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Abstract

In a Bakunin network data are replicated
at all nodes in order to achieve very high data
availability. Nodes operate autonomously, exe-
cuting transactions even when they are cut off
from the rest of the system. This means that
transactions may read stale data. In spite of
this, serializability can be guaranteed by placing
restrictions on the types of transactions that a
node can execute. These restrictions take the
form of an acyclic Read-Access Graph. In addi-
tion, a special update propagation protocol is
used to ensure that all nodes see data updates in
the same order. In this paper we present several
such protocols. The protocols take advantage of
the particular structure of the read-access graph
to expedite propagation. We also define the
notion of virtual serializability. It is a weaker
form of serializability that allows speedier pro-
pagation.

1. Introduction.

High data availability in the face of
failures can be achieved through data replica-
tion and distribution. However, conventional
concurrency control mechanisms [Bern81] halt
transaction processing when certain communica-
tions failures occur. Thus, if a node or group of
nodes is cut off from the rest of the system, they
will be unable to access the data they have.

This clearly hurts availability. In some applica-
tions it is important not to halt transaction pro-
cessing when communication failures occur, and
hence researchers have been studying more flexi-
ble mechanisms.

Until recently, a clean partition model has
been used to study such high availability
mechanisms  [BIKa85], [Davi84], [Giff83],
[Park81], [SkWr84]. This model assumes that at
any given time it is possible to tell whether the
network is partitioned and if so, how the nodes
are grouped. Although arguments can be
presented in favor of this model, one must ack-
nowledge that it does not always correctly dep-
ict real systems. In reality, it may be very
difficult to detect when partitions occur and
when they are repaired. This was the motivation
for several researchers to take a different
approach to the problem, namely to make no
assumptions about detectability of partitions
and even communication failures in general
[Davi85], [Sari85]. We call this new failure model
the dynamic fatlure model.

Most of the work that has been done so far
on the dynamic failure model suffers from one
common drawback: it does not guarantee serial-
izability. Instead, it introduces some weak
correctness criteria. In the present paper we sug-
gest a scheme that provides a high degree of
availability and, at the same time, preserves
serializability as the correctness criterion. In
addition, we introduce a new correctness cri-
terion called wirtual serializability. With it we
can improve availability still further. Virtual

t This work has been supported by NSF Grants DMC-
83561616 and DMC-8505194, New Jersey Governor’s
Commission on Science and Technology Contract 85-
990660-6, and grants from DEC, IBM, NCR, and Con-
current Computer corporations.



serializability is a little weaker than strict seri-
alizability, but substantially stronger than other
criteria suggested for high availability data-
bases.

The proposed scheme is characterized by
highly autonomous behavior of individual nodes
with respect to transaction processing. No
attempts at explicit inter-node concurrency con-
trol are made. Instead, correctness of execution
is enforced by a combination of certain data
access restrictions and special update propaga-
tion protocols. Thus, on the one hand, individual
nodes are endowed with absolute freedom (in
scheduling their transactions), and on the other
hand, overall harmony (of execution correctness)
is nevertheless achieved. Because of this pro-
perty, we have termed such systems Bakunin
data networks , after the 19th century Russian
political theorist of anarchist convictions.

The Database Model.

A distributed database system is viewed as
a collection of nodes interconnected by some
communication network, which store a set of
data items. We assume that the database is
fully replicated, i.e., each node has a complete
copy of it. Nodes are fail-stop [ScSc83]. Links
can fail at any time, and we make no assump-
tions concerning the detectability of these
failures.

2.

In our scheme, the entire database is logi-
cally divided into k non-overlapping subsets of
data  items, called fragments, denoted
Fy, F, ..., F. Each node has a copy of every
fragment. Each fragment F; is controlled by a
unique node N(F;) responsible for updating items
in the fragment. We call the process at N(Fj)
that controls F; the agent of F;, or A(F;). For
simplicity we assume that each node (and agent)
controls only one fragment. (This last assump-
tion can easily be relaxed.)

A transaction is taken to be a sequence of
any number of atomic read or write actions
[Eswa76]. Each transaction executes at a single
node (we say it is local to that node) and can
only update the fragment whose agent resides at
that node, but it can, in general, read copies of
other fragments. (Since there are local copies of
all fragments, these reads are performed at the
updating node.) Subsequently, all resulting
updates are propagated throughout the system.
Let T; be an arbitrary transaction, then U(T})
denotes the list of all updates generated by T;.

We assume the existence of a reliable mul-
ticast mechanism which ensures that all mes-
sages are eventually delivered to their destina-
tions and no messages are delivered out of order.
Each node continues processing transactions as
long as it stays operational, regardless of the
status of the communication network. Each
node has a local concurrency control mechanism
used to schedule transactions within that node.
However, there is no (explicit) global con-
currency control. In particular, read and write
accesses to data never have to be coordinated
with other nodes. We will also assume that all
nodes control some fragment. (Nodes that do not
can be considered as controlling an empty frag-
ment.)

In order to specify how transactions ori-
ginating at different nodes are restricted in
which fragments they are allowed to read, other
than the one controlled by their own node, we
will use the following graph formalism.

Definition 2.1. The read-
access graph (RAG) is a  directed graph
G =(V, E), where V={Fy, Fy, ..., F,} and

E = {(F;, F;): 1 # § and a transaction T that is
initiated by A(F;) can read a data object con-
tained in Fj }.

Figure 2.1 shows an example of a read-
access graph with three fragments: F';, F'; and
Fy. Suppose that A(F;) resides at node ¢, for
i =1, 2, 3. Then transactions that run at node
1 can read items in fragments F'; and Fy, those
running at node 2 can read items in fragments
Fy and Fg, and those running at node 3 can
read items in fragments F'; and F.

F1

F2 3

Figure 2.1

Since we assumed a one-to-one correspon-
dence between fragments and computer nodes,
we shall sometimes refer to the vertices of RAGs
as computer nodes rather than fragments, when-
ever it is more convenient.



