PRIMITIVES FOR THE MANIPULATION
OF THREE-DIMENSIONAL SUBDIVISIONS

David P. Dobkin
Michael J. Laszlo

CS-TR-089-87

April 1987

Primitives for the Manipulation
of Three-Dimensional Subdivisions

David P. Dobkin
Michael J. Laszlo

Department of Computer Science
Princeton University

Princeton, New Jersey 08540

1: Introduction

A major impediment to the implementation of algorithms that manipulate 3-dimensional cell complexes
and subdivisions is the lack of a suitable data structure. What is needed is a data structure powerful
enough to model such objects yet simple enough to allow their manipulation in well defined ways. We
focus attention here on the development of such a data structure. Our structure is analogous (though one
dimension higher) to the winged-edge [Ba], [BHS], [EW] and quad-edge [GS] data structures which are widely
accepted for modelling 2-manifolds. Just as these structures can be used to represent both planar polygonal
cell complexes in R? and surfaces of polyhedra, our data structure can model polyhedral complexes in R3
and surfaces of 4-polyhedra.

Our results can be viewed as similar to the work done by Guibas and Stolfi in deriving the quad-edge
structure. Lifting the results one dimension higher increases the complexity of our data structure. They
consider an edge as their atom, and consider the edge rings to which it belongs. We consider a polygon-edge
pair as an atom, and consider the two polygon rings and two edge rings to which it belongs. The quad-
edge atom could be considered to connect two vertices and two polygons. Similarly, our atom connects two
polyhedra and two vertices. We simplify our structure by treating only complexes that are orientable, and
whose cells do not puncture the interior of other cells.

There are numerous applications we envision for such a data structure. One application we consider is
that of decomposing a polyhedron into tetrahedra [Ch, W5]. We rederive and model one of the applications
[W6] in our system. A second application we consider is the implementation of an algorithm for incrementally
computing the Delaunay triangulation of a 3-dimensional point set [AB], [Bh]. Further applications are also
possible. For one, our data structure provides an approach to an efficient divide-and-conquer algorithm for
building 3-dimensional Voronoi diagrams. A second possibility is for modelling the motion of a 3-dimensional
polyhedron through time, which can be viewed as a 4-dimensional polyhedron (in z, y, z,t space) where hidden
surface removal is done by projecting into z,y,t space and taking ¢ cross-sections to determine individual
scenes.

What we attempt to achieve in this paper is a blend between a derivation of the data structure and
a small set of primitive operators for its manipulation, the development of macro operations from these
primitives, and the use of these macros in the first two applications mentioned above. The results of this
paper are implementable and an effort to build them is currently underway.

2. Definitions and Prerequisites

In this section we define the class of objects to be manipulated by our data structure. It is assumed the
reader is familiar with some basic concepts of point-set topology.

2.1 Basic Definitions

Where T is a topological space, a k-cell is a closed subspace of T' whose interior is homeomorphic to RF,
and whose boundary is non-null. In this paper, we assume that 7" = R3, though our results hold for more
general T. We call a 0-cell a vertex, a 1-cell an edge, a 2-cell a polygon or a facet, and a 3-cell a polyhedron.
Note that a cell may be unbounded; for instance, an edge can be a closed segment (bounded by two vertices)
or a ray (bounded by one vertex). We also assume that each k-cell ¢ lies in a k-dimensional affine subspace,

denoted aff c.

This work supported in part by the National Science Foundation under Grant DCR85-05517.

1

A (closed) cell complex of T' is a finite collection C of cells of T such that
(i) the relative interiors of cells of C' are pairwise disjoint, and

(ii) for each cell ¢ € C, the boundary bd ¢ of cell ¢ is the union of elements of C, and

(iii) if e,d € C and end # 0, then ¢ N d is the union of elements of C.

We let 2(C') be the union of the cells of C, and consider C a subdivision of Z(C). An n-dimensional complex
for which every every k-cell is contained in (the boundary of) some n-cell is called an n-complex. Informally,
an n-complex is a complex possessing no struts, superfluous cells that do not help to define polyhedra.

The combinatorial boundary of cell ¢ of C, denoted 8¢, is defined to be the set of cells of C' contained
in bd c. Note that #(dc) = bd e. The combinatorial boundary 8C of complex C is defined as the set of cells
of C' contained in bd(C). An open cell d C c is said to be a face of ¢; if in addition ¢ # d, then d is a
proper face of ¢. If one of ¢ or d is a proper face of the other, ¢ and d are said to be incident. For instance,
a polyhedron is incident with each vertex, edge and facet that lies in its boundary. The star of a cell ¢,
denoted starc, is the subset of C' consisting of the cells of which ¢ is a face.

In this paper we consider two types of 3-complexes. One type, called ball complexes, are subdivisions of
space homeomorphic to the closed ball D3 = {z € R? | |z| < 1}. We regard a ball complex as a subspace of
R3. The other type of 3-complexes we consider are the subdivisions of B3. Observe that in such complexes,
the star of each edge contains a facet-polyhedron cycle, each cell of which occurs in the cycle exactly once.
Similarly, each facet is bounded by a simple vertex-edge cycle.

Given n-complex C, by convention there exists one (null) n + 1-cell of which every n-cell of C is a face;
likewise there exists one (null) —1-cell which is a face of every vertex. Distinct k-cells ¢ and d (for 0 < k < n)
are then said to be adjacent if (i) there exists some k — 1-cell of C that is a face of both ¢ and d, and (ii) there
exists some k + 1-cell of C' of which each of ¢ and d is a face. For instance, two vertices connected by an
edge are adjacent; in addition, two facets incident to the same polyhedron and the same edge are adjacent.

A closed disk D? = {z € R? | |2| < 1} can be oriented in either of two ways. One orientation turns
counter-clockwise about the disk, while the other turns clockwise about the disk, as the disk is viewed from
one of its sides. We henceforth refer to the orientation of a disk as clocking, and a polygon with orientation
as a clocked polygon.

A closed ball D? can be (space)-oriented in either of two ways. If we imagine a diameter d of the
ball directed from point p on the sphere bd D? to antipodal point p’ on bd D3, a right-handed orientation
(RH orientation) turns counter-clockwise about d, while a left-handed-orientation (LH orientation) turns
clockwise about d, as d is viewed from p/ to p. A directed edge with orientation is called an oriented edge.

