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ABSTRACT

It is often desirable to represent entities in a database whose properties
cannot be deterministically classified. We develop a new data model that
includes probabilities or confidences associated with the values of the attributes.
Thus we can think of the attributes as random variables with probability distri-
butions dependent on the entity the tuple purportedly describes. We study two
sets of issues, one dealing with the proper model for probabilistic data and the
other dealing with the choice of operators and language necessary to manipu-
late such data.
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I. Introduction

Traditional database systems represent entities and relationships whose properties
are deterministically defined. For example, in an EMPLOYEE relation we can record
the fact that employee Smith has a given salary and address, and there is only one
address and salary for this employee. This deterministic view has been extended in the
so-called incomplete information database systems [5,6]. Here each attribute can take
on a set of values, indicating that the real value is unknown but is one of these possible
values. For instance, employee Smith may have the set {toy, sales} as a value for the
DEPARTMENT attribute. This means that Smith either works in the toy or the sales
department.

In this paper we extend the incomplete information model to include probabilities
or confidences associated with the values of attributes. Thus, we can think of the attri-
butes as random variables with probability distributions dependent on the entity the
tuple purportedly describes. For instance, we may want to record in the database that
the likelihood that Smith works in the toy department is 70% and that he works in the
sales department is only 30%. These likelihood numbers can represent the belief of the
person who entered the data, or the result of some statistical experiment conducted by
one or many database users.

Our objective in this paper is to study two sets of issues. One set deals with the
proper model for probabilistic data. The second set concerns the choice of operators for
manipulating such data. The choice of model and operators is not simple, for as the
following examples illustrate, there are many different ways to think about probabilistic
data. These examples also illustrate the types of applications where the need for pro--
babilistic databases arises.

EXAMPLE 1.1 Discrete Valued Data:
520 observers are asked to make a value judgment on an entity using a non-
numeric scale (excellent, very good, good, bad, very bad, horrible). 120 record
the outcome as very good, 200 as excellent, 100 as only good, and 100 as bad.
Since the sample size is so large, the frequency will make a good approxima-
tion for the probability:

P[Property = Excellent | Entity = e;] &~ 0.39. Also, a relation presented in
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this fashion will clearly communicate more information to a user than a typi-
cal relation:

Relation RATING

ENTITY JUDGMENT

e1 120/520 Very Good
200/520 Excellent
100/520 Good
100/520 Bad

EXAMPLE 1.2 Real Valued Data:

A group of N observers of varying skill scattered throughout the world are
being asked to monitor the position of many ships. These observers enter
sightings into a database. These measurements are used to determine a
confidence interval as to the ship’s real position. Further, based on an
observer’s track history of sightings, indirect information about, say, observer
Smith’s reliability can be recorded (e.g. Smith’s sightings are more than two
standard deviations away from the mean):

Relation SHIPS
SHIP_NAME POSITION
Henrietta (p—0o,p+0)

EXAMPLE 1.3 Fuzzy Data

A teacher is asked to "rate” his class on a number of fuzzy qualities such as-
study habits, attitude, and compatibility with fellow students. A relation
CLASS is set up with key NAME, and dependent attributes SH (Study
Habits), A (Attitude), and C (Compatibility). The domains for each are the
same as in EXAMPLE 1.1. The teacher is allowed to decide in a fuzzy set
fashion to which set each student belongs. The sets here are the underlying
domains. The teacher comments that Susan Anthony usually exhibits excel-
lent work habits except when she is fighting with her boyfriend, which she
does about 20% of the time. Her attitude is always good, but she is not com-
patible with the other girls (who make up 40% of the class). Ms. Anthony’s
entry in the database looks like the following:

Relation CLASS

NAME SH A C
Susan Anthony | 0.8 Excellent | 1.0 Good | 0.6 Excellent
0.2 Horrible 0.4 Bad

EXAMPLE 1.4 Relations with Probabilistic Keys
Military intelligence is interested in keeping track of the hardware at a
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particular camp. In such a scenario, classes of weaponry such as tanks are
prone to incomplete information. Observers speculate the presence of two
new classes of tanks at the camp they call alpha and beta based on proper-
ties they think these tanks exhibit: The observers feel 70% certain that the
camp contains 15 alpha class tanks. The conjecture is that alpha tanks have
a new heat masking ability that render them invisible on infra-red scopes
when idling. Also, these tanks have tremendously augmented armor plating.
Class beta tanks exist with only 40% assurance, and have no heat masking
ability. They do have greater armor like alpha, and there are 25 of them.
The camp is forced to keep a total complement of tanks with the U.N. This
claims that the camp contains 50 bravo type tanks which are known to be
lightly armored. In a relation TANKS one data representation might be:

Relation TANKS
NAME ARMOR | HEAT_MASKING | COMPLEMENT

0.7 [Alpha Heavy Yes 15]
0.4 [Beta Heavy No 25]
1.0 [Bravo Light No 10]

The paper is organized into 6 additional sections. In section 2 we propose a new
model for probabilistic databases. A number of variations and extensions are possible;
some of these are briefly discussed in the same section. In Section 3 we explore methods -
for generating probabilistic relations; introduce a new operator STOCHASTIC that
transforms a deterministic relation into a probabilistic one, and provide more motivat-
ing examples. In the following section we discuss various basic operators for the pro--
posed probabilistic model, including PROJECT, SELECT, and JOIN. Some additional -
non-conventional operators are presented in Section 5. These include a COMBINE
operator to ‘union two probabilistic relations, and a DISCRETE operator
(STOCHASTIC’s counterpart) that converts a probabilistic relation into a deterministic
one. In Section 6 we discuss the use of particular probability distributions in the rela-
tions. In particular, we present notation to describe a uniform distribution and show
how our operators can manipulate such distributions. In the last section we conclude
by exploring additional extensions, directions for future research, and some suggestions
for implementing a probabilistic database system.



II. A New Model

We will depict the conventional relational schema for a relation as
R<K,Ay,...,A,>. Each attribute A;, i€ {1,...,n} , has underlying domain D4, and K has
underlying domain Dg . The K attribute is an artifice: We are giving the primary key
attribute a special name and assuming without loss of generality that it is a simple
attribute. Let E be the set of objects being described by relation R. E might be ships at
sea, football players, secretaries at Princeton, or students. There is a one to one func-
tion f:E—Dy . For example, if E is football players then Dg might be first, middle, and
last names.

Now let us restrict our attention to the instances where all underlying domains are
countably infinite or finite. So, attributes can be viewed as discrete random variables.
We will leave continuous random variables to another paper except for unjustified allu-
sions and examples where continuous random variables are going to be useful and
interesting. Despite EXAMPLE 1.4’s indication of the possibility of having probabilistic
keys, we will assume that the K field is not probabilistic. This view of uncertainty is
simpler to handle but is not overly restrictive. In fact, we can still model probabilistic
keys using this simpler view, albeit not as conveniently, as the following example
demonstrates.

EXAMPLE 2.1
Recall from EXAMPLE 1.4 that each tuple was assigned a probability of
existence (e.g., there was a 0.70 probability that the camp had "alpha” type

hardware). This could be represented in our simpler deterministic key model
by two relations:

Relation EXISTS
NAME Found?
alpha 0.7 alpha

0.3 null
beta 0.4 beta

0.6 null
bravo 1.0 bravo

Relation DATA

NAME | Armor | Heat_Mask | Complement
alpha heavy yes 15
beta heavy no 25
bravo light no 10

The first relation states whether each hardware type exists at the camp. The
second one describes the hardware and is a conventional relation. The two
relations can be joined over Found? = Name to obtain a relation similar to
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the one given in EXAMPLE 1.4:

Relation EXISTS >Found?=Name< DATA

Name Found? Armor Heat_Mask Complement
alpha | 0.7 [alpha  heavy yes 15]
beta 0.4 [beta  heavy no 25]
bravo | 1.0 [bravo  light no 10]

(Joins will be discussed in more detail in section IV.). In summary, this exam-
ple illustrates how probabilistic relation keys can be emulated in our simpler
model. Hence, it seems reasonable to focus initially on deterministic keys.