2.1. The Generic Update Propagation Pro-
tocol.

Let all the nodes of the RAG be numbered
1 through n. Let R({) be the set of all nodes
from which node ¢ receives update messages
(R: {1, ..., n} — 20 - "‘}). Let 5(¢) be the set of
all nodes to which node ¢ sends update messages
(8: {1, ..., n} — 2{t s “}). R and S are called
propagation functions. Functions R and S are
mutually redundant since one is the inverse of
the other. However, we have chosen to introduce
both of them in order to facilitate the forthcom-
ing discussions.

Every node 1 will maintain two lists, which

are initially empty. They are UPDATES(i) and
OUT(i). The protocol consists of three con-
current procedures. .
(1) (Permanently in ezecution at node
1, 1 < i< n.) For every local tranaction
T;, append U(T;) to UPDATES(i). The
order in which different transactions’
updates are appended to the list is deter-
mined by the local serialization order.

(Ezecuted at node i, 1<i<mn, upon
receipt of OUT(j), j e R(7).) Append
OUT(j) to UPDATES(i) and atomically
install all updates from OUT(j) in the
local copy of the database. Make sure that
for every local transaction T; which is seri-
alized before these updates (and none
other) U(T}) is appended to UPDATES(Y)
before OUT ().

(Iterated with arbitrary intervals at node
G1Lign) Atomically copy
UPDATES({) to OUT(¢). Send OUT(¢) to
all nodes in S(¢). Reinitialize UPDATES(1)
to empty.

Since UPDATES({) is accessed con-
currently by several procedures, it is essen-
tial that a locking mechanism be used.

(2)

(3)

Note:

Propagation functions establish a logical
order of update propagation. They have nothing
to do with physical routing of messages. Thus,
OUT(4) is addressed to nodes in S(¢), but how it
gets there is not important as long as the nodes
not in S(¢) through which the message may be
routed do not attempt to process it.

Note that, strictly speaking, updates in
U(T,), where T, is a transaction updating frag-
ment F; are needed only at those nodes that
control fragments F; such that (Fj, F;) is an
edge in the RAG, for only those nodes will ever

read the data updated’. We will ignore any
redundancies for simplicity’s sake. However, it is
a straightforward matter to introduce an optim-
ization provision in the protocol that would
prune out update lists of those updates that are
known not to be needed by any node down the
chain.

On the abstract level, a distributed data-
base system can be described by a combination
of its RAG and propagation functions. In subse-
quent sections we shall study different such com-
binations and their properties.

3. Availability and Related Notions.

The main motivation for studying Bakunin
data networks is the very high level of availabil-
ity they can offer. The ability of every individual
node to schedule and execute transactions
without having to "consult" any other nodes
implies that transactions continue being pro-
cessed at that node as long as the node stays
operational. No communication delays or
failures can affect this ability.

This property of Bakunin networks does
not come for free, of course. In order to insure
that the given correctness criteria are not
violated by the anarchy in scheduling, we have
to curtail somewhat the amount of data avail-
able for access at each node. Besides, in some
cases it may be necessary to choose the propaga-
tion functions in such a way as to restrict the
routes of update propagation, which implies
delayed delivery of updates at some nodes, or
less update availability, so to speak.

The word availability was used three times
in the two preceding paragraphs, and each time
it had a somewhat different meaning. To clarify
the matters, we discuss here briefly the notions
involved.

Static Availability.

We use the term static availability to refer
to the ability of computer nodes (users) to access
certain portions of the entire body of data as
determined by the system design (e.g., because of
security considerations). The restrictions of
static availability do not bear any temporal
character. They are set once and for all, for

t This is true only for systems in which all the agents
are stationary, i.e.,, fixed at their respective nodes.
Such systems are the sole subject of the present paper.
However, see [GaKo87] for moving agents.



every node (user). To say that a certain frag-
ment is statically available at a certain node (to
a certain user) is to imply that this fragment
can be accessed at the node at all times except
possibly when accessing it may jeopardize data
consistency (e.g., during communication failures).
On the other hand, if a fragment is not stati-
cally available to a node (user), it cannot be
accessed by such even when it is safe from the
viewpoint of data consistency. RAGs serve as
an example of how static availability can be
curtailed.

Dynamic Availability.

This term refers to the ability of nodes
(users) to access, over time, the portions of data
that are statically available to them. A loss of
dynamic availability (in replicated systems) can
occur to prevent a violation of data consistency
that may typically be experienced due to com-
munication failures such as partitions.

Prompt Delivery of Updates (or Update
Availability).

The last of the three related notions has to
do with the extent to which the system utilizes
currently functional communication links in
order to propagate updates as quickly as possi-
ble. High levels of static and dynamic availabil-
ity are of no value if updates produced at one
node are not delivered to other nodes or
delivered with big time delays. Consider, for
example, a distributed system with full static
and dynamic availability at every node, i.e., all
data can be accessed anywhere in the system at
any time (barring node failures, of course). Sup-
pose further that updates produce by transac-
tions running at one node never reach other
nodes. Clearly, such collection of nodes can
hardly even be called a system.

All three notions are closely interrelated.
Most. of the known techniques for dealing with
network partitions do not make any restrictions
to static availability (aside from those required
by data security considerations). As a result,
either dynamic availability (as in [Giff83],
[SkWr84]) or correctness (as in [BIKa85],
[Davi84], [Park81|, [Sari85|) suffers. Bakunin
data networks, in contrast to other approaches,
compromises neither dynamic availability nor
correctness in the least. This is achieved at the
price of restricted static availability and, in
some cases, delayed delivery of updates. It is
not one of the subjects of this paper to discuss
to what extent a loss of static availability can

be detrimental (except for presenting a brief
example in the following section), but in
[GaKo87] it is argued that for many systems full
static availability is not necessary.