2.2 Space-Duality

The space-dual of a complex C' of space T is a second complex C* of T' for which there exists a one-to-one
mapping ¥ from C onto C* such that
(i) the image of a k-cell under ¥ is an n — k-cell, and

(ii) cells ¢ and d are adjacent in C iff cells ¥(c) and ¥(d) are adjacent in C*.

In particular, with respect to 3-complexes C and C*, each vertex (edge) of one corresponds to a poly-
hedron (facet) of the other, and adjacency relations between cells are preserved. The space-dual of cell ¢,
denoted c*, is that cell which corresponds to ¢ under ¥: ¢* = ¥(c) for ¢ € C, and ¢* = ¥~1(c) for c € C*.

The complex C* space-dual to C is by no means unique. However, up to the topological property which
we intend our data structure to represent — adjacency relations between cells — the numerous complexes that
serve as space-dual to C in T are identical. For our purposes, C* is well-defined. Furthermore, (C*)* = C.

Given ball complex C', we denote by p® that unbounded “polyhedron” whose boundary coincides with
that of C. The space-dual of C is a subdivision C* of R3, one of whose vertices is a point at infinity whose
space-dual is p*°.

3. Traversal Functions

In this section we present the five traversal functions Fnezt, Enezt, Rev, Clock and Sdual We call these
traversal functions because they provide the means of traversing or moving about the cells of a complex. The
first two traversal functions are used to move from cell to adjacent cell of a complex. Rev and Clock are used
to change a local sense of direction, so Fnezt and Enext know the direction in which each is to traverse. The
function Sdual is used to move between a complex and its space-dual. Since edges and facets interchange in
the space-dual, the roles of Fnezt and Enezt are interchanged in going between C and C*.

2

Also presented are the vertex functions Org, Dest, Ppos and Pneg, with which one can determine the
two vertices incident to an edge (its endpoints), and the two polyhedra incident to a facet. They are called
vertez functions since the polyhedra incident to some facet in a complex correspond to the vertices incident
to some edge in the complex’s space-dual.

3.1 Basic Traversal Functions

Let f be a facet of complex C. The combinatorial boundary of f contains a ring of edges e®...e"~! where
edges e’ and e'*! are adjacent in C' (addition modulo n). We call this ring, denoted £ 1, the edge-ring of facet
J. &y can be assigned either of two directions whereby we can distinguish between the two edges belonging
to the ring that are adjacent to edge e'. We write £ = (e?...e""!) to indicate the edge-ring with direction
such that, of the two edges e’~! and e+ of £; adjacent to e, e*~! precedes and e?*+! follows, edge e'.

Similarly we define the facet-ring of edge e, denoted F., to be the ring of facets F, = (f°... f™1)
incident to e in C. Facets fi=! and fi*+! of F, are adjacent to facet f*, and fi~! precedes, while fi+! follows,
facet f*.

The atomic unit on which queries are formulated is called a facet-edge pair. This is a pair consisting of
a facet f and an edge e, such that f and e are incident. The edge component e of a is denoted e,, and the
facet component f of a is denoted f,. The facet-edge pair a determines two rings in C, these being edge-ring
&;, and facet-ring F,,. There are four versions of a which derive from the two directions that each of its
two rings can assume. Henceforth by facet-edge pair we mean one such version — each of the two rings
determined by the facet-edge pair has direction. £, denotes the edge-ring £;, with direction determined by
a; facet-ring F, is similarly defined.

Given facet-edge pair a, it is useful to distinguish between the two vertices incident to e, (its endpoints),
and between the two polyhedra incident to f,;. To distinguish between the endpoints, observe that the
direction of £, directs edge e, in a natural way. We call that vertex which serves as endpoint both to e, and
to the edge that precedes e, in &;, the origin of e,, denoted aOrg. Similarly, the destination aDest of e, is
that vertex incident both to e, and to the edge that follows e, in &,.

To distinguish between the polyhedra incident to f,, we assume e, to possess an orientation. Where
its orientation is RH (LH), we define H} to be that open half-space determined by the plane aff f, from
which the direction of £, appears counter-clockwise (clockwise). We then define the positive polyhedron of
a, denoted aPpos, to be that polyhedron p of C incident to f, for which points of the interior of p arbitrarily
close to the relative interior of f, lie in H}. The negative polyhedron aPneg of a is the other polyhedron of
C incident to f,. If facet f, lies on the boundary of a ball complex so the positive (or negative) polyhedron
of a does not exist, aPpos (or aPneg) has value p™. Figure 1 illustrates some of the notions presented so far
in this section.

a2 el aDest
Fig. 1. We call this a handcuff diagram. It pic-
0 tures a region of some complex. The “handcuff”
fo € f3 represents facet-edge pair a. The placement and
i direction of its circular loop indicates the clocked
f facet component f,, and its elliptical loop the space-

el
---O f2 oriented edge component e,. In this example, F, =
(fu. .._fs) and &, = (eo ...65), where f, = ,fo
and e, = el. Polyhedron GP{)O‘! lies above the page

and contains facets _fO and f*, while a Pneg lies be-
hind the page and contains _fn and f3.

e4

e’d

aOrg

We are now able to define the traversal functions Fnexzt, Enext, Rev and Clock. Each is applied to some
facet-edge pair and returns a new facet-edge pair.

Fnezt is defined by a’ = aFnexzt where e, = e, and facet f, follows f, in the facet-ring F,. The rings
of a are directed so that F,» = F, and a’Org = aOry.

3

¢

aFnext
“E"wo O O Fig. 2. This handcuff diagram illustrates the four

traversal functions Clock, Rev, Fnezt and Enext. The

O O region pictured is a winged-edge, consisting of five

edges and (part of) two facets (to the left and right

aClock O O of the vertically drawn line). We assume these two
facets to belong to a common polyhedron that lies

behind the plane of the page, this being aPpos in

ﬂglj\ o

Enezt is defined by a’ = aEnext where for = f, and edge e, follows edge e, in the edge-ring &,. The
rings of a’ are directed so that £, = £, and a’ Ppos = aPpos. Observe that a and aFnezt necessarily have
the same orientation.

Rev is defined by a’ = aRev where a’ and a are different versions of the same facet-edge pair — that is,
eq = eg and fyr = f; — for which the direction of F,: is opposite that of F,, and the directions of £, and
&, are the same.