The deterministic key assumption means that the entities in E do exist and hence
the tuples describing them exist as well. Further, the K attribute is the conditional
attribute. In short, we are thinking about observers measuring properties of real enti-
ties (attribute K) and that these properties (attributes A,,...,A, ) are prone to errors
or may be qualitative judgments. The attributes (Ay,...,A,) are all dependent on the
value of K as to what value they take on.

Assuming that all of the A; are independent of each other is overly restrictive. For
example, consider functional dependencies. If one attribute functionally determines the
value of another attribute then it hardly seems sensible to assume that these are
independently distributed. Consequently, the model we propose allows users to define
groups of these attributes as dependent and thus jointly distributed. So, a general rela-
tional schema will be represented by R<K;G;;...;G,> where each G;is a non-empty set
of jointly distributed attributes. All G; must be disjoint. We will forego set notation

for the G; wherever context makes it clear-to simplify notation further. The following -

examples demonstrate the notation.
EXAMPLE 2.2
Traditional Schema: R<K,A,B,C,D,E> with Dg,Dy,...,.Dg .
Description: A,C,D are inter-dependent attributes while B,E are independent.

Probabilistic Schema: R<K; B; E; A C D> with same underlying domains.

Instance:
Relation R
K B E A C D
ki P by P12 €1 Pizlay ¢y dy
pa1 b Pa2 €2 pos a1 co  ds]
P32 €3
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EXAMPLE 2.3 Ship’s Position Schema and Instance
Traditional Schema: POSITION<NAME, TY,TS,CTY,CS,CG>.

Description: TY=Type, TS=TopSpeed, CTY=Country, CS=CurrentSpeed,
CG=Cargo.

Functional Dependency: TY—TS, CG .

Probabilistic Schema: POSITION<NAME; CTY; CS; TY TS CG>.

Instance:
Relation POSITION
NAME CTY CS TY TS CG
Titanic | 0.4 USA 1.0 0 | 0.8 [LuxLiner 25  Passengers|
0.6 Britain 0.2 [OilTanker 35  Oil

It is useful to think of each G; as a function. It takes as parameters a key and a tuple
of values; it returns the probability that the tuple in the relation with the given key -
takes on the given values. In EXAMPLE 2.3 above, for instance, we can state that:

CTY(Titanic,XUSA>) = P[ CTY = USA | NAME = Titanic | = 0.4

TY_TS_CG(Titanic, <LuxLiner,25 Passengers>) =
P[TY = LuxLiner,TS = 25, CG = Passengers | NAME = Titanic] = 0.8

This provides a convenient shorthand for the probabilities. If the tuple
<wvy, .., v;> does not appear in the G; attribute of tuple k, then the function
Gi(k, <vy, . ..,v;>) returns the value zero. For example, in relation POSITION,
CTY(Titanic, <France>) =0

All examples so far present tuples that are clearly not in normal form. The form
selected is for ease of display and to convey as much information as possible. If the
tuple of EXAMPLE 2.1 were normalized, the result would be twelve simple tuples on
the traditional attributes with one additional attribute to record the probability.
EXAMPLE 2.3 would yield four simple tuples. In such a normal form, K could not be
used as the primary key for R, but rather the entire tuple would be necessary.

This normalization issue brings up the following feature. Since we are determining
at relation creation time which of the A; are dependent and which are independent of
each other, we can always determine the joint probability distribution by multiplying
probabilities of the individual components. We can also determine the absolute proba-
bility of one or more of the attributes of a jointly distributed group. This is equivalent
to finding the marginal probability distribution for the attributes in question. If a
group is split apart in this manner, however, it is not possible or sensible to multiply
the individual probabilities and hope to regain the same joint distribution. To illustrate
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how joint probabilities can be obtained from independent attributes, consider the fol-
lowing example:

EXAMPLE 2.4 Finding Joint Distributions given the Independent Distributions:

Independent Joint
K A B K A B
k 0.3 ay 04 bl k 0.12 [a1 1’31]
0.7 (P 0.6 bg 0.18 [Gl bg]
0.28 [a; by
0.42 [62 bg]

The next example demonstrates the reverse operation:

EXAMPLE 2.5 Finding Marginal Distributions given Joint Distributions

From
Relation R,
K A B
k 0.2 [al 51]
07 [02 bl}
0.1 [02 bg]

We can conclude that
PA=a; | K=k]=02
PlAi=1aq | K=k} =0.7+01=08
PB=b, | K=k]=02+07=09
PB=by | K=k]|=0.1

This information could be represented as follows, but it would be misleading:

Relation R,
A B

k 0.2 a 0.9 bl
08ay | 018,

Note that we did not recover the original distributions (given by R; at the
beginning of this example). (Jumping ahead a bit, what we have done is pro-
ject By over A, project B; over B, and then joined the two partial results to
obtain By. We lose information in the decomposition, so this is a “lossy join
decomposition,” analogous to lossy decompositions in relational database
theory.)
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In all of our examples so far, the probabilities for each attribute group in each
tuple add up to one. Clearly, all probability distributions must have this property.
However, in some cases it may be convenient to represent only a part of a distribution,
possibly because the complete distribution is unknown or is not of interest. For exam-
ple, consider the following relation, where the domain for attribute A is {ay, aq, a3, a4}.

EXAMPLE 2.6

Relation R

K A

kl 0.5 a;
0.3 ag

kg 09 ay
0.1 as

k3 0.5 ay
0.0 ag

For tuple k;, there is a probability of 0.5 that its A attribute is a;, and a
probability of 0.3 that it is a3. With probability 1 - 0.5 - 0.3 = 0.2 k; will
take a different value, either a3 or ay. We will assume that this missing pro-
bability is distributed in an unknown way. It could be that the probability
that k; takes on the value a3 is 0.2 and a4 is zero. Or it could be az with
probability 0.1 and a4 with probability 0.1, or any other combination. We

will call this the “no assumption assumption” for missing probabilities.  (In-==

section VI we explore a uniform distribution that could be used for missing
probabilities.)

Notice that if there are missing probabilities in a relation, then the underlying
domain must allow it. In our example, if the domain for A were {a;, a5}, then tuple &,
would be invalid because the missing probabilities could not be assigned to any other
values. Also notice that it now makes sense to explicitly store a zero probability value
in a relation. For instance, in tuple k3, it is impossible that its A attribute take on a
value of ag. If this entry were deleted, it would mean that A could take on ay. As a
matter of fact, the probability that ks takes on the value ay could be as high as 0.5. (If
there were no missing probabilities, then it would be equivalent to have an explicit zero
probability value or not to represent the value at all.)

The functions Gj-we defined earlier (where G; is an attribute group) retrieve expli-
citly stored probabilities. For example, for relation R, A(ks3,<a;>)=0.5,
A(ks3,<a>) =0.0, A(k3,<a3>) =0.0. In some cases we may wish to obtain the max-
imum probability taking into account missing probabilities. For this we define a new
set of functions GT'. In our example, A™(k3,<a;>) =05 A™(ks,<as>)=0.,
A™k3,<ag>) =0.5, A™k,,<a,>) =0.2.
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As we argued above, missing probabilities are useful because they allow a user to
manipulate partially known probability distributions. In addition, they make possible
some types of relational operations (e.g., some joins cannot be performed without miss-
ing probabilities) and allow the definition of some new operators. These issues will be
discussed in Sections IV and V.