3.1. How to Evaluate Protocols.

In Section 2.1 we presented a general
update propagation framework from which an
entire family of protocols can be derived by
choosing different propagation functions R and
S. We are going to use two basic criteria for
selecting R and S. First, they must be such as
to ensure the required correctness properties.
Second, they must provide, as much as possible,
prompt delivery of updates. In this section we
are going to discuss the second criterion, which
will be also referred to as performance of a pro-
tocol.

Clearly, the basis for the evaluation of per-
formance should be how fast updates are
delivered to the node which needs them. Of
course, this largely depends on the topology of
the communication network, its current load
and status, the bandwidth of its links, etc., but
all factors being equal different protocols
(different propagation functions) will perform
differently.

Consider two nodes in the distributed sys-
tem, ¢ and j. Suppose, there is an edge from ¢ to
j in the RAG. That means that transactions
executing at node ¢ can read data from the frag-
ment controlled by node j. In that case, it is
desirable that updates generated at j be
delivered to ¢ as promptly as possible in order
for the transactions at ¢ to be able to read up-
to-date information. Therefore, a protocol that
allows node j to ship its updates directly to ¢ for
installation in the local copy is the most favor-
able to node ¢ Such a protocol would have
i € S(j) (and 5 € R(d)).

Definition 3.1. Let G = (V, E) be a RAG
with corresponding propagation functions R and
S. Then G,=(V,E,) is called a
propagation graph if E, = {(¢, j):1, j€ V and
J€S() (e R(N}-

Definition 3.2. Let G and G, be as above.
A path from node ¢ to node j in G, is called
characteristic if it is a shortest path from ¢ to j
in G, and (¢, j) € E.

A propagation graph describes the order in
which updates are propagated in the network
and installed in the local copies of different



nodes. The length of a characteristic path indi-
cates how far an update has to travel (in the
logical sense) before it reaches a node where it is
needed. Intuitively, a "good" protocol would
result in a propagation graph with as short
characteristic paths as possible for as many
pairs of nodes as possible. Note that if two
nodes, say 7 and j, are not connected by an edge
in the RAG, then we are not really interested in
the length of the shortest paths from ¢ to j or
from j to ¢, because neither of the nodes
processes transactions that read data from the
fragment controlled by the other.

Ideally, we would like to have a protocol
that results in a propagation graph of which the
corresponding RAG is a subgraph. Then all
characteristic paths would be of length 1. This
situation is achieved when ¢ € S(j), for every
(7, ) € E. However, as we shall see in the subse-
quent sections, it is not always possible to have
propagation functions that guarantee both good
performance and adherence to the required
correctness criteria.

4. Retaining Serializability as Correctness
Criterion.

In this section we study systems (i.e., RAG
— propagation functions combinations) that
guarantee serializability of transaction execu-
tion. We begin with a fairly simple observation
that the RAG must be acyclic if we want to
guarantee serializability at all times, even dur-
ing failures. To show the need for this, consider
the example of Figure 2.1. Suppose that a parti-
tion occurs and leaves each node in complete iso-
lation. If the nodes continue processing transac-
tions — and that is what we are after — the
global schedule may not be serializable. For
instance, if transaction T’y runs at node 1, reads
b € Fy, and writes a € F}, transaction Ty runs
at node 2, reading ¢ € Fy and writing b, and
transaction T3 runs at node 3, reading e and
writing ¢, the results cannot be integrated to
match any serial schedule. Note that the above
holds true for any possible propagation func-
tions.

Consequently, all the systems that we shall
study in this section will be characterized by
acyclic RAGs only.

Restricting RAGs to be acyclic clearly
reduces the static availability of the system. But
this is the price we pay for maintaining high
dynamic availability. A valid question that can

arise at this point is whether such a restriction
of static availability is justifiable. We argue
that in many applications it is.

Consider, for example, an airline reserva-
tion application. The database contains infor-
mation on flight schedules, customer reserva-
tions, and seat assignments. Copies are to be
placed at several computers, including machines
at the airports where this airline operates. High
dynamic availability is required for this applica-
tion. For example, we would like to assign
passengers to their seats at the airport even if
that machine is cut off from the rest of the sys-
tem. On the other hand, in this example, it is
not necessary to run all types of transactions at
any node. For example, it is unlikely that a
flight schedule will be changed at an airport.
(The actual departure time may be changed, but
this is another matter.) Flight schedules are
probably handled at a central airline office, and
it is this machine that needs to be able to exe-
cute schedule changes. Similarly, the central
office most likely is not expected to be responsi-
ble for seat assignment on any given flight.
Thus, one can see that full static availability is
not important here.

Each node has a copy of every fragment.
There are six fragments: the flight schedules (F),
the west coast reservations (R,), the east coast
reservations (R,), and the seat assignments at
airports A, B, and C (S, Sp, S¢). (Our airline
only flies out of three airports. We also assume
that the reservations data are split into two
parts).

Each fragment G; is controlled by a unique
node N(G;) responsible for updating items in the
fragment. For simplicity we assume that each
node controls only one fragment. Thus, our sys-
tem will have six nodes: one at the airline head-
quarters where the schedules are changed, two
computers for handling reservations, and one
computer at each of the three airports for seat
assignments.

The read patterns of the transactions are
represented by the RAG in Figure 4.1. Transac-
tions that change schedules do not need to read
data outside this fragment, so node F' has no
outgoing arcs. To make a reservation, a tran-
saction must be aware of the schedules, so there
are arcs R,—F and R,—F. Finally, transac-
tions that give a customer a seat at the airport
need to see the schedule and the reservations (a
passenger without a reservation does not get a



seat); hence S4—R,, S4—R,, S4—F, and so on.

Figure 4.1

Note that the RAG is acyclic. Thus in this
example we were able to use the inherent struc-
ture of update and read operations to painlessly
incorporate the required static availability res-
trictions in the scheme.