Clock is defined by a’ = aClock where a’ and a are different versions of the same facet-edge pair, for
which the directions of £, and F,s are opposite those of £ and F,, respectively.

Figure 2 illustrates these various traversal functions Traversal functions Rev and Clock can be viewed
as follows. Given a, assume f, to possess a clocking and e, a (space)-orientation — call these the clocking
and orientation of a. We insist upon the invariants that the direction of £, agree with a’s clocking, and that
the direction of F, move from aPneg towards aPpos. The effect of Rev is to reverse orientation but leave
clocking the same; since a’s positive polyhedron is a Rev’s negative polyhedron (and vice versa), the direction
of FuRey is opposite that of F,. The effect of Clock is to flip clocking but leave orientation the same; a’s
clocking is opposite aClock’s clocking, and a and aClock’s positive and negative polyhedra are swapped, so
the directions of Eycioer and Fociock are opposite those of £; and F,, respectively. Each of the four versions
of a facet-edge pair has a unique clocking and orientation. The clocking and orientation of a facet-edge pair
are used as handles to manipulate the direction of its two rings.

The following relations hold among the traversal functions.

(A1) aRev’ =a
(A2) aClock® = a
(A3) aRevClock = aClockRev
(A4) aFnezt™ = aClockFnext Clock
(A5) aFnezxt™' = aRevFneztRev
(A6) aEnext™! = aClock Enext Clock
(A7) aRevEnext = aEnext Rev
(A8) aCIocane;ii # a for any i
(A9) aRevEnext' # a for any i
(A10) aClockEne:;t‘ # a for any 1
(A11) aRevFnezt' # a for any i
(A12) a e C iff aFnezt € C
(A13) a € Ciff aClock € C
(A14) e e C iff aRev € C

3.2 Space-Duality

The traversal function Sdual is applied to a facet-edge pair a of complex C, and returns a second facet-edge
pair aSdual belonging to C*. The edge component of aSdual is e,54uar = fo*, and its facet component is

4

faSdual = €4*. In order to define the particular version of aSdual — that is, the direction of its two rings —
we first extend the notion of space-duality to facet- and edge-rings.
Given edge-ring £, = (eJ...e}~1) of C, its space-dual is the facet-ring (£,)* = (ed™...e21") of C*.

The space-dual of a facet-ring is similarly defined. The rings of aSdual are then directed such that

Easdual = (fa)*: and
Fasdual = (Ea)*.

The relation between a and aSdual can be grasped by imagining the two facet-edge pairs superimposed,
edge e, piercing facet fig4uar orthogonally, and facet f, pierced by edge ess4uar orthogonally. Edge easdual
is directed from aPneg towards aPpos. Facet-ring F,g4uqa1 moves from aOrg towards aDest, so aDest is the
space-dual of aSdualPpos. Facet-edge pairs @ and aSdual necessarily have the same orientation. This is
depicted in Figure 3.

aSdual O

Fig. 3. This diagram depicts the relation between
facet-edge pairs ¢ and aSdual. Facet f, is a square
protruding from the page, and so appears foreshort-
ened.

The following relations hold between Sdual and the other traversal functions.

(A15) aSdual* = a

(A16) aClockSdual = aSdualClock
(A17) aRevSdual = aSdualClock Rev
(A18) aFnext = aSdualEnextSdual
(A19) aFEnezt = aSdualFnextSdual
(A20) a € C iff aSdual € C

Relation (A17) indicates that a change in the direction of F, in C corresponds to a change in the direction of
€a5dual iIn C*. Relation (A18) indicates that the rings F, and £,54uq move in the same direction. Relation
(A19) defines Enext in terms of Fnezt and Sdual, so maintaining the facet-rings in both C' and C*, as well
as the correspondence between each cell and its space-dual, is sufficient to maintain the edge-rings in both
complexes. The facet-edge data structure uses this fact.

3.3 The Vertex Functions

It is worthwhile to characterize every vertex of C' and C* in terms of the class of facet-edge pairs for which
the vertex serves as origin. Where facet-edge pair a belongs to C, the origin and destination of a can be
represented by two such classes. Also, the positive and negative polyhedra of a can be represented by two
such classes corresponding to vertices of C*.

We define an origin partition to be a partition of the set of facet-edge pairs comprising C' and C*. The
equivalence class a Oryg is the class of facet-edge pairs b whose origin is identical to the origin of a. Class aOrg
may be known by numerous names, since bOrg = aOrg if b € aOrg. Each vertex of C and C* is represented
by a unique class of the partition.

Dest, Ppos and Pneg are intended to provide even more names for the classes of the origin partition.
Formally, these additional names are superfluous; however, they coincide with our notions of destination
vertex, and positive and negative polyhedra, and so are useful. For instance, aDest corresponds to the
destination vertex of the directed edge e4, and is in some contexts more suggestive than a Clock Org (another
name for the same class).

The classes of the origin partition are related as follows.

(B1) aOryg, aDest, aPpos and aPneg are all distinct

[

5

(B2) aRevOrg = aOryg

(B3) aClockOrg = aDest

(B4) aRevClockOrg = aDest

(B5) aFnezt' Org = aOrg for all integer i
(B6) aRevPpos = aPneg

(B7) aClockPpos = aPneg

(B8) aRevClock Ppos = aPpos

(B9) aEnext’ Ppos = aPpos for all integer i

(B10) aSdualOrg = aPneg
(B11) aSdualDest = aPpos

4. The Facet-Edge Data Structure

Facet-edge pairs are partitioned into groups of eight. Each group consists of the four clocked and oriented
versions of a facet-edge pair, plus the four versions of the facet-edge pair’s space-dual. Where @ is the
canonical facet-edge pair of the group, the group is then of the form @Sdual® Clock® Rev" where d, c,r € {0,1}.