A final observation concerning the new model’s flexibility should be made. When
Gi(k,val) =1.0 we have a traditional deterministic attribute entry, and when
G7'(k,val) = 1.0 for all domain values we have a null value. Also, when the explicit pro-
babilities add up to one and are equally divided amongst the entries we have an entry
very similar to that of Lipski’s model in [5,6]. In other words, the new model encom-
passes many simpler data models as well as providing a different interpretation to what
these models mean.

EXAMPLES 1.2, 1.3, 1.4 depict some of the many extensions to the simple model
we have introduced here. Other extensions include lifting the no-assumption assumption
about implicit distributions in favor of other enticing interpretations such as the uni-
form distribution for missing probabilities. In subsequent treatments of this topic we
will consider probabilistic keys describing tuples which may or may not exist. Also,
when continuous normally distributed random variables are considered, then confidence
intervals can be formed to create another type of probabilistic relation. Whenever an
underlying domain is numeric then the expected value of the attribute can define yet
another probabilistic relation. The relationship to fuzzy sets bears further scrutiny
although at present more traditional stochastic models will be considered.



-10 -

III. Generating Probabilistic Relations

We now turn our attention to the practical concern of where these probabilistic
‘relations might come from. If no examples existed then this paper would be merely ‘a
theoretical exercise and thus rather uninteresting. In this section we explore an idea
hinted at in earlier examples and summarize a recently published paper which offers a
more sophisticated framework out of which more interesting examples might later come
to light.

The first and most obvious method is to allow a user to enter the probabilistic
information himself. The user is then calling on his own belief heuristic to measure the
likelihood of the properties. A more interesting method involves the division of the data
and the relations describing it into two classes: (1) Raw Data and (2) Summary Data. In
the Raw Data relations many different users (observers) are permitted to record the
properties of the same entity. In this way information about an entity is defined as a
sample. In the Raw Data tables we see that the primary key will be the K attribute we
have been using plus the OBSERVER attribute. Computing the probabilistic informa-
tion for the Summary relation will only amount-to computing the relative frequency of
each value in an entity’s sample and dividing by the size of the sample.

EXAMPLE 3.1 Belief Heuristics:

In football recruiting there are a host of metrics for hundreds of potential
recruits. Many of these properties are clearly deterministic such as 40 speed,
bench press, SAT scores or class attendance. In addition, however, there are
many properties of interest that might be measured qualitatively by a
player’s coach or doctor, such as attitude, home life, or potential for weight
gain or likelihood to get injured often. For example, growth potential can be
estimated fairly accurately by taking X-rays of hips, ankles and wrists to
determine how open the growth plates are. Often, football players have been
injured enough to have such X-rays available on some subset of these three
regions. Another source of uncertainty might be when these X-rays were
taken and how far apart. In the final analysis, however, a Doctor usually
looks at what information he has at hand and gives his own estimate based
on the very imperfect database he carries in his head. A DBMS of the type
we have been discussing would allow such qualitative measurements along
with an estimate of his belief.

EXAMPLE 3.2 Raw Data Relation:
The scenario of EXAMPLE 3.1 could be modified slightly to produce a Raw
Data relation. Each coach from all the high schools of a particular league
could be asked to rate local players on a set of qualitative attributes and
these could be entered into the database as the Raw Data.



EXAMPLE 3.3 Summary Relation
Domains: Dy € {ay,as,a3} Dp € {b1,b2} D¢ € {cy,cq}

il

Traditional Relational Schema: Raw Data<K,OBSERVER,A,B,C>

Probabilistic Relational Schema: Sum Data<K; A;B C>

Raw Data Sum Data
K OBSERVER A B C K A B C
kl 1 ay bl cq kl 0.6 ay 0.2 [bl Cl]
kl 2 a; bl Co 0.2 a9 0.4 [bl 62]
kl 3 ay bg Co 0.2 as 0.2 [bg C]_]
kl 4 as bl Co 0.2 [bg 02]
kl 5 ag bg cq

The Summary relation based on an underlying Raw Data relation suggests a new
relational operator called STOCHASTIC. STOCHASTIC could be implemented using
the traditional relational model. The STOCHASTIC operator could take as parame-

ters:

[1] A Raw Data Relation and its Schema,
[2] A Composite KEY for the Schema in two parts:

(a) The K attribute of the Probabilistic Output Relation,

(b) The rest of the attributes in the Raw Data’s KEY,

[3] A Probabilistic Relational Schema.

This syntax would make it easy to generate many different probabilistic relations based

on the same data as the following examples illustrate:

EXAMPLE 3.4

Let Raw Data be the relation described in EXAMPLE 3.3. The Sum Data

relation would be generated by the following call:

STOCHASTIC(Raw Data<K,0BSERVER,A,B,C>,

EXAMPLE 3.5

<K,OBSERVER>,
<K;A;B C>)

STOCHASTIC(RawData<K,OBSERVER,A,B,C>,
<K,OBSERVER>,

<K;A B; C>) =




& e

Relation Sum Data,
K A B C
kl 0.4 [al bl] 0.6 5]
0.2 [&1 bg] 0.4 Ca
0.2 [ﬂ-z b]_]
0.2 [a3 bg]

EXAMPLE 3.6
Pseudo-code algorithm for STOCHASTIC using the relational algebra,

O:Initialize Sum Data

1: FOR EACH k € mg(Raw Data) DO
.BEGIN
2: Sample := o _i(RawData)

3: FOR EACH G;, i € Sum Data Schema , DO
4: FOR EACH tuple € g (Raw Data) DO

IUG"’ l Raw Data)!
5:Gi(k, tuple) = ———F e( )!

| Sample|

6: Add k to Sum Data
END

The above statistical approach to generating a probabilistic relation relies heavily .
on the law of large numbers which says that as the sample size grows larger and larger
the relative frequency approaches the probability of the event occurring.

The idea of relational layering has recently been approached in a different sense by
Gosh in [2]. In his framework relations can have both column and row attributes which
correspond to logical attributes and equivalence classes. In this way Gosh builds up a
two dimensional hash table for getting to data very fast by following pointers. The
column and row attributes can be broken up over and over into more and more specific
classes and ranges of values. The raw data is stored by determining exactly which cell
describes the data statistically and following a pointer within the cell to the data page
and storing the record at the next convenient location. This form of relation layering
has important implications in both statistics and database management. It allows the
elegance of relational algebra methods of data retrieval coupled with fast data recovery
and it adheres to well established statistical practices of analyzing subsets of data.
Extensions of relational query languages that Gosh recommends include sampling with
and without replacement. This framework appears quite flexible and seems an ideal
method for organizing raw data. Such a scheme would clearly facilitate the methods
sketched earlier in this paper for defining probabilistic tables from raw data. Gosh’s
relational layering also seems pertinent to an area of further research in defining a
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probability density function language so probabilities of attributes could be analytically
generated. Such functions could be tested thoroughly using the sophisticated statistical
analysis offered in Gosh’s proposed framework:

STOCHASTIC could be given even more flexibility by allowing a more general set
of parameters to specify the probabilistic relation it is to produce. Note that the same
conventional Raw Data relation can yield many different probabilistic relations depend-
ing on the probabilistic conceptual schema. If this schema is given as a variable param-
eter to the operator, different combinations could be tested automatically to determine
which offers the best summary of the data at hand.
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IV. The Conventional Relational Algebra Operators Revisited

We will look at the conventional relational algebra operators of PROJECT,
SELECT, and JOIN. We will define these operators in a precise way for probabilistic
relations. Recall, however, that probabilistic relations abandon the familiar first normal
form of most relational database management systems (DBMS). In fact, each tuple can
be thought of as a relation within the relation (r-w-r). This suggests the opportunity to
apply the relational algebra operators at two levels. Operators can act at the relation
level or at the tuple (r-w-r) level. Performed at different levels these same operators will
yield different results. In this section we define these operators at the relation level and
in the next section we define them at the r-w-r level.

