, it will crash).

One solution that could be implemented to solve the first of these two
problems is to add an extra field for an old process id and maybe even an old
host name in the user structure, and change the getpid()'! (get process id) and
gethostname()'! (get the name of the machine on which the process is running),
system calls to return those new fields if the process has been migrated. This
would require providing new system calls, that would return the real values,
regardless of whether the process has been migrated or not. Programs that
would use the new system calls would know of the existence of the process
migration mechanism and would therefore be able to avoid transferring the
problem of knowing things about their environment from one set of system calls
to another. Programs that use the old system calls will be made to believe that
they are running in their old environment. This would eliminate the temporary
file problem, but will aggravate the problem of deciding what to do depending
on the environment. Although processes that were migrated before making such
decisions can run under the current system, they will make the wrong decision
and crash if these modifications are implemented. However, there should be
very few, if any, applications that fall in this category and such a modification
is worth considering.

A further caveat is that processes that wait for one or more of their chil-
dren to complete should not be migrated while waiting. When such a process is
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moved to another machine, it ceases being the parent of what used to be its
children, and waiting for them will produce undefined results.

A final point which must be mentioned even though it is not actually a lim-
itation, is the fact that our system does not tolerate much heterogeneity.
Processes can be migrated to a similar CPU or to one whose instruction set is a
superset of that of the original machine. Doing otherwise would result in trying
to execute machine instructions on the destination machine which the machine
does not have. (For example, we can migrate a program from a Sun 2 worksta-
tion having a Motorola 68010 processor to a Sun 3 workstation with a Motorola
68020 processor which is upward—compatible with the 68010, but we cannot
migrate programs in the other direction.)

8. Applications

In this section we present some possible applications of the process migra-
tion mechanism, namely process checkpointing and load balancing.

The ability of our system to create an image of a process at a random
point in its execution and then restart it on another machine (or possibly the
same one), is exactly what we need to implement process checkpointing. If we
have a program that has been running for a long time and for which it would
be undesirable to have it restarted from the beginning in case of a system crash,
we may write an application to take periodic snapshots of it and save those
snapshots by moving them to a directory managed by the application (perhaps
renaming them appropriately) which would then allow us to restart a program
at its n—th checkpoint. The application should also make copies of all files that
were open when the process was checkpointed, so that if the actual files were
modified after the checkpoint, the copies can be used instead of the modified
ones, thus presenting a consistent view of the files to the checkpointed program.

We can also use the process migration mechanism to achieve a better bal-
ance of the computational load in a distributed system. CPU bound jobs can be
moved from busy nodes of the network to others that are idle, or have a much
smaller load. Candidates for migration can be best selected from the processes
that have been running for more than a certain amount of time. This will
ensure that there is a high probability that the candidate program will keep
running for some time, and that it is worth paying the overhead of moving it to
another machine. In the case of load balancing, the migrate application may be
too slow in terms of real time response and a more efficient one would have to
be written, so that the delay of having a program run on a loaded system is not
substituted with the low response time of migrate.

Another application (similar to the load balancing one described above)
would be useful in the case where there are several CPU—bound jobs with a
large expected runing time in a system (for example, the CPU hogs mentioned in
14), These jobs can be run in one machine during the day (or not at all!), when
users want to use the majority of the machines in the network. At night, when
the load on most machines is low, these jobs can be distributed evenly
throughout the system, and thus make efficient use of the network resources.
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9. Conclusions

We feel that our implementation of process migration has been successful.
Programs that do not communicate with other processes and that do not take
actions that depend on knowledge of their environment can be successfully
migrated to other machines, with complete user transparency. This is achieved
efficiently, as stopping a process and restarting it on another machine requires a
time comparable to that of killing the process to obtain a core dump and then
restarting the process at the beginning on another machine using the standard
UNIX system calls.

Since our current implementation does not migrate processes that use sock-
ets, the next step in our research will be to examine whether support for sockets
can be added to our system. Another interesting subject for future work is to
implement one of the applications described in Section 8 and measure the per-
formance of our mechanism in that context, as all our current measurements
are of individual invocations of the process migration mechanism and not of any
systemwide application.

In retrospect, implementing our system was relatively easy, despite the fact
that this was our first experience with the UNIX kernel. Most of our time was
spent in understanding the workings of UNIX. Once such an understanding was
achieved, coding our modifications and additions was relatively straightforward,
due in part to the modularity of the UNIX kernel and in part to the fact that
most of our code was a relatively simple variation of existing kernel code.
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