A group is represented by a facet-edge node n, which is a 2 X 2 matrix of structures. Element n|[d,],
called a quarter-node, corresponds to the two facet-edge pairs @Sdual® Clock® Rev” where r € {0,1}. A facet-
edge pair is represented by a tuple (n,d, ¢, 7, z), called a facet-edge reference. Components n, d and ¢ address
quarter-node n[d, c], one of whose two corresponding facet-edge pairs is being referenced. Component r has
value 0 if the facet-edge pair being referenced has the same orientation as the canonical facet-edge @ (that is,
@Sdual® Clock®), and value 1 if its orientation is reverse that of @ (that is, @Sdual? Clock® Rev). Component z
has value 0 if the facet-edge pair being referenced has RH orientation, and value 1 if it has LH orientation.
Note that components r and z have different significance: component r describes the orientation of the
facet-edge pair being referenced with respect to the orientation of the canonical facet-edge pair of the group
to which it belongs, whereas component z describes its orientation in absolute terms.

The quarter-node n[d,c] has two fields: dafa and nezt. Field data holds non-topological information
which depends upon the application, and does not concern us. Field nezt contains the facet-edge reference
to facet-edge pair @Sdual® Clock® Fnext. Informally, the first row of matrix n contains a reference to each of
the two facets of Fz adjacent to facet fz — a circular-list representing facet-ring Fy is effectively threaded
through the node. The second row of n contains a reference to each of the two facets of Fzgguq adjacent to
facet fzsquar- This facet-ring corresponds (under duality) to the edge-ring &z, so a circular-list representing
this edge-ring is effectively threaded through the node.

The traversal primitives are defined in terms of this data structure as follows (where all addition in this
section is computed modulo 2):

(n,d, c,r,z)Fnezt = (n[d, ¢ + r].next) Clock” Rev”
(n,d,c,r,z)Sdual = (n,d+ 1,c+ z,r,z)
(n,d,e,r,z)Clock = (n,d,c+1,r,z)
(n,d,e,r,z)Rev = (n,d,c,r+1,2+1)

Two remarks concern these definitions. First, observe that
(n,d,¢,0, z) Frext = (n[d, c].next)

and
(n,d, e, 1, :r.')F'n.e:rt = ('n.[d, c+ 1].nert)CiockRev

= ('n., dye+ 1,0,z 4+ I)Fne:ntCIOCkRev

— (n, d,e,0,z 4 l)ClocanextCIockRev

= ('n,, d,e,0,z+ l)Fnea:t_iﬁev.
The latter relation indicates that moving around F, is the same as moving backwards around F;g.,. Second,
the use of component 2z accommodates relation (A17): aRevSdual = aSdualClock Rev, which is equivalent

to aRevSdual Rev ClockSdual = a by (A1, A2, A15). Thus

6

(n,d, ¢, r, r) RevSdual RevClockSdual
= (n,d,¢,r + 1,z + 1)SdualRevClockSdual
=(nd+1,c+z+1,r+ 1,2+ 1)RevClockSdual
= (-n,, d+l,c+z+1,r, z)Clacdeua,I
= (n,d + 1,c+ =z, r, &) Sdual

= (n, d,ec,r, m)

The reader can confirm that the remaining relations (A1-20) are satisfied by this implementation, assuming
the next field of each quarter-node is correct.

The vertex functions are implemented by any data structure for representing and maintaining a partition
— in this case, the origin partition. A vertex function call, say aPpos, is first translated to the call a’Org
according to one of the relations

aDest = aClockOrg,
aPpos = aSdual Clock Oryg,
aPneg = aSdual Ory.

The class of the origin partition that contains facet-edge pair a’ is then sought. Associated with this class
is information pertaining to vertex a’Org, such as its location in R3 or properties of the polyhedron aPpos
that is its space-dual.

5. Primitive Construction Operators

In this section we present the primitive construction operators make_facei_edge, splice_facets, splice_edges and
transfer. The first operator obtains and initializes a new facet-edge node, and returns a facet-edge reference
to one of the eight facet-edge pairs represented by the node. Operators splice_facets and splice_edges are used
to modify the facet- and edge-rings of a complex. Operator transfer is used to change incidence relations
involving vertices and polyhedra, by modifiying the origin partition.

Two caveats accompany these operators. First, no class of complexes is closed with respect to these
operators: their use does not guarantee that complexes are produced. Operator make_facet_edge does not,
in fact, create a complex at all — edge e, of the facet-edge pair a it returns is incident to facet f; and to
no other facet, and so does not belong to the boundary of a polyhedron. Furthermore, little imagination is
needed in using splice_facets or splice_edges to create the most exquisite garbage. Second, these primitives
are not easy to use in constructing complexes of complexity. The reader need not be vexed. In section 6, we
define higher-level operators in terms of these primitives which make the task of construction quite feasible
(if not also easy).

To help describe these primitives, we introduce some notation for manipulating rings. The notation
allows us to describe the manipulation of complexes in terms of the essentially one dimensional manipulation
of rings. Let ® = (a;...am,) and ®' = (am41...a8,) be two rings with all a; distinct. Then concal(®, $’)
represents the ring

concal(®,®') = (a1...a,).
The operation split(®, a,) represents the pair of rings

split(®,a,) = (p(a.l O T M
where 0 < p < m + 1. Operations first and second are used to access the first and second rings of the pair
split(®, ap), respectively. Furthermore, rings ® and ®’ are equivalent, denoted & = &/, if they represent
the same cycle of elements — that is, where |®| = |®’'| = n, there exists an integer j such that, for each
1 < i < n, the i** element of ® is identical to the (i + j)** element of ®, modulo n. By convention, %,
denotes the ring F, = (aFnext® aFnezt’ ...aFnezt" ') where | F,| = n. &, is similarly defined.

5.1 Make_facet_edge

Construction primitive make_facel_edge returns a facet-edge reference to a new (canonical) facet-edge @.
The relations (A) and (B) of section 3 hold among the eight facet-edge pairs @Sdual® Clock® Rev”, where
d,e,r € {0,1}.

Primitive make_facet_edge is implemented as follows. Operation make_facet_edge(orientation) obtains
a free node n. Quarter-node n[d, c] is assigned the facet-edge reference (n,d,c,0,z) where z has value 0 if
argument orientation is RH and value 1 if orientation is LH, for d,c € {0,1}.

5.2 Splice_facets

The operation splice_facets(a,b) takes as arguments two facet-edge pairs, and returns no value. The opera-
tion affects the facet-rings F; and F; as follows:

(a) if the two rings are distinct, it combines them into one ring;
(b) if the rings are identical, it breaks the ring into two distinct rings.