4.1. Acyclic RAGs: The General Case.

In this subsection we aim at finding the
propagation functions for systems characterized
by acyclic RAGs such that serializability can be
guaranteed for all possible transaction schedules.
Let G =(V, E) be an acyclic RAG. Suppose
that ord: V — {1, ...,n} is a topological order
on the vertices of G, i.e., for any two vertices ¢
and j, if (4, j) is an edge in G, ord(¢) < ord(y).
(A topological order must exist if G is acyclic.)
Then define functions R and S as follows:

. {{ard“(ord(l')+l)} if 1<ord()<n

R(i)=

% if ord(i)=n  (412)

- [{ord Y ord(s)-1)} if 1<ord(i)<n
S(‘)={@ if ord(#)=1 (4.1b)

For the purpose of notational convenience, we
assume, without loss of generality, that the ori-
ginal numbering of nodes in G corresponds to a

topological order. Then we can rewrite the
above definitions in a more digestable form:

R(i) = {g+ b ii:i:( " (42a)
. {i—-1}if1<i<n
8(i) = {@ o} (4.2b)

Definition 4.1. Let [ € V be such that
ord(l)=1 (with our simplifying assumption,
[ =1). Then for a pair of transactions 7; and
T;, T; < Ty if U(T;) is installed at node ! before
u(y.

Lemma 4.1. If for every edge (T;, T;) in
the serialization graph, T; < T}, then the serial-
ization graph is acyclic.

Proof. Suppose not. Let
C=(Ty, ..., Ty, T1) be a cycle in the serializa-
tion graph. It is easy to see that relation < is
transitive. Therefore we must have T, < T},
which is clearly impossible. O

Lemma 4.2. Let R and S be the propag-
tion functions defined in (4.2a) and (4.2b). Then
for every edge (7}, T;) in the serialization graph
L€t

Proof. Consider any pair of transactions
T; and T; such that (T}, T;) is in the edge set of
the serialization graph.

Case 1. Transactions T; and T; are local
to the same node, say node ¢, 1 < ¢ < n. Since
(T;, T;) is an edge in the graph, T; must be seri-
alized (locally) before T;. Hence, U(T;) is
effectively installed in the local copy of the
database before U(T;). Moreover, they are
appended to UPDATES(g) in the same order,
and thus, will be installed in that order in the
copies at nodes ¢ — 1, ..., 1.

Case 2. Transaction T} is local to node g,
transaction 7T; is local to node r, and
1 < ¢ < r < n. This means that T; overwrites a
value read by T;. Therefore, T; is serialized at
node ¢ before U(T;). Consequently, U(T;) is
appended to UPDATES(q) before U(T;). This,
in turn, implies that nodes ¢ — 1, ..., 1 install
U(T;) before U(Tj).

Case 8. As in Case 3, except r < q. Here,
T; reads a value written by T;. Therefore,
U(T;) is serialized at node r before Tj;, U(T;) is
appended to UPDATES(r) before U(Tj;), and
finally, U(T;) is installed at nodes r — 1, ..., 1
before U(Ty).

Cases 1, 2, and 3 exhaust all possibilities.
Thus, T; < T;. O

Lemmas 4.1 and 4.2 together establish the
following theorem.

Theorem 4.1. Let R and S be the propa-
gation functions defined in (4.2a) and (4.2b).

Then the schedule for any execution character-
ized by an acyclic RAG is serializable.



Note that acyclicity of G was not used
explicitly in the proof of the lemmas. This pro-
perty is essential, however, in order to guarantee
the existence of a topological numbering.

4.2. A Special Case: tf-RAGs.

The topological protocol of Section 4.1
may be too restrictive in some cases. In particu-
lar, if the RAG is a tree, possibly with forward
edges, then a protocol that propagates updates
up the tree can be constructed. It performs
better than the topological protocol and still
guarantees serializability.

Definition 4.2. Let G =(V, E) be a
directed graph. If G has a depth-first search
(DFS) tree (forest) that contains tree and for-
ward edges only, then G is called a tfgraph.

Let G be the given RAG, which is a tf-
graph. Let D be a DFS forest of G with no cross
or back edges. Without loss of generality, we can
assume that D is a tree, for if it is not, it must
consist of disconnected trees, in which case each
of them can be treated independently. Then:

R({)={j:jisachild of i in D} (4.3a)
S(¢) = {j: j is the parent of ¢ in D} (4.3b)

Definition 4.3. Let r be the root of D.
Then T; <y T; if U(T;) is installed at node r
before U(T}).

Lemma 4.3. If for every edge (T;, T;) in
the serialization graph T; <; T}, then the seri-
alization graph is acyclic.

Proof. Similar to Lemma 4.1. O

Lemma 4.4. Let G be a tf-RAG. Let R
and S be the propagation functions defined in
(4.3a) and (4.3b). Let (T}, T;) be an edge in the
global serilaization graph. Then T; <y Tj.

Proof.

Let T; be local to node v and T; to node w.

Case 1. Transactions T; and T; are local
to the same node (v = w). Since (T}, T}) is an
edge in the serialization graph, T; must be seri-
alized before T; at v Therefore, U(T}) is
effectively installed in the local copy before
U(T;). The same order of installation is
preserved at all nodes that are ancestors of v in
D, including r.

Case 2. (v, w) is an edge in D (either tree
or forward). Clearly, at node v, U(T;) is
installed before U(T;). The same order of instal-
lation must hold for any ancestor of v because
U(T;) is appended to UPDATES(v) before
U(T;), and the only way that U(T}) can get to
v’s ancestors is through v itself (propagation
occurs along tree edges only). Thus at node r
U(T;) is installed before U(Tj).

Case 8. (w, v) is an edge in D. Similar to
Case 2.

Cases 1, 2, and 3 exhaust all possibilities.
Thus f['. <tf TJ a

Theorem 4.2. Let G =(V, E) be a tf-
RAG. Let R and S be the propagation functions
defined in (4.3a) and (4.3b). Then any execution
characterized by G, R and S is serializable.