We begin with conventional PROJECTS, and recalling the probabilistic relational
schema R<K;G;;...;G,>, this definition will be a relatively straightforward task.
There are two broad classes of PROJECTS, PROJECTS that include the key field, and
PROJECTS that do not. We will only consider PROJECTS that include the key field at
this point. Under these restrictions wy(R) where X ={K,G;,,...,G;} is simply
REK ARy~ £

$17 bl

Now, let us turn to relation level SELECTS. This is a slightly more interesting
case, and will correspond to Lipski’s UPPER and LOWER bound SELECTS from [5,6].
SELECTS here will also feature probability range SELECTS, which have no counter-
part in any other system. First, as usual, SELECTS will be denoted by op(R) where P
is a boolean predicate. At this point we need to define the predicate language of P tak-
ing into account the probabilistic nature of the tuples. For example, recalling EXAM-
PLE 1.3, a user should be able to "select all students having a probability greater than
0.5 of having excellent study habits." The answer should be a relation with exactly the

same schema, only fewer tuples. Each selected tuple should have an identical counter- '

part in the original relation. In order to define the Predicate Language we must first
introduce a few definitions and assumptions.

In our predicate language we will allow comparisons with the values stored in the
tuple, as in conventional relational query languages. To deal with attribute groups, we
extend the binary operators so that they operate in a pairwise fashion. Thus, A_B >
<5, "cat"> will select tuples with an A value greater than 5 and a B value greater
than "cat." For added flexibility, we add a ‘“*” wildcard that matches any value. For
example, A_B > <5, *> can be used to select tuples that have an A value greater than
5 and any B value.

We also allow comparisons based on probability values. For this we use the G
functions, either G; or GY', defined in Section II. For instance, the predicate A_B (*,
<5, "cat">) > 0.5, used in a select, will retrieve tuples that have an A_Bvalue of <5,
"cat"> with probability greater than 0.5. Similarly, the predicate A_B (*, <5, *>) ¢
(0.4, 0.7] can be used to retrieve tuples that have an A value of 5, regardless of their B
value, with a probability between 0.4 (exclusive) and 0.7 (inclusive).
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We now define our predicate language more formally.

Definition. Let B be the set of binary operators, B = { <, > < > = }. Let “*” be
the wildcard value such that * B¢, ¢ B * and * B *evaluate to true, where B ¢ B and -
¢ is any value.

Definition. Let attribute group G; be {Aq, ..., A;}. We define <G;> to be
{<g1, s > 1 gi€Da, YL ¥}, 1< <k}

Definition. Let R = <K, Gy, ..., G,> be a probabilistic relation. A term in a predi-
cate for this relation can be of the following form:

(1) N I, where ['is an interval in [0,1] and N is an arithmetic expression involving real
numbers and the functions G; and GI* (1 < ¢ < n). Each function call is of the
form G; (k, g) (or G™ (k, g)), where k € <K>, and g € <G;>.

(2) N; B Ny, where B € B and Ny, N, are arithmetic expressions as in (1) above.
(3) G; Bg, where BeB, ge <G;>, or
(4) K Bk, where BeB, ke <K>.

Definition. A predicate for a select on R = <K Gy; ...; G,> is any logical expression
containing terms connected with logical operators AND, OR, NOT. We finish our dis-
cussion of conventional selects by demonstrating the power and flexibility of the above
predicate language in a series of examples below. We will be constructing queries of the

form op(R) where R has schema R<K; A B C; D E; F>.

EXAMPLE 4.1 Lipski’s Lower Bound
QUERY: Select all tuples such that it is CERTAIN that A=a, B=b,andC

=C.

P =A_B_C(*<abc>)=1
EXAMPLE 4.2.

QUERY: Select all tuples where it is certain that A_B_C = <ay,by,¢1> or
A_B_C = <02,b2,62>.

= (A——B—O(*: <al:b1tcl>) "+ A—B—O(*? <G2,b2,62) -1

Those readers familiar with Lipski’s model will recall that this type of lower
bound is harder to evaluate in his model. With our model, the query is sim-
ple to write and to evaluate. Of course, when one performs operations with
probabilities one must be careful that they make sense. For example, if we
want all tuples where it is certain that

(A_B_C = <a,b,c> or D_E = <d,e>, we need the predicate

=(A_B_C(* <a,b,c>)=1)OR (D_E(* <d,e>) =1)
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and not the predicate
P=A_B_C(* <abc>)+ D_E(*<de>)=1).

EXAMPLE 4.3 Probability range query
QUERY: Select all tuples such that D = d,E = e with probability greater
than 0.73.

P = D_E(* <d,e>) € (0.73,1]

EXAMPLE 4.4 Lipski’s Upper Bound
QUERY: Select all tuples such that we cannot rule out that B = b.

P =A_B_C™(* <*b*>) ¢ (0,1]

Observe that this query will retrieve almost all tuples in the relation with
missing probabilities for the A_B_C attribute. (The only way one of these
tuples can be excluded is if all possible b values are excluded with explicit
zero probabilities.

EXAMPLE 4.5

QUERY: Does a tuple exist with K = k for which we can’t rule out the possi-
bility that B = b?

P =A_B_C(k, <*b,*>)€(0,1]
EXAMPLE 4.6

QUERY: Retrieve tuples that have a B = b value with probability greater
than 0.5.

P=A_B C(*<*b*>)>05

Note that this query will only get tuples with A_B_C value <a,b,c> occur-
ring with probability greater than 0.5, for some a and ¢. If the tuple contains
value <aq,b,c;> with probability 0.4 and <as,b,co> with probability 0.3, it
will not be retrieved. To retrieve such a tuple we need to first apply a
relation-within-relation project that will be discussed in Section V. (See
Example 5.4.)
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EXAMPLE 4.7 Value Based Query
QUERY: Select all tuples such that A > 5and C >8and F < 4.

P =(A_B_C > <5,%8>) AND (F < 4)

EXAMPLE 4.8
QUERY: Select the set of completely specified tuples.

P = (A_B_C(**) ¢ [1,1)) AND (D_E(**) € [1,1]) AND (F(**) € [1,1])

EXAMPLE 4.9
QUERY: Select the set of incompletely specified tuples.

P =(A_B_C(**) €[0,1)) OR (D_E(**) €[0,1)) OR (F(**) ¢ [0,1))

EXAMPLE 4.10
QUERY: Select all tuples that have NULL values in the traditional sense
in the D_F attribute.