The arguments determine where the facet-rings are to be cut and joined. In rings F, and 73, the cuts occur
immediately after facets f, and f, respectively. If the two rings are distinct, the distinct edges e, and e; are
coalesced into one edge, and the two rings combined at the cuts. If the two rings are identical, the edge e,
(= ep) is cleaved lengthwise into two new edges, and each serves as pivot to one of the two new facet-rings
resulting from the cuts. The operator is illustrated in Figure 4.

splice_facets

Fig. 4. This diagram illustrates the effect operator splice_facets has upon facet-rings.

The operation can be viewed as a way of replacing certain facet-rings with others.

splice_facets(a,b)

if (Fo=H)
replace F, by the two rings split(Fornest, bFnezt);
else

replace F, and Fy by concat(Farnest; FoFnest);

}

Operation splice_facets(a,b) is accomplished by interchanging the value of aFnezt with bFnezt. The
operation affects the Fnezt relation in complexes C; and Cj (where by C,; we mean the complex to which
cells f, and e, belong). Let Fnezf denote the Fnezt relation immediately after the operation is performed.
Where a = aFneztClock and § = bFneztClock, relations Fnezt (immediately before the operation) and
F'next are related as follows.

(C1) aFnezt = bFnext

(C2) bFnext = aFnext

(C3) aFnext = BFnext

(C4) BFnext = aFnext

(C5) aClockRevFnext = SRev

(C6) bClockRevFnezt = aRev

(C7) aClockRevFnext = bRev

(C8) BClockRevFnext = aRev

(C9) yFnezt = yFnext for all other facet-edge pairs 7.

8

The implementation for splice_facets is quite simple. In the following, a is represented by facet-edge
reference (n,d,c,r,z) and b by (n’,d’,¢’, 7', 2’'). We assume the (last four) quarter-node assignments are per-
formed simultaneously; in practice, some temporary variables would be used as is customary when swapping
values.

splice_facets((n,d,c,r,z), (n',d',c,r',z"))

(v,8,k, p,X) — aFnexzt Clock;

(v, 8k, p', x") — bFnext Clock;

n[d,e + r].next + bFnext Clock” Rev”;
n'[d', ¢ + r'].next — aFnext C’IockrrRev'J;
v[8,k + pl.next — bClock”*! Rev’;
V[6',k' + p'].next — aClock” +! Rev”';

Correctness of implementation is shown by proving that relations (C) hold. Below we show that the
assignments above result in (C1), (C3), (C5) and (C7). The remaining relations (except (C9)) are shown
similarly, while (C9) follows because the implementation affects no more than four quarter-nodes.

aFrnext = (n,d,c,r,z) (c1)
= n[d, c+ r].nea:t
= bFnextClock” Rev Clock” Rev”
= bF next.
aFnext = (u, 8, K, p,x) (03)
= v[6, k + p].nextClock® Rev”
= bClock' ~P Rev®Clock® Rev”
= fBFnexzt.
aClockRevFnezt = (n, d,c, T, a:) (05)
= (n,d,e+ 1,7,z + 1)Freat
= (n[d, ¢ + r].next)Clock” Rev"
= bFnextClockRev
= BRev.
aClockRevFrezt = (V, 8, K, p, x) (07)
= (V, &, K, p, x)ClockRevm
=Wwér+p+1,p+1,x+ p+ 1)Frest
= (y[ﬁ, K+ p].ne:rt)Clockp+1Reup+1
= bRev.

5.3 Splice_edges

The operation splice_edges(a, b) takes as arguments two facet-edge pairs, and returns no value. The operation
modifies the edge-rings £, and &, as follows:

(a) if the two rings are distinct, it combines them into one ring;
(b) if the rings are equivalent, it breaks the ring into two rings;

As with splice_facels, the arguments to splice_edges determine where edge-rings are to be cut and joined. In
rings &, and &, cuts occur immediately after edges e, and ey, respectively. Figure 5 illustrates the effect of
splice_edges.

The operator can be seen as replacing certain edge-rings with others.

9

: 0 \/ ,,
/qs splgges /C%

Fig. 5. This diagram illustrates the effect operator splice_edges has upon edge-rings.

splice_edges(a, b)

{

if (ga = Ea)
replace £, by the two rings split(€,gnest, bEnest);
else

replace £, and & by concat(EsEnest, EbEnest);

}

Operation splice_edges(a,b) affects the Enezt relation in complexes C, and Cj (or equivalently, the
Fnext relation in C}; and Cj). Let Enezt denote the Enezt relation immediately after the operation. Where
a = aEnextClock and § = bEnext Clock, Enext (before the operation) and Enezt are related as follows.

(D1) aFEnest = bEnext

(D2) bEnext = aEnext

(D3) aFnext = BEnext

(D4) BEnezt = aEnext

(D5) aRevEnext = bRevEnext

(D6) bRevEnext = aRevEnext

(D7) aRevEnext = SRevEnext

(D8) BRevEnest = aRevEnext

(D9) yEnexzt = yEnext for all other facet-edge pairs 7.

As we might expect, an edge-ring of one complex can be modified by operating on the corresponding
facet-ring of the dual complex. Indeed, splice_edges is implemented in terms of splice_facets.

splice_edges(a, b)

splice_facets(aDual, bDual);

To show correctness of this implementation, it suffices to show that the (D) relations are satisfied by
splice_facets(aDual,bDual). Below we show this for (D2), (D4), (D6) and (D8); the remaining relations
(except for (D9)) are shown similarly, whereas (D9) holds since splice_facets affects no more than four
quarter-nodes.

Operation splice_facets(a Dual, bDual) establishes the following relations, where Fnezt denotes the Fnext
relation immediately after the operation.

(C2) bDualFnezt = aDualFnext

(C4) bDual FnextClockFnext = aDualClock
(C6’) bDualRevClockFnext = aRevDual Fnext
(C8’) bDualFnextRevFnext = aDualRev

Relation (Ci’), which derives from relation (Ci) of section 5.2, is then used in showing (Di) below.