Proof. Follows trivially from Lemmas 4.4
and 4.3. O

1 1 1
2

3 4 3 4 3 4
lep(2,1) =1 lep(2,1) =1
lep(3,1) =2 lep(3,1) = 2
lep(3,2) = lep(3,2) =1
lep(4,2) = 2 lep(4,2) = 1

(a) (b) (c)

Figure 4.2. (a) RAG; (b) propagation graph
for topological protocol; (¢) propagation graph
for tf-protocol.

To illustrate the advantage of the protocol
presented in this section over the topological
protocol, consider the example of Figure 4.2. We
are interested in the length of characteristic
paths (lcp) between four pairs of nodes (one for
very edge in the RAG of Figure 4.2(a)). From
Figures 4.2(b) and 4.2(c) we see that the tf-
propagation results in all but one of these paths
being of length 1, while the topological propaga-
tion yields two characteristic paths of length
greater than 1. It is not hard to see that, in
general, the tf-propagation can always do at
least as well as the topological propagation (for

tf-RAGS).



4.3. A Special Case: Loopless RAGs.

For some RAGs we can devise an even
more efficient protocol than the tf-graph one.
These RAGs are ones without any “loops,” i.e.,
without undirected cycles. In this case we can
propagate updates along all RAG edges, obtain-
ing the best possible performance. Although the
result can be expressed simply, the proof is sub-
stantially harder than the others we have
presented.

Definition 4.4. [GaKo87] Let G = (V, E)

be our RAG. The local serialization graph of
node v € Vis a directed graph whose vertex set
contains all transactions local to v or to any
node w such that (v, w) € E. Its edges are com-
puted according to the following rules:
(i) For any two transactions local to v, it is
determined whether there is a directed
edge between them according to the stan-
dard dependency rules for centralized
databases [Eswa79).

Let transaction T} be local to node v, tran-
saction T; local to some node w, and
(v, w) € E. Then if there is a data item d
in the fragment controlled by w that is
read by T; and updated by T; , and the
update to d produced by Tj is installed at
node v before T; reads d, put in an edge
(T;, T;); if the update is installed after T}
reads d, put in an edge (T}, T;).

(i)

(iii) For a pair of transactions T; and T} local
to the same node w ((v, w) € E), put in an
edge (T;, T;) if T; is installed by v before
T; , an edge (T;, T;) otherwise.

(iv) There is no edge between two transactions

local to different nodes both of which are

distinct from v.

Definition 4.5. A legal transaction
schedule is the one for which all local serializa-
tion graphs are acyclic.

Definitions 4.4 and 4.5 formalize the work-
ings of the local concurrency control mechanisms
at every computer node. Note that rule (ii) of
Definition 4.4 corresponds to the requirement
that updates from mnonlocal transactions be
installed atomically and in the order in which
they arrive.

Definition 4.8. Let G = (V, E) be a (glo-
bal) serialization graph. Let (7}, T;) be an edge
in it such that T; and T are local to (distinct)
nodes v and w of the corresponding RAG, respec-

tively. Then we say that edge (T, T;) spans
edge gv, w) or (w, v), whichever is present in the
RAG.

Definition 4.7. Let G = (V, E) be a (glo-
bal) serialization graph and let C be a cycle in
it. Let G¢ be the subgraph of the corresponding
RAG that contains all the edges that are
spanned by edges on C. Then C is said to be
based on subgraph Gg.

Definition 4.8. Let G =(V, E) be a
directed graph. A subgraph L of G is called a
loop if, when the directions on its edges are
ignored, it forms a simple cycle.

Theorem 4.3. A loopless RAG guaran-
tees a serializable transaction execution schedule
with any choice of functions R and S in the
update propagation protocol.

Proof. As before G = (V, E) is the RAG.
Let C be a cycle in the (global) serialization
graph. Let G¢ = (Vg, E¢) be the subgraph of G
on which Cis based.  We will show, by induction
on k, the cardinality of Vg, that C cannot exist.
For k =1 it is obviously true. Suppose it is also
true for all £k < I Now let k=1 Since G is
loopless, so is G¢, and there must be some node
v € Vo which is the head or the tail of only one
edge. The general strategy of the proof will be
to arrive at a contradiction by transforming C
into a new cycle which still corresponds to a
legal schedule but is based on a smaller sub-
graph of the RAG (with the cardinality of the
vertex set equal to [ — 1). Consider the follow-
ing two cases.

Case 1. v is the tail of an edge. Let w be
the head of this edge, i. e., (v, w) € E¢. Let u be
the number of paths on cycle C that consist
exclusively of transactions local to v. (In Figure
4.3, u = 3. These paths are represented by solid
lines. For our purposes, a single node can be
considered a path.) For y=1, ..., u, let ng be
the vertex on C that immediately precedes the
J-th path, and T, , the vertex that immediately
follows it. Since w is the only node in § that
shares an edge with v, one can conclude that
transactions Tj and T, , for all =1, ..., u,
are local to w. Finally let P denote the collection
of (disjoint paths) on C that consist of transac-
tions local to nodes other than v.

t Note that one of these two edges must be in the

RAG for edge (T,-, TJ-) to be present in G.
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Figure 4.3. Cycle C (u = 3).

Let L, denote the local serialization graph
of node w. We will show, by induction on u, that
P cannot be totally contained in L,. First, let
u = 1. In this case P consists of just one path, a
path from T, to T} . Suppose that P is totally
contained in L,. This implies that T,, must
have been executed at node w before Tj,. But
since the order of installation of these transac-
tions’ updates at v must be the same, there is an
edge (Ty,, Ty,) in L,, the local serialization
graph of node v. There is also a path from T}, to
Twm, in L,. Hence, L, contains a cycle, which is
impossible for a legal schedule. Thus, for u =1,
P cannot be totally contained in L,,.