P =(NOT ( D_E(**) > 0) ) AND ( NOT (D_E™(**) =0))

Recall that for a null value, there should be no explicitly stored probabili-
ties. The first half of the predicate checks that there are no explicit proba-
bilities greater than zero. Since this part of the predicate cannot distin-
guish between explicit and implicit zero probabilities, we include the second
half. Since the predicate is rather awkward, we may want to define some
shorthand notation for this case, for instance G; = NULL. In this case, the
predicate for the query is

P = (D_E = NULL)

- Next we turn our attention to JOINs. The next two examples illustrate that at
least some types of joins make sense in our probabilistic model.
EXAMPLE 4.11

Let R be ships at sea, and let an observer have recorded the following
information: "The ship’s name is definitely 'Maria’ and I'm 65% sure that
she’s a frigate, but she may just be a tugboat." If a relation R, exists and
contains properties about ships such as maximum speed, and it is a conven-
tional deterministic relation it makes perfectly good sense that all proper-
ties in the tuple with key ’frigate’ would be inherited probabilistically in a
JOIN with R. In other words if I'm 65% sure that a ship is a ’frigate’ and I
know that a frigate’s top speed is 32 knots, then it appears sound to say
that I'm 65% sure the ship’s top speed is 32 knots.
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EXAMPLE 4.12 Join R,R, over Ry.A = R,.A

Ry R R, >< Ry
A A B K A B
k 09 a; aq 06b; [[k [ 054[a; b4]
0.1 ag 04 bg 0.36 [(11 bg]
ag 1.0 b3 0.10 [a2 b3]

This still looks optimistic since multiplying yields a probability density function
without having to normalize. When we look at the probabilistic field of R, and R, we
have information of the following form:

P[A =a; |K =k]and PB=b; | A = a, |. In general we can say our information is
of the form P[AJK] and P[BJA]. The join table interpreted in this fashion is P[A,BK] =
P[AJK] P[BJA]. Is this justifiable? Yes, if we can assume that B and K are independent
then we can use Bayes’ rule to rewrite P[A,BK] = PBJA,K] P[AJK] = P[BJA| P[AKK].
This is implicit in Ry where the likelihood of all tuples on A and B is given indepen-
dently of K.

In the two examples we have considered so far, one of the join attributes is a
primary key, while the other is a foreign key. Furthermore, the referential integrity
constraint holds. (For each foreign key value there exists a primary key value.) The
next example illustrates that this last restriction is not necessary, at least if one is
willing to have missing probabilities.

EXAMPLE 4.13

R,y R,
A A B
k 0.7 ay ay 0.6 bl
0.2 D) 04 bg
0.1 ag as 1.0 b3
ay 0.5 b4
0.5 bs

The join of R; and R, over the A attribute is

R ><R,
K A B
k 0.42 [ ay bl ]
0.28 [ ay bg ]
0.10 [ asg b3 ]

In the result there is 0.2 missing probability corresponding to the ay value in R;.
Since this value was not matched in the join, it is not known how the as values
are distributed in the resulting relation. If missing probabilities were not
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allowed in the model, then this type of join would be invalid.

Joins where neither attribute is a primary key do not seem to have intuitive
motivation, so we will not consider them here.

Rather than formally define the JOIN operation we resort to a final illustrative
example to avoid the rather tedious notational task of a general definition of a JOIN:
EXAMPLE 4.14 Extended JOIN

Relation R Relation S
K A B C B D E F
k | 04fa; b c| b | 0.7 [dy e1] 08f
0.5 [62 b C] 0.3 [d2 62]
Relation R >< S
A B D E F C
k 0.224 [al b dl €1 f C]
0.096 [Gl b dz €9 f C]
0.280 [02 b dl €1 f C]
0.120 [ag b dg €a f C]

In summary, we must first find relation S’s joint distribution and then we can join
the two relations by determining all legal combinations, multiplying their probabil-
ities, and placing the combinations into the resulting relation.
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V. New Operators

We have just finished exploring the implications of .our new data model on
the traditional relational algebra operators. We now turn our attention to the pos-
sibility of new relational operators. The relational algebra was designed for the
relational model of data, and we consider our model to be an expansion of the
relational model. It seems likely that new operators will be necessary to exploit its
more flexible definition of data. Indeed, we introduced one new operator, STO-
CHASTIC, in section III of this paper. In addition to STOCHASTIC, probabilistic
relations support a host of other new operations such as relation within relation
(r-w-r) PROJECTS, PROJECTS without the key, r-w-r SELECTS, a probabilistic
union called COMBINE and an expected value operation called DISCRETE. In
this section we describe these new operators and offer examples of them in action.

We now consider a r-w-r PROJECTION, that is, A PROJECTION onto a
proper subset of a G; set. Such an operation under the no-assumption assumption
is fairly easy to discuss and demonstrate. First, however, we need to expand our
query language to differentiate between a r-w-r PROJECT and the conventional
PROJECT, 7k ¢ (R), defined in the last section. Let X be a proper subset of a Gj
set. We may denote a r-w-r PROJECTION of Gj onto X as my(R.G;), 1 < i< n.
A r-w-r PROJECT will only operate on the G; in question. All other attribute
groups will be included in the tuple unchanged. If X includes all attributes of G;
then the PROJECT will return the relation R unchanged. Now, all that remains is
a formal definition of such a PROJECT. Such a PROJECT amounts to replacing
the Gj set by the unique group of values for the X attributes of the G; set along
with their marginal probabilities.

First, let G; be defined on {A,,...,A;,...,A,}.

Now, without loss of generality let X be defined on {A,,...,A4;}.
Formally, mx{(R.G;) = R<K; Gy;...;Gi_1; X ;Giy1;-.; G >
where (For All k € mg(R),x € Dx)(X(k,2) = %G,-(k, <z,9>))

where Q = {<z,9>|<z,9> € Dg }.

The r-w-r PROJECT can be used in conjunction with the relation level PROJECT
to produce a conventional looking PROJECT on a proper subset of a G; set. We
conclude this discussion with a few examples. The first two examples will refer to
the database instance for Football Players listed below:
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Schema: FootballPlayers<NAME, ATT, WT, INT, HLI, WGP, IPR, SRA>

Description:
ATT Attitude €{1,...,10}
WT Weight ¢ {150,...,400}
INT Intelligence €{1,...,10}
HLI Home Life €{1,..,10}

WGP Weight Gain Pot € {1,...,10}
IPR Injury Prone €{1,..,10}
SRA Strength Rating € {1,...,10}
Functional Dependency: HLI — ATT; WGP — SRA IPR
Probabilistic Schema: FootballPlayers<NAME; INT; WT; HLI ATT; WGP SRA IPR>

Instance:
Relation Football Players
NAME INT WT HLI ATT WGP SRA IPR
Blados, Brian | 0.4[6] 1.0[300 lbs| | 0.3[6 7] 0.2[10 10 2]
0.6[7] 0.5(6 6] 0.3[9 9 3]
0.2[7 7] 0.1[9 9 4]
0.4 8 9 2]

EXAMPLE 5.1 r-w-r PROJECT onto Weight Gain Potential, Strength Rat-
ing (omitting Injury Prone).

TwWGP SRA(R- WGP_SRA_IPR)

NAME INT WT HLI ATT | WGP  SRA
Blados, Brian | 0.4[6] | 1.0[3001bs] | 0.3[6 7] 0.2[10 10]
0.6[7] 0.5[6 6] 0.4[ 9 9]

0.2[7 7] 0.4[ 8 9]

Computing this query amounted to adding the probabilities of the second and
third tuples of the WGP_SRA_IPR sub-relation and omitting the extraneous -
column and suppressing the redundant row.
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EXAMPLE 5.2
The following demonstrates how the two kinds of PROJECTS defined
can be used together:

Conventional Project (include key NAME) onto Home Life and Attitude,
and onto Weight Gain Potential and Strength Rating.

TNAME HLL ATT.WGP_SRA(Twep_spa(R. WGP_SRA_IPR))

NAME HLI ATT WGP SRA

Blados, Brian | 0.3[6 7] 0.2[10 10]
056 6] 04[9 9]
027 7] 0.4 8 9]

The nested query produced the result of EXAMPLE 5.1, a relation with
schema <NAME; INT; WT; HLI ATT; WGP SRA>. The outer query
could then operate on this schema in the conventional way since it
involved proper G sets to produce the final result.

EXAMPLE 5.3
Given R<K; G, ; G2> A r-w-r PROJECT onto X Y where X is a sub-
set of G; and Y is a subset of G5. This can be done recursively as fol-
lows

mx( ( T{R.G3) ).Gy )

EXAMPLE 5.4 Combining SELECTS with PROJECTS with JOINS -
Given R<K; A B C; D E> Select all tuples such that C = ¢ with proba- -
bility greater than 0.75. Note that the join below is the natural join
over the key attribute K.