10

(D?) bEnext = bDualFnexrtDual
= aDualFnextDual

= aEnext

(p4) BEnext = bEnexiClockEnext
= bDual FrextDualClock DualFreztDual
= bDual FreztClockFneztDual
= aDualClockDual
= aClock

= aFnext

(D6) bRevEnext = bRevDualFnextDual
= bDual RevClockFrextDual
= aRevDual FnextDual
= aRevEnext

(D8) ’ BRevEnexzt = bEnextClockRevEnext
= bDual FreztDualClock RevDualFrext Dual
= bDualFnextRevFneztDual
= aDualRevDual
= aRevClock
= aFEnertRev

5.4 Modifying the Origin Partition

By each operator’s definition, neither splice_facels nor splice_edges affects incidence relations involving
vertices and polyhedra. For instance, when splice_facets is used to split a single facet-ring F,, thereby
cleaving edge e length-wise, the two resulting edges share a common origin and destination vertex. Higher-
level construction operators generally need to modify incidence relations involving vertices and polyhedra.
To permit this, we introduce the operator transfer.

Let P be a partition of some universe U, let A be an equivalence class of P, and let B C U. The operation
transfer(A, B) modifies partition P by transfering each element b € B from its respective equivalence class
class(b) into A.

transfer(A, B)

for each b € B {
class(b) — class(b) — b;
A—AUb
}

}

If A=, then B becomes an equivalence class in the new partition. If B is an equivalence class of P, then
transfer(A, B) simply forms the union of the two classes.

The usefulness of transfer becomes evident if we recall that each vertex and polyhedron is represented
by an equivalence class of the origin partition (over the facet-edge pairs that comprise a complex and its
space-dual). Incidence relations are implied by the partition. For instance, vertex v is an endpoint of edge e
iff for some facet-edge pair a, we have aOrg = v where e, = e. If this is the case, it follows that aRevOrg = v
also, and that none of the six remaining versions of a have origin v. Edge e can then be given a new endpoint
v’ = bOrg by the operation transfer(bOrg, {a,aRev}).

11

6. Manipulating Individual Polyhedra

It is worthwhile to be able to manipulate the individual polyhedra of a complex that is represented by the
facet-edge structure. First, we would permit the traversal of the combinatorial boundary of an arbitrary
polyhedron, while ignoring the rest of the complex that contains the polyhedron. Such traversal should be
accomplished using functions appropriate for moving around a 2-dimensional subdivision — the facet-edge
functions are too general to be appropriate. In this section, we reduce each of a small set of such functions
to the facet-edge functions. The set of functions we choose to work with are the edge (traversal) functions
of the quad-edge structure.

Second, we would permit the construction of the facet-edge representation of a single (connected) poly-
hedron. The construction should be accomplished using operators appropriate to the task — the use of the
facet-edge operators would be overkill. In this section, we reduce the edge (construction) operators of the
quad-edge structure to the facet-edge operators. Using these edge operators implemented in terms of the
facet-edge operators, polyhedra can be built that are represented by the facet-edge structure. Each such
polyhedron can be regarded as a primitive ball complex.

Third, we would permit two polyhedra to be glued together along a polygon of each. The complexes to
which each belongs would thus be combined, or modified if they are one and the same. With the m eld operator
primitive ball complexes built with the edge operators can be combined to form non-trivial complexes.

6.1 Traversing the Boundary of a Polyhedron

In this subsection we concern ourselves with traversal in the combinatorial boundary dp of an arbitrary
polyhedron p belonging to complex C or to C*. We first briefly present as background the elements of the
quad-edge structure that we will need. The presentation is intended as a reminder to the reader, and at
places applies only to traversal of orientable surfaces; the reader is encouraged to read [GS] if not already
familiar with this seminal work. We then present an edge representation scheme whereby an edge e € dp,
viewed as a cell of the 2-dimensional complex dp, can be represented in terms of the facet-edge structure
that models C and C*. The edge representation scheme is then used as a basis for describing each edge
function in terms of its affect upon the facet-edge structure.

6.1.1 The edge functions

Where p is a polyhedron of complex C, the 2-complex @ = 8p is a subdivision of the sphere. Given edge
e € Q, the surface-orientation (with respect to Q) and direction of e can be chosen independently, so there
are four surface-oriented, directed versions of e. We write é, to denote any such version, or simply é when
polyhedron p is known by context. Edge e € C is said to underlie edge é in C.

The direction of € € Q determines the edge’s vertex of origin (é Org) and vertex of destination (€Dest), in
the natural way. In addition, the surface-orientation — what we have been calling clocking — and direction
of & together determine the edge’s left polygon (éLeft) and right polygon (éRight). Specifically, where Q is
coherently oriented under the clocking of &, éLeft is that polygon of @ incident to é whose clocking agrees
with é’s direction; éRight is the other polygon of @ incident to é. The clocking of the cells éOryg, éDest,
éLeft and é Right are taken by definition to agree with that of . Note that éOrg # éDest and &Left # &Right
since p is a polyhedron.

There are three primitive edge functions — Flip, Sym and Onezt — in terms of which the remaining
edge functions of the quad-edge structure (except for Dual) are defined. The flipped version & Flip of edge é
has clocking opposite that of &, but the two edges have the same direction. The symmetric version éSym of
¢ has direction opposite that of &, but the edges have the same clocking. Furthermore, considering the cycle
of edges (in Q) incident to € Org, we define é Onext to be that edge that immediately follows é in that cycle,
where the direction of the cycle is induced by the clocking of é.

The dual of @ = 9p is defined to be a 2-complex @* obtained from @ by interchanging vertices and
polygons, and which preserves incidence relations. The dual of edge é € @ is an clocked and directed edge
éDual € Q*, for which

(E1) éDualDual = é

(E2) éDualSym = éSymDual

(E3) éDualFlip = éFlipSym Dual
(E4) éDualOnext = éOnextSym Dual

12

(This definition of dual is equivalent to that of [GS] where é Lnext, the edge following é in é Left, is defined by
éLnext = éSymOnext™"). Dual is extended to vertices and polygons by defining (éOrg)Dual = & DualLeft
and (éLeft)Dual = éDualOrg. Dual establishes a correspondence between the vertices (edges, polygons) of
@, and the polygons (edges, vertices) of Q*.
Since é and € Dual have opposite clockings, it is convenient to define a rotated version éRot of é, given
by
éRot = éFlipDual = é Dual FlipSym.

Edge éRot is the dual of &, directed from éRight to éLeft, and clocked so that moving around éRight
corresponds to moving around &Rot Org.