Proceeding by induction, suppose that for
some u — 1, P cannot be totally contained in L,,.
Assume (' has u paths on it consisting
exclusively of transactions local to v. Let X be
one such path (from T}, to T,,). Let us intro-
duce a new data item d into the fragment con-
trolled by w. This new item will be read only by
transaction T, and overwritten only by T,,, (in
that order). This creates an edge (7},, Ty,) in
the (global) serialization graph as well as in L,
(if it was not there before). Let us call the tech-
nique of artificially creating a precedence edge
shortcutting. Note that when we shortcut from
T, to T,,,, no cycle is created in L, (otherwise
there would have been a cycle in the (global)
serialization graph with P of size 1, which was
shown not to be possible). Thus the modified

schedule is still legal. However, we end up with
a cycle in the (global) serialization graph with P
of size u — 1, which contradicts the induction
hypothesis. Thus, we conclude that C' cannot
exist.

Now we are forced to assume that if a
cycle C does exist, P is not totally contained in
L,. This implies that if we shorteut from T, I to
T,,,,j , for all j, the result will be a cycle in the
serialization graph that is based on a subgraph
of G with { — 1 nodes. However, L, will remain
acyclic, and hence, the schedule will still be
legal. (Note that other local serialization graphs
are unaffected by shortcutting since the newly
introduced data items can be read and overwrit-
ten only by transactions local to w.) This con-
tradicts the induction hypothesis (induction on
k). Thus the serialization graph must be acyclic.

Case 2. Assume that v is the head of an
edge ((w, v) € E). Let C be a cycle in the serial-
ization graph, and let P be as before. Since in
this case L, contains all transactions local to v,
P cannot be totally contained in L, (otherwise P
plus transactions local to v would form a cycle
within L,, rendering the corresponding schedule
illegal). Thus, we can shortcut from T,J. to ij i
for all j, without violating the legality of the
schedule and, at the same time, creating a cycle
based on a subgraph of G with | — 1 nodes,
which is in contradiction with the induction
hypothesis. O

Since loopless RAGs permit the choice of
any propagation functions, we can always
achieve the perfect propagation graph. Thus, we
can, clearly, do better than with either topologi-
cal or tf-propagation.

4.4. More on the General Case.

In this subsection we combine the results of
Sections 4.1 and 4.2 to derive a more powerful
propagation protocol for the general case. Let

G=(V,E) be an acyclic RAG. Let
L =(V;, , Ej) be the subgraph of G consisting of
all the edges that lie on a loop. Let

Ll — (VL1 3 ELl): aeny Lm = (VLm y ELm) be the
weakly connected components of L [Chri75]. For
each 1=1,..,m, let | VLSH =k;, and let
ord;: Vi, — {1, 2, ..., k;} be a topological order
on the vertices of L;. Then define the propaga-
tion functions as follows:



Ry(v) = {ord;7 (ord(v)+1)}
J{w: w€ V-V, and (v,w) € E}

Ry(v)={w: w € V-V, and (v,w) € E}
Rg(v) ={w: w € Vand (v,w) € E}

R,(v) if v € Vi; and ord (v)<k,
R(v) = {Ry(v) if v € V;, and ord(v)=Fk; (4.4a)
Ryv) itve V-V,

S1(v) = {ord;(ord{v)—1)}

J{w: w€ V-V, and (v,w) € E}
So(v)={w: w € V-V, and (w,v) € E}
Ss(v) = {w: w € V and (w,v) € E}

Syi(v) if v € Vi, and ord(v)>1
§(v) = {Sov) if v € V;, and ord(v)=1 (4.4b)
S5(v) if ve V-V,

Informally, the above definition of functions R
and § means that the nodes of each subgraph L,
propagate updates among themselves strictly in
a topological order. In addition, propagation
takes place along every edge not in E; (in
reverse direction of the edge).

We redefine relation < of Section 4.1 to
apply to a pair of transactions that are local to
nodes in the same weakly connected component
of L. Thus, T, < T, if T; and T; are local to
nodes v and w respectively, v, w € V;_ for some r,
1< r<m, and U(T,) is installed at node ord;*(1)
before U(T,).

Lemma 4.5. If functions R and S are
defined as in (4.4a) and (4.4b), then for every
edge (T, T,) in the serialization graph where T;
and T; are local to nodes v and w respectively
and v, we V, for some r, 1< r<m, we have
LT

Proof. The proof is very similar to that of
Lemma 4.2, except that now we have to consider
the possibility of U(T,) reaching node ord;}(1) via
nodes not in L,. However, that would imply the
existence of an undirected path between w and
ord;'(1) with nodes not in L,, which, in turn,
means that those nodes must be in the same
weakly connected component of L as w and
ord;}(1), a contradiction. O
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Lemma 4.8. Let G, be a global serializa-
tion graph that contains a cycle C. Let G, be the
corresponding RAG. Finally, let C be based on
Gg, a subgraph of G,. Then Gy must contain a
loop.

Proof. Suppose G, does not contain a
loop. Consider a new database that consists of
just those fragments that are vertices of G and
whose read access patterns are defined by Gg.
Suppose that only those transactions that are
vertices on C are executed, and the resulting
schedule is the one defined by C. Then C is the
global serialization graph for the described exe-
cution and, as such, must be acyclic by Theorem
4.3, a contradiction. O

Theorem 4.4. An execution characterized
by an acyclic RAG G =(V, E) and the propaga-
tion functions of (4.4a) and (4.4b) is guaranteed
to be serializable.

Proof. Suppose to the contrary. Let C be
a cycle in the serialization graph. We show that
C cannot exist. The proof is by induction on f,
the number of loops that are in the subgraph of
G on which C is based.

From Lemma 4.6 it follows that for t =0 C
cannot exist. So let us assume that no cycle can
exist in the serialization graph that is based on
a subgraph of G with fewer than ¢ loops, and
consider cycle C that is based on a subgraph
with ¢ loops, t > 0.