(mk( op(me(R.A_B_C)) )) >< R
where P = C(* <¢>) €(0.75,1]
The innermost r-w-r PROJECT suppresses the A_B attributes and at
the same time determines the marginal probabilities for the C attribute

values.

The SELECT then accepts all tuples with a C = ¢ value in the specified
range.

The conventional project then determines exactly which tuples (by Key)
should be in the result.

Finally, the JOIN with the original relation R gives back the tuples we
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want in their original format.

At this juncture, we relax the constraint that the Key Field be included in
the PROJECTION. What does such a PROJECT mean? Certainly, as in all regu-
lar PROJECTS of -this nature, redundancy will occur. The redundant values will
be accompanied in a probabilistic relation by the probability that they exist condi-
tional on a now invisible KEY attribute. The following example illustrates the
situation.

EXAMPLE 5.5 PROJECTING out the relation KEY

Relation Q

K A B
kl 0.6 ay 08 bl
0.4 ag 0.1 bg

ks 0.7 a, 0.5 by
0.3 asg 0.4 bg

k3 0.9 ag 0.8 62
0.1 as 0.2 63

T4.5(Q)
K A B
new 1.3/3 a, 1.3/3 by
13/3 a9 13/3 62
0.4/3 a3 | 0.2/3 bs

This project gives average distributions of ‘values in the relation. Note
that the A column gives a true average distribution (since for all keys,
the total distribution is explicitly recorded), while the B column only
gives an approximation. Thus, it could be the case that tuple k£, had
with 0.1 probability a value b3 for B. In this case, the average reported
would be low. In other words, the values in the PROJECT are lower
bounds.

As a final remark, nothing new need be added to support non-key PROJECTS.

The user need only omit the KEY field from the conventional relation level PRO-

JECT.

SELECTS can be performed at the r-w-r level as well. For instance, within an
attribute group a user may want to select those values that have a probability
greater than 0.2 of occurring. This operation would not reduce the number of
tuples appearing in the relation. Instead, within each tuple, there could possibly be
less lines for the selected attribute. This operation reduces the known information
on the attribute. In spite of this, the user may want to perform this operation
because it displays the data he is interested in more clearly, with less clutter.
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To support such SELECTS we must again consider how to augment our
query language. Fortunately, we may use the same artifice as in PROJECTS. We
will merely specify a r-w-r SELECT as one whose input is not an entire relation,
but rather a specified group of that relation. We can then use the exact same
predicate language as before but now the action of the operator will be slightly
different. (Incidentally, note that r-w-r SELECTS are only valid if missing proba-

bilities are allowed.)

EXAMPLE 5.6 r-w-r SELECT

Recall the Relation Football Players defined above.

QUERY: Make visible WGP_SRA_IPR triples with probability greater

than 0.2.

op(Football_Players. WGP_SRA_IPR)
where P = WGP_SRA_IPR(* <* **>) € (0.2,1]

RESULT:
Relation Football Players
NAME INT WT HLI ATT WGP SRA IPR
Blados, Brian | 0.4[6] 1.0[300 lbs| | 0.3[6 7] 03[9 9 3]
0.6[7] 0.5[6 6] 0.4] 8 9 9]
0.2[7 7]
The SELECT amounts to suppressing the two possibilities for
WGP_SRA_IPR with probabilities of 0.1 and 0.2.
EXAMPLE 5.7 r-w-r SELECTS: Recursive calls and empty relation
responses
QUERY: The QUERY from EXAMPLE 5.6 followed by the restriction:
Make visible doubles on HLI_ATT in the range (0.6,0.9).
Py = HLI ATT(* <**>) €(0.6,0.9)
The query looks like:
op,((op(Football_Players. WGP_SRA_IPR)).HLI_ATT)
RESULT:
Relation Football Players
NAME INT WT HLI ATT WGP SRA IPR
Blados, Brian | 0.4[6] 1.0[300 Ibs] 03[9 9 3]
0.6[7] 0.4[8 9 2]
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The probabilistic model also offers the opportunity to create a new relational
operator called COMBINE. Such an operator grows out of considering the opera-
tions of UNION and INTERSECTION on a probabilistic model. The algorithms to
perform UNION and INTERSECTION are as straightforward as in the deter-
ministic case. The resulting relations in both cases seem weaker than necessary in
this model. Consider the UNION first. After performing the operation on two rela-
tions there may be two tuples describing the same object each with different pro-
bability densities. Performing the INTERSECTION, on the other hand, will only
include tuples that are described by exactly the same probability densities in two
places. It appears that a great deal of information is being lost or unused in both
these processes. This suggests an alternative in which an attempt is made to
merge all the information at hand.

Tentatively, a COMBINE would work like both a UNION and an INTER-
SECTION: Certainly, all entities from both relations would be present and if both
relations have the same probability distributions then that exact tuple should be
in the result. In combining probability densities on the same entity three methods
come to mind:

(1) Add the probabilities and normalize the result,

(2) Multiply the probabilities and normalize the result,

(3) A weighted add and normalize schema.

Method (3), which is just a general form of the first method, seems best suited for
minimizing information degradation especially after repeated applications. In
order to compare the three proposed methods for COMBINE, we will first make an
apparent digression. In EXAMPLE 5.8 we will offer some methods for creating
Summary Data relations in which it is assumed that we always have the underly-
ing Raw Data available. In EXAMPLE 5.9 we assume the Raw Data was available
only long enough to create the Summary Data relations of EXAMPLE 5.8.1. We
can then apply our various COMBINE suggestions to the Sum Data at hand and
compare our results with the true COMBINATIONS calculated in EXAMPLE
5.8.2.

EXAMPLE 5.8 Comparing methods of summarizing data

Suppose we have three Raw Data relations on the following schema:

Schema: <SKBT,User,QR>
Domain:

SKBT  Skateboard Type {Jet,Speedster,Coaster}
QR Quality Rating {VFJF,S,VS}
User Users {Names}

The following Raw Data was collected from 3 stores about Jet Skate-
board:

Data, Data, Datag
30 users: QR=VF 128 users: QR=VF  76users: QR=VF
40 users: QR=F 72 users: QR=F 100 users: QR=F
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30 users: QR=S 200 users: QR=S 24users: QR=S

EXAMPLE 5.8.1 Applying STOCHASTIC to each of the Raw Data Rela-

tions

From these Raw Data relations three summary data relations can be
induced using

STOCHASTIC( Data;<SKBT,User,QR> <SKBT,User><SKBT;QR> )

1€XI<¥
Sum g9 Sum 400 Sum gog
SKBT QR SKBT QR SKBT QR
Jet 0.3 VF Jet 0.32 VF Jet 0.38 VI
04F 0.18 F 0.50 F
038 050 S 0128

EXAMPLE 5.8.2

STOCHASTIC(Data, | ) Datay<SKBT,User,QR> <SKBT,User>,<SKBT;QR>)

and Applying STOCHASTIC to Data, | Datay | Datag yields the fol-
lowing results...

Sum g Sumrgg
SKBT QR SKBT QR
Jet 0.316 VF Jet 0.334 VF
0224 F 0.303 F
0.460 S 0.363 S

EXAMPLE 5.9 Comparing various COMBINE methods

At this point we will assume that we start with the Sum Data relations
of EXAMPLE 5.8.1. In EXAMPLES 5.9.1 through 5.9.3 we will apply

each of the three proposed COMBINE methods to see how they compare
with the real results of EXAMPLE 5.8.2.