To later describe how a subdivision may be modified, it is convenient to define € Org to be the ring of
edges in @ incident to é’s vertex of origin. More formally, éOry is the cycle under Onext of e. Polygon éLeft
is defined in terms of the ring of edges in Q* incident to the vertex dual to é’s left polygon — éLeft is defined
to be the ring é Onezt RotOrg.

6.1.2 The edge representation scheme

Let p be a polyhedron of complex C or C*, where C and C* are represented by the facet-edge structure.
Where primal edge é, € 8p and d € {0,1}, edge é,Dual® is represented by the pair (a,d), called an edge
reference. The first component is a reference to the facet-edge pair a, determined by the following:

(i) edge e, underlies é, in C

(i) f =épLeft
(iii) the clocking of a coincides with the clocking of é, Left
(iv) aPpos=p

The second component, d, called a duality bit, has value 0 (1) iff the edge being represented is primal (dual),
and is identical to the exponent d of épDuald. The scheme is depicted in Figure 6.

Fig. 6. This diagram illustrates the edge-
reference scheme. The winged-edge corresponds to a
region of @ = 8p, where p lies behind the page. The
facet-edge pair a depicted by the handcuff is such
O_O that edge ¢ is given by (a,0), and eDual by (a, 1).

@ c

Each edge épDuaId, as p ranges over the polyhedra of CUC™* and d € {0, 1}, is uniquely and unambigu-
ously represented by an edge reference. Given edge épDuaId, conditions (i) and (ii) uniquely determine the
components of a, then (iii) determines the clocking of @, then (iv) the clocking of @. On the other hand, given
(a,d), consider first the edge that (a,0) represents. Conditions (i) and (iv) together determine &, then (iii)
determines the clocking of é,, then (ii) the direction of é,. Finally, since &, is unambiguously represented
by (a,0) and edge é, Dual is well-defined, (a,d) unambiguously represents edge &, Dual®.

6.1.3 Implementation of the edge functions

One purpose of the edge representation scheme is to enable the traversal of the boundary of polyhedron p
using the underlying facet-edge structure. Each edge function can be described in terms of how it affects an
edge reference. More precisely, for edge function Op, there exists a sequence of facet-edge functions Op' for

which
(a,d)Op = {(aOp', d").

13

The following characterizes each edge operator in this fashion.

(F1) (a,0)Flip = (aFneztRev,0)

(F2) (a,0)Sym = (aFnezt Clock,0)

(F3) (a,0)Onest = (aEnext™" Fnext Clock,0)
(F4) (a,d)Dual = (a,1 — d)

(F5) (a,1)Flip = (aRevClock, 1)

(F6) (a,1)Sym = (aFneztClock, 1)

(F7) (a,1)Onest = (aEnezt™", 1)

The correctness of this scheme can be verified by showing that the edge operators so characterized
possess the properties stated in [GS, section 2.3]. For instance, where é is represented by (a,0), we have
eFlip? = (a,0) FlipFlip
= (aFnemtReanemtReu, 0)

= (s, 0)

= e.

The derivation of (F1)—(F7) is straightforward. Figure 7 pictorially motivates equations (F1)—(F3).
Equation (F4) follows from the edge representation scheme. Equations (F5)—(F7) follow from the relations
developed so far in this section. For instance, (F5) is derived as follows:

(a, 1) Flip = (a,0) DualFlip (F4)
= (a, 0) FlipSym Dual (E3)
= (a,FneztRe‘u, O)Sym.Dual (Fl)
= <aFne.7:tReanea:tClock O)Dual (F2)
= (aRevClock,0) Dual

\/ = (RevClock, 1). (F4)

a(O<p

cp-() aFlip
Fig. 7. This diagram illustrates the use of facet-

aSvmn edge pairs to represent directed, clocked edges in the
q)—O M Doundary J of & polyhadien: Bach hndall sbands
for facet-edge pair a where (a, 0) represents the di-

N rected, clocked edge aOp with which the handcuff is
/r\\é \ labelled.

aOnext

6.2 Constructing a Polyhedron

A polyhedron can be characterized by its combinatorial boundary, this being a 2-dimensional subdivision
of the sphere. A facet-edge structure representing a single polyhedron is most easily created and modified
by manipulating the polyhedron’s boundary. We choose the edge operators of the quad-edge structure
as the means of performing these manipulations. These edge operators handle (in particular) the class
of open subdivisions of the sphere, of which the (closed) subdivisions may be regarded as a special case.
The construction of a polyhedron involves using the edge (construction) operators to incrementally build
open subdivisions until one is produced which coincides with the boundary of the target polyhedron. In
this section, we describe the effect each edge operator has upon the facet-edge structure by giving an
implementation of each operator in terms of the facet-edge operators.

During the construction of polyhedron p, open subdivision @ is maintained under the edge-representation
scheme. It is designated the primal subdivision, and its cells, and only its cells, may eventually belong to
the target 9p.

14

6.2.1 Open subdivisions

An open k-cell (for our purposes) is an open subspace of the sphere 52 homeomorphic to R*¥. An open
complex S of S? is a finite collection of open cells of S such that

(i) the cells of S are pairwise disjoint,
(ii) for each cell ¢ € S, bd ¢ is the union of elements of S, and
(iii) if c,d € S and clen cld # 0, then clen cld is the union of elements of S.

Here clc denotes the closure of cell c. An open complex whose union is S? is an open subdivision (of the
sphere).

Let S be an open subdivision such that for each cell ¢ € S, the closure cl ¢ is a (closed) cell. S corresponds
to a (closed) subdivision of the sphere, obtained by replacing each cell ¢ € S by its closure ¢le. To build
a polyhedron, the edge operators are applied successively to construct new elementary open subdivisions,
and to combine and modify existing open subdivisions. The process proceeds until an open subdivision is
produced that corresponds to (the subdivision identical to) the boundary of the target polyhedron.