Let L, be one of the weakly connected com-
ponents of L that contribute loops to the sub-
graph on which C is based. (At least one such
component must exist since ¢>0.) Let
T}, ..., T¢ be all transactions on C that are local
to nodes in L, and such that if edge (T, T)is on
C, then T is local to a node not in L,, for all
i, 1 < i< s Further, let Q' be a transaction on C
local to a node in L, and such that all transac-
tions on the path from T to Q! that is part of ¢
are local to nodes outside of L, for all
i, 1< i< s That is, all T¢’s are points at which
C exits L, and all @i’s are points at which C
enters L,.!

If for every i, T:< @), then we can
shortcut from T: to Q! (as in the proof of
Theorem 4.3). Therefore we end up with a new
cycle in the serialization graph that is based

! Note that words enter and ezit are used somewhat
loosely here because Cis a cycle not in G but in the
serialization graph.



totally within L,. It follows trivially from Lemma
4.5, however, that no such cycle can exist. So
assume that @< T, for some i Then by
shortcutting from Q' to T: we get a new cycle,
based on a subgraph of G with fewer than ¢
loops. (It consists of the path from T% to Q! that
goes exclusively through the nodes not in L,,
except for its endpoints, and the artificial edge
(@i, T¢).) But by the induction hypothesis this is
not possible. O

5. Virtual Serializability as Correctness
Criterion.

In this section we introduce a new correct-
ness criterion for transaction processing in distri-
buted systems, called wvirtual serializability. It is
less strict than serializability, i.e., all serializ-
able schedules are also virtually serializable, but
some virtually serializable ones are not serializ-
able in the usual sense.

Before giving a formal definition of the
property, we will try to intuitively motivate it.
Because of the constraints that we introduced
on transaction processing, the following interest-
ing phenomenon is noted. Among all non-
serializable schedules, there are some that can-
not be identified as such by any transaction. In
other words, every transaction in the schedule
reads data that could be produced by a serial
schedule, even though the global schedule is not
serializable.

F]_ Tl
F 3 T Ty
F4 T4
(a) RAG (b) Observable cycle

Figure 5.1.

To illustrate let us consider some exam-
ples. Figure 5.1 shows a RAG and a correspond-
ing serialization graph with a cycle. The fact
that the schedule is nonserializable can be
detected at node 1 since transaction T'; reads
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inconsistent values of data items from fragments
F, and Fj. These values are inconsistent because
they depend on different versions of fragment F,,
before and after transaction T, was run.

In the example of Figure 5.2, however, the
nonserializable behavior cannot be seen by any
of the transactions. Since nodes 2 and 3 do not
read data outside of their respective fragments,
the fragments cannot become inconsistent (in
the sense of the previous paragraph). Thus nei-
ther node 1 nor 4 can detect the anomaly. More-
over, the cycle in Figure 5.2(b) was formed
because node 1 saw the effects of transaction T,
before those of T3 and node 4 saw the reverse.
Thus fragment F; may now be inconsistent with
fragment F,. However, since there is no legal
transaction that can read both of these two
fragments, this situation will go undetected.

Fy T,
F 3 T TS
F‘i T‘l
(a) RAG (b) Nonobservable cycle

Figure 5.2.

Definition 5.1. A cycle C in the serializa-
tion graph is called observable if it can be split
into two edge-disjoint paths such that one of
them consists solely of dependency edges and the
other, solely of precedence edges. (An edge
(T,, T;) is a dependency edge if T, reads the
value of a data item written by T); it is a pre-
cedence edge if T, reads the value of a data item
overwritten by T; [Bern79].)

The cycle in Figure 5.1(b) is observable
(edges (T, T.) and (T,, T,) are precedence edges;
(T, Ts) and (Ts T,) are dependency edges),
whereas the cycle in Figure 5.2 is not observable.

The significance of an observable cycle is
that there is a transaction on it, T;, that may
read inconsistent data (see Figure 5.3). T, is the
first transaction on the precedence path and the



last transaction on the dependency path. When
it executes, it reads the new version of fragment
F3 but the old version of fragment F,. Since the
former depends on the state of fragment F,,
after the execution of T, and the latter depends
on the state of F, before the execution of T,,
they are inconsistent. The conclusion that we
can draw from this is that observable cycles jus-
tify their name.

Ty

\ 7’
by ’
N s

~
i = smumasass
Ts
- - - -> dependency edge
——s= precedence edge

Figure 5.3. Observable cycle. Transaction T;
is local to N(F,), for all +.

Definition 5.2. A transaction schedule is
called wvirtually serializable if the corresponding
serialization graph has no observable cycles.

Definition 5.3. Let L =(V;, E;) be a RAG
loop. Let vertex s € V;, be such that no edge in
E, is incident upon it. Let vertex ¢ € V, be such
that no edge in E; is incident from it. Then s is
called a loop source of L, and ¢, a loop sink of L.

Clearly, if a loop doesn’t have loop sources
or loop sinks, it is a (directed) cycle. Also, it is
easy to see that the number of loop sources in a
loop is always equal to the number of loop sinks.

Definition 5.4. L is a single-source (single-
sink) loop if it contains exactly one source (sink).
It is a multr-source (multi-sink) loop otherwise.

Lemma 5.1. (Acyclic) RAGs with no
single-source loops guarantee virtually serializ-
able schedules regardless of the choice of propa-
gation functions.

Proof. Let G, be an acyclic RAG with no
single-source loops. Suppose that C is an observ-
able cycle in the serialization graph. First of all,
note that a precedence edge between two tran-
sactions that are local to different nodes always
repeats the direction of the RAG edge between
those nodes, whereas a dependency edge always
goes in the opposite direction.

o

Since @, has no single-source loops (or
cycles), C must be based on a subgraph of G,
that includes a multi-source loop. But then ¢
cannot be split in two paths as required by
Definition 5.1 because the direction of edges
along the loop changes more than twice (see Fig-
ure 5.2(a)). Therefore C is not observable. O

Since cycles in RAGs can cause the crea-
tion of cycles in serialization graphs (including
observable cycles) regardless of how propagation
functions are defined, we still restrict ourselves
to acyclic RAGs, just as we did in Section 4.