EXAMPLE 5.9.1 COMBINE method 1: Add the probabilities and normalize

Sum oo Sumzop
SKBT QR SKBT QR
Jet 0.31 VF Jet 0.345 VF
029 F 0395 F
048 0.260 S

This method will suffer greatly when the underlying data is of vastly
different sample sizes.
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EXAMPLE 5.9.2 COMBINE method 2: Multiply the probabilities and nor-
malize

Sumsg Sumzqgg
SKBT QR SKBT QR
Jet 0.302 VF Jet 0.403 VF

0.226 F 0397 F
0472 S 0.200 S

EXAMPLE 5.9.3 COMBINE method 3: Weighted add and normalize
For example,

P[QR=VF | SKBT = Jet] = [0.3(100)+0.32(400)]/[100-+400] = 0.316.

Sumsoo Sum-;[)o

SKBT QR SKBT QR

Jet 0.316 VF Jet 0.334 VF
0224 F 0.303 F
0.460 S 0.363 S

The weighted add and combine will always be identical to the STOCHASTIC
operator applied to the corresponding underlying samples, but at the cost of carry-
ing extra information in the Probabilistic relation, namely the weights of the sam-
ples. The other two methods can suffer different amounts of degradation. If the
weights are not managed carefully, however, another kind of information decay
can take place. In a weighted add and combine it is necessary to add the tuple-
weights in the final relation. What happens, for example, if we COMBINE a Pro-
babilistic relation with itself? In the relational model R UR=R and so
STOCHASTIC(R) = STOCHASTIC(R | J R) but COMBINE(R,R) doubles the

weight of its resulting tuples. All subsequent applications will distort the informa-
tion content of the data.

Multiplying the probabilities and normalizing offers some interesting results
in extreme cases as the following example demonstrates:
EXAMPLE 5.10 Multiply and Normalize Probabilities

Relation P Relation Q COMBINE(P,Q)
E A E A E A
e | 0.3 ag e 1.0 a; ¢ 0.3/0.3 a;
0.5 aqg
0.2 ag

This form of COMBINE forces the probabilistic relation to defer to the
deterministic relation.
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If we had added and normalized, then the result would be different:

COMBINE(P,Q)

E A

e 0.65 a,
0.25 ag
0.10 as

Notice how the likelihood of a; is now larger than in P, but not as large
as in Q.

EXAMPLE 5.11. Combines with missing probabilities.
When we normalize probabilities, we should take into account missing

probabilities, as the following examples illustrate. The first two are with
addition of probabilities, the last two with multiplication.

With addition:

Q COMBINE(P,Q)
E A E A E A
e | 03a; ||e | 1.0a; ||e 0.65 a,

' Q COMBINE(P, Q)
E A E A E A
e | 03a; ||[e | 05a; ||e 0.40 a,

With multiplication:

P Q COMBINE(P,Q)
E A E A E A
e | 03a; ||e | 1.0a; (|e 1.0 a;

P Q COMBINE(P,Q)
E A E A E A
e | 03a; ||[e | 05a; ||e 0.3 a,

In the last case, we selected a “worst case” scenario. That is, all the
missing probabilities could be assigned to the same unknown value. The
product probabilities would be 0.3 times 0.5, or 0.15, for a;, and 0.7 times
0.5, or 0.35, for the unknown value. Normalizing this we obtain the
result shown. We could have also selected a ‘“best case” scenario, in
which case none of the missing probabilities match up. Then the result-
ing tuple e would have the value a; with probability 1.0. It is not clear
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at this point which of these scenarios would be most appropriate.

If we give COMBINE a pair of deterministic relations a probabilistic relation
results as output. Also, the STOCHASTIC operator, as its principal function takes a-
deterministic relation and returns a probabilistic one. We propose an operator called
DISCRETE to go the other way. So, DISCRETE would take a probabilistic relation and
output a deterministic one. Two ways in which DISCRETE might work are presented
here.

Gelenbe discusses in [1] a model for computing the expected value of a query based
on a statistical sampling of the data, and such an approach seems appropriate here as
well. When attributes have integer values, calculating the expected value in the model
we have discussed in this paper is simple. When attributes do not take on integer
values, or a group of attributes are jointly distributed the problem becomes less rigidly
defined. A tentative DISCRETE procedure could take as parameters a probabilistic
relation and its schema, and mappings from the underlying domains of the G; sets to
the natural numbers. Equipped with these mappings, computing the expected value for
each Gj is again a well defined task. Note that users could produce many different
expected value relations based on the same probabilistic relation by calling DISCRETE
with different mappings. Alternatively, DISCRETE could be used to produce a kind of
cross product within a tuple. In other words DISCRETE could create a relation consist-
ing of all possible combinations of values defined by a probabilistic relation.
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VI. The Uniform Assumption

Up until now when the probabilities for a G; set do not add up to exactly one we
have made no assumption about the missing information. Sometimes, however, particu-
lar probability distributions are appropriate to describe the missing information. A
user should be able to request that missing information be considered distributed in a
particular way if he so desires. In this section we will study the uniform distribution
since it is the easiest and the most likely to occur. For example, in traditional systems
NULL values are taken to mean "value applicable but unknown." This means that any
value in the underlying domain could be the correct value and it is intuitive to assume
that they are all equally likely candidates.

For now, we will assume that when probabilities add up to a number strictly less
than one, the leftover margin is divided up equally among the other legal values of the
domain. Suppose that a user enters the following tuple in relation R<K; A> where D,
={ay,...,ag}.

Relation Y

K A

k 03 a1
0.2 aq

Under the uniform assumption for missing probabilities the above tuple is equivalent to
the following tuple.

Relation Y
K A

k 0.3 a;
0.2 ag
0.05 ag
0.05 a4
0.05 ag
0.05 ag

Obviously, this style of display obscures the information rather than enhances it. A
shorthand notation is needed to maintain clarity while still presenting all the informa-
tion. A simple possibility is to have a special symbol "n, ®< Range >®" that indicates
that the values in the Range are uniformly distributed with total probability n.
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So, an equivalent representation for the two tuples above might be

Relation Y
K A
k 0.3 ay
0.2 ag
0.5 ®<az..a5>P

If the Range of a ®< Range >® symbol includes all values that are not shown, then we
can define a special symbol, say "::" for this. Here, "::" will mean all possible values that
do not yield a duplicate. We define "::" instead of using the "*" notation defined before
to emphasize that redundancy is not allowed here. Thus, the two relations below are
identical assuming the same schema and domain as before.

Relation X Relation Y

K A K A

k 0.6 asg k 0.6 ag
0.2 ¥<a,..a,>P 04 <::>d
0.2 <P<a4..aﬁ>¢’

This shorthand extends naturally to groups of attributes. For instance,
®<ay..ay; b3..07>P or $<aj..a3; :: >P. Operations using this notation are clearly
defined. The result of a SELECT, PROJECT, or JOIN where these symbols appear
- should be identical to the result produced by the expanded relation. For the remainder -
of this section we will present examples demonstrating query processing under this"
assumption.
EXAMPLE 6.1
Schema: R<K;A B C D; E> Domains:

.DA ={a1,...,a4} DB={61,...,b4} DC={CI,...,C3}
Dp = {dy,...,ds} Dg = {ey,...,e7}

Instance:

Relation R

K A B C D E

01fa; by ¢ dy] | 02¢
0.5[a; by ¢ ds] 0.3 e,
0.05[&2 bg (3] dl] 0.1 €3
0.15[a; by g dy] 04 ey
0.1[&2 b2 Cg d5]

0.19<:: 3 = >d

P

QUERY: mg 4_p( (7x,4_B_c_p(R)).A_B_C_D)
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(1) Total Explicit Probability = 0.9.