6.2.2 Elementary open subdivisions of a sphere

There are two elementary subdivisions of the sphere. The first consists of a single edge é that is not a loop,
and is denoted S, (subscript e stands for ‘edge’). Where é € S, is some arbitrary (but fixed) clocked and
directed edge, we have éOrg # éDest and éLeft = éRight. The following properties hold in S.:

(G1) éOnext=¢

(G2) éSymOnext = éSym

(G3) éFlipOnext = éFlip

(G4) éFlipSym Onezxt = éFlipSym

The other elementary open subdivision of the sphere consists of a single edge &' that is a loop, and is
denotes Sy (subscript £ stands for ‘loop’). S; is dual to open subdivision S,; there exists a version of & for
which edges & and éSdual represent identical open subdivisions. Since é is a loop, we have & Org = &’ Dest
and é'Left # & Right. Writing é Dual for &, the following properties hold in S,:

(G5) éDualOnert = é DualSym
(G6) éDualSymOnezt = éDual
(G7) éDualFlipOnext = é Dual Flip Sym
(G8) éDualFlipSym Onext = éDualFlip

The operator make_edge builds a data structure representing both S, and S;, and returns an edge
reference to one version of S.’s (non-loop) edge. Open subdivision S, is primal. Its implementation is given
as follows.

make _edge()

a «— make_facet_edge(LHO);
b — make_facet_edge(LHO);
splice_facets(a,b);
splice_edges(a, bClock);
return({a,0));

The operation é «— make_edge() obtains two new facet-edge nodes. In one of the nodes, it designates
a facet-edge pair a for which (a,0) represents &, while in the other node it designates facet-edge pair b for
which (bRev,0) represents éFlip. Operation splice_facets(a,b) results in

(i) aFnezt =b
(ii) bFnext = a,

while operation splice_edges(a,bClock) results in

15

Flg 8. Thls diagram depicts the open subdivisions under the edge-reference scheme. The left figure depicts edges
e € S.and e € 5, supenmposed on the same sphere to suggest how they are related. The center figure depicts
the facet-edge representation for & where S, is primal (constructed by make_edge), while the right figure depicts the
facet-edge representation for loop & where S is primal (constructed by make_loop).

(iii) aEnext = bClock
(iv) aEnezt™! = bClock.

Edge € under the edge-representation scheme is depicted in Figure 8.

The relations (i)—(iv) ensure that é «— make_edge() does indeed build a facet-edge structure representing
both S, and Sy, and that edge é is represented by (a,0). This is verified by showing that relations (G1)~(G8)
are satisfied. For instance, (G1) is shown as follows:

eOnezt = (a. U)Om.'ct
(aEnea’:t 1FnextClock 0)
(bC’locanea:tClock 0) (iv)
= (bFn.ert)
= Sa, 0) (4)
=e.

The operator make _loop also builds a facet-edge structure representing both S, and Sy, but i returns
an edge-reference to that version of Sy’s loop that corresponds to éDual (where é «— make_edge()). Open
subdivision Sy is primal. Its implementation is given as follows.

make _loop()

a +— make_facet_edge(RHO);
b — make_facet_edge(RHO);
splice_facets(a, b);

return({a,0));

The operation éDual + make_loop() obtains two new facet-edge nodes. In one node it designates
facet-edge pair a for which (a, 0) represents edge é Dual, and in the other node a facet-edge pair b for which
(bRev,0) represents é DualFlip. Operation splice_facets(a, b) results in

(i) aFnext = b
(ii) bFnext =a

while the absence of a call to splice_edges results in

(iii) aEnezt = a
(iv) bEnext =b.

Edge éDual under the edge-representation scheme is depicted in Figure 8.

16

6.2.3 Modifying open subdivisions

The operator splice is used to modify open subdivisions. The operation splice(a, b) takes as arguments two
edges @ and b, and returns no value. The operation affects the two rings @ Org and bOrg and, independently,
the two rings aLeft and bLeft. In each case, if the two rings are distinct, splice combines them into one ring;
and if the two rings are identical, splice breaks it into two distinct rings. The arguments @ and b determine
where the rings will be cut and joined. For rings @Org and bOrg, the cuts occur immediately after @ and b;
for rings aLeft and bLeﬁ, the cuts occur immediately after @ OneztRot and bOnezt Rot.

Operation splice(a, b) is performed by interchanging the values of aOnext with bOnezt, and &Onext
with ,BOne:ct where & = @aOneztRot and ,6 = bOnezt Rot. More formally, where Onezt denotes the Onezt
relation immediately after the operation, splice(a, b) establishes the following relations between Onezi and
Onezt:

(H1) aOnezt = bOnext
(H2) bOnext = aOnexst
(H3) &Onexl = BOnext
(H4) BOnext = a&Onext
(H5) 4Onezt = 4Onext for all other edges ¥ € Q U Q*.

Operation splice(a, 3) is implemented in terms of the facet-edge operator splice_edges as follows.

spl{ice((a,d), (b,d))

if (d = 0)
splice_edges(aClock Rev, bClock Rev);
else

splice_edges(aEnext™", bEnext™1);

The duahty bit d of the two arguments to splice are assumed to be identical — splice(a, b) is defined only if
@ and b are both primal, or both dual.

To show the correctness of the implementation, let Onexzt (Enezt) denote the Onezt (Enezt) rela-
tion immediately after splice(&,i)), given primal edges & and b represented by (a,0) and (b,0). Operation
splice_edges(aClock Rev, bClock Rev) establishes

(i) aEnest | = bEnext™

(i) bEnest | = aEnext™
(iii) aEnest™'ClockRevEmezi = = bClockRev
(iv) bEnext™' ClockRevEnest = = aClockRev

Relations (i), (ii), (iii) and (iv), which follow from the (D) relations of section 5.3, are used to show that
values have been correctly swapped. To show (H1), we have

aOneat = (a,0)Onext
= (aEnext 1Fnea:tCIock, 0)

- (bEnea:t_anextC'!ock, 0) ()
— (b, U)Onez‘t
= bOnest.

Similarly (ii) is used to show relation (H2). To show relation (H3), we have

17

aOnezt = (a, O)One:ctRatOne:rt
= (aEﬂ.ext_anea:tClocanea:tRev, 1)Onexzt
= (aEnewt_]'C'lockRev, 1)O'n.ea:t

aEnext™ ICIOCkRe'uEne:ct 1)
bClockRewv,1) (i)

bEnext IC’lockRevEnemt 1 1)
bEnext™ ! ClockRev O)Dualo'n.ea:t

bEnext Fneth!ackFﬂ.emtRev,0>Dua.10ne:t:t
}One:r:chpDualOnem

= bOnertRotOnext

= ,aOne:r:t.

I

(
(
(
(
(
(b,

Similarly (iv) is used to show relation (H4). Notice that splice_edges(aClock Rev,bClock Rev) only modifies