Replacing serializability with virtual seri-
alizability as correctness criterion helps make
update propagation less restrictive. For RAGs
with no single-source loops, for insatnce, update
propogation can be totally unrestricted (even in
the presence of multi-source loops). Recall for
comparison, however, that to acheive serializa-
bility, we had to use restricted protocols for
update propagation in the presence of any kind
of loops.

For general acyclic RAGs, we can also
make an improvement in the efficiency of the
protocols, provided we can be satisfied with vir-
tual serializability. Let G =(V, E) be a RAG.
Let G5 = (Vs, Es) be a subgraph that contains all
the edges of G that lie on single-source loops.
Let ord: Vs — {1, ..., k}, where k is the cardinal-
ity of Vs, be a topological order on the vertices
of Gs. Define the propagation functions as fol-
lows:

R(¢) = {ord(ord(i) + 1)}

Ufi:j€ V- Vsand(i j)€ E}
Ryi)={j: j€ V- Vsand (i j)€ E}
Ry(i)={j: j€ Vand (s j)€ E}

Ry(¢) if { € Vgand ord(i) < k
Ri) if { € Vg and ord(i) =k (5.1a)
Ryi) ifi€ V= Vs

R(d)

§1(1) = {ord (ord(i) — 1)}
U{i:j€V— Vsand (4 ¢) € E}

S{i)={j: J€ V— Vsand (j, V) € E}

Sif)={j: j€ Vand(j, i) € E}



S4(3) if 1 € Vs and ord(f) > 1
Sofi) if i € Vs and ord(i) =1 (5.1b)
Sa(i) itie V- Vs

S(i) =

In simple terms, this means that the nodes of
subgraph Gg enact among themselves a topologi-
cal propagation protocol, whereas the nodes not
in Gg propagate updates along all edges in
E — Eg (in reverse direction of the edges). In
addition, propagation occurs along every edge
connecting a node in Gg and a node not in Gj.

Theorem 5.1. Propagation functions R
and S defined in (5.1a) and (5.1b) guarantee vir-
tual serializability for schedules characterized
by acyclic RAGS.

Proof. Suppose this is not true. Let C be
an observable cycle in the global serialization
graph. From Definition 5.1 and the observation
in the proof of Lemma 5.1, it follows that the
subgraph on which C'is based must be a single-
source loop. Therefore, C' is based on a sub-
graph of Gs. (Gs contains all edges on single-
source loops.)

The nodes of Gg, according to (5.1a) and
(5.1b), engage in a topological propagation. In
the absence of nodes outside Gg, Lemma 4.2
(and hence Theorem 4.1) would be valid and
there could be no cycles like C. However, it
could be the case that update propagations by
nodes outside Gg invalidate Lemma 4.2. We
now show that this is not the case.

Consider the edge (7}, 7;) in C. If T; and
T; are local to the same node, or if the edge is a
dependency edge, then whatever node receives
U(T;) must receive U(T;) first. (U(T;) is added
to UPDATES(1) before U(T;); see Section 2.1.)
Therefore, T; < T;. However, if (T}, T;) is a pre-
cedence edge, U(T;) is sent out of node ¢ without
U(T;). If U(T;) were only transmitted along the
topological propagation chain, then U(7};) would
arrive first at all nodes, including the last one, [
(I = ord™'(1)). However, by following a path
outside G, U(T;) can conceivably skip ahead of
U(T;) and arrive at [ first. For this to happen,
there must be a RAG path leading to the node
where T; executed, say v, and originating at
some other node in Gg, call it w. (Actually,
ord(w) < ord(v).) As mentioned earlier, the
path (except the endpoints) must be outside Gy,
else U(T;) could not skip ahead.

However, any (unidirectional) path con-
necting two vertices in a single-source loop
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creates another single-source loop. (Recall that
the RAG is acyclic.) Therefore, the path must
also be in Gf, a contradiction. O

6. Conclusions.

We believe that Bakunin data networks
offer a valuable alternative to known mechan-
isms for managing replicated data. Our
mechanism yields a high degree of data availa-
bility and node autonomy while still ensuring
serializability (or virtual serializability). It
tolerates arbitrary communications failures,
including network partitions that are not con-
sistently detected.

The major drawback is that transactions
must be pre-analyzed and the resulting RAG
must be acyclic. (Although we did not discuss it
here, these assumptions can be periodically
relaxed. However, to avoid inconsistencies, some
type of locking must be performed in these cases.
The result is that availability suffers.) We
believe that this is not a limitation of our par-
ticular approach, but an inherent property of
dynamic failure environments. If for a particu-
lar application it is essential to run arbitrary
transactions, then one must either give up serial-
izability or the ability to operate in dynamic
failure environments. If the application
demands serializability and operation in the face
of unpredictable communication failures, then
the transactions must be simple enough so that
they can be pre-analyzed. Furthermore, it is
necessary to structure the application so that
updates to a fragment originate at a single node
and the resulting RAG is acyclic.

If a Bakunin approach is used, then the
major implementation problem is the propaga-
tion of updates. If transactions running at a
node N(F)) read data from fragment F,, it is
important that the updates from N(F,) reach
N(F,) as expediently as possible. For loopless
RAGSs and for no-single-source-loop RAGs under
virtual serializability, we have obtained the
most efficient propagation protocols possible.
For other RAGSs, our protocols yield good perfor-
mance, although finding the best one is an open
question. For instance, the chain protocol
operates correctly with any topological ordering
on the nodes, but finding the best ordering for a
particular communication network may be a
difficult problem.
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