(2) Explicitly stored values of A B = {<ay,b;>,<ag,b5>}.

(3) Marginal Probability of <aj,b;> =0.1 + 0.5 + 0.1(3*5-2)/[4*4*3*5-5].
(4) Marginal Probability of <ag,b5> =0.05 + 0.15 + 0.1(3*5-3)/[4*4*3*5-5].

In (3) and (4) we must determine the total probability associated with the
explicitly stored attributes in this tuple. The bulk of this probability can be
read from the explicit information. The final term corresponds to the implicit
information. To determine this for (3) we not that there are a total of 3*5 =
15 possible mappings with A = ¢; and B = b;. Of these 2 are explicitly stored
with combined probability of 0.6. Each of the remaining 13 have an equal
likelihood of existing, namely 0.1/[4*4*3*5-5|. The 0.1 is the total probability
to be split equally among the remaining mappings. The denominator depicts
the total number of mappings minus the explicitly stored mappings. The solu-
tion to the above query looks like:

K A B

03 + 12/235 [a2 bg]
0.0 +21/235 &<:: = >P

The uniform distribution total in the last line can be explained as follows.
There are 16 unique A_B pairs. Two of these are explicitly represented, which
leaves 14 unique A_B pairs. Each of these 14 pairs can be associated with 15

combinations of C_D pairs, so-the total number of combinations is 14*15="~

210. Each of these has a probability of 0.1/235 of existing where 235 is again,
the total number of combinations not explicitly denoted in the tuple. So, the
resulting total probability is 0.1(210)/235 = 21/235.
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EXAMPLE 6.2 r-w-r SELECT
Recalling the schema and instance from EXAMPLE 6.1, determine the
response to the following query: QUERY: Make visible the tuple information

when D = dj.
The predicate looks like P = A_B_C_D = <** * d;>

and the query is op(R.A_B_C_D) with result as follows

Relation R
K A B C D E
k | 0.1%48/235 ¢<:: = = d3>® | 02 ¢
03 es
0.1 e3
0.4 €4

Computing this query amounts to realizing that ds appears in none of the
explicit probabilities, so all possible combinations of the other three attri-
butes (48) will not yield duplicates. Finally, the 0.1 leftover probability is dis-
tributed among all other combinations (235).

EXAMPLE 6.3 JOINs under the uniform assumption
Given the following two relations, M and N, compute the natural JOIN.
Dg ={ay,...,a3} and Dp = {by,...,by}.

M N
K A A B
k 0.8 ay ay 0.6 b]_
0.2 <:: > 0.4 by
ay | 1.0 <::>9P

M >< N
K A B
k 0.48 [al bl]
0.32 [a1 bg]
0.1 ®<ay, :>9

The above example violates the second referential integrity rule of the relational model
as defined by Date in [10]. The violation is obscured due to the notation, but recall that
P<::>® means that all possible values are applicable. The referential integrity rule
states that the foreign key is not a legal value to be used until an entry exists for that
value in the relation for which the value is the key. As we discussed in Section IV, when
the referential integrity rule is violated, the resulting join has missing probabilities. In
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the example, the missing probability is 0.1, corresponding to the probability that tuple k
in M takes on a value of a3.
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VII. Conclusion

A new model for information incompleteness of some power with a host of areas
for further research has been introduced. An entirely new class of data can be con-
sidered. A strong point of the model is its flexibility: Its two extreme cases include the
deterministic case and the null value case while a small subset of values with equal pro-
bability is exactly the model considered by Lipski. Also, computation involving null
values is well defined by the model and so no special actions need be taken. The model
supports all of the traditional relational algebra operators as well as a large group of
new operators. A notion of relational layering and the potential for summary relations
was explored in the probabilistic context and in a more general statistical one. Finally,
examples that can take advantage of this general framework do exist and a powerful
statistical tool that could work in conjunction with this model is under development
elsewhere.

Areas for future research open the door to more potential applications and exam-
ples: (1) Continuous attributes usher in all positional data. (2) Defining an analytical
probability density function language would be useful in many stock market related
issues such as predicting company growth or profit. (3) Functional dependencies (FDs)
need to be considered further in such a model. (4) Perhaps the idea of a probabilistic FD
would have interesting repercussions. (5) The marriage of Gosh’s framework, this proba-
bilistic model, and the statistical power of a system such as "S" needs to be considered.
(6) JOINs merit further attention and the relational operator DIVIDEBY deserves for-
mal treatment.

Continuous attributes are the next logical addition to this data model. The
defining criteria of the probabilistic model, measuring properties of real objects, indi-
cates that samples of observations will be erroneous measurements. Such samples
should be normally distributed, the classic distribution of errors case. Normally distri-
buted random variables offer the opportunity to use confidence intervals defined on
these samples to define-an interval in which the true value has a certain percentage
chance of residing. Such intervals generate interesting possibilities for yet another kind
of probabilistic relation based on Raw Data relations. The Confidence Interval relation
will convey much more information than a conventional relation on such data. There
are many indirect applications and opportunities to apply heuristics based on the users
confidence in the data as well. For example, the Raw Data relations could be given a
field to display the confidence interval that this observation lies within. Based on this
augmented Raw Data relation another probabilistic relation about the observers could
be created. This relation could be the output of a call to STOCHASTIC or DISCRETE.
In either case the relation could be used to determine the reliability of the observers.

Throughout this paper, the methodology for creating probabilistic relations has
been loosely based on sampling theory and statistics. Another method would be to
develop a probability density function (pdf) language that the user or database adminis-
trator could invoke at relation creation time to analytically describe the probabilistic
function that governs the presentation of the data, and the probabilities of attributes
or tuples. It seems most likely that users would again be entering data in the
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conventional way. The DBMS would then generate probabilities and offer another kind
of relation based on the data and the function defined for this relation. For example,
the DBA might have decided that a particular attribute was binomially distributed
with the underlying domain as the sample space. Then as a user entered a tuple with a
particular value in that attribute, the DBMS can determine the likelihood of that value
and tag the field appropriately. So, a simple pdf language might have a group of the
common distributions as candidates that the DBA can select to govern any attribute. A
more general and more interesting method would be to allow the DBA to create pdfs
independently. Now the DBMS must make sure that these pdfs are legal. That is, they
sum over the sample space (underlying domain) to one.

Another interesting research issue involves FDs. In this paper we assumed that the
FDs defined the groups of inter-dependent attributes. So, the schema could be decided
based on the FDs. In a more general framework, the users might group attributes
without regard to FDs. Does it make sense to allow this generalization? If it is sensible,
then we must decide what FDs that cross group boundaries mean. Also, in such a case
we may want to introduce a probabilistic FD in the same spirit as the conditional pro-
babilities discussed in this paper. Such information could be kept in another probabilis-
tic relation for each FD. the primary key of the relation would be the input attribute.
The dependent attributes would be the attributes it functionally determines. These
dependent attributes could be independent of each other or grouped together exactly as
discussed in this paper.

The best way, however, to see if such a system does have potential for users is to
implement it and give it to people. A simple form of the system equipped with the func-
tionality described above could serve as an ideal starting place. These features include
(1) discrete valued attributes, (2) Raw Data Relations, (3) the STOCHASTIC operator, -

(4) the DISCRETE operator, (5) the COMBINE operator, (6) the ability to define proba-

bilistic relations, (7) The traditional relational algebra and (8) r-w-r relational algebra.
The key would be to .implement a test version in a relatively short period of time that
would run on the greatest number of machines. A first version written in C and running
in the UNIX environment could be implemented relatively quickly. This assures a broad
academic audience and guarantees maximum portability. If feedback is constructive
during the test bed phase then the system could be expanded to meet user needs and to
incorporate the features described in this conclusion as areas for future research.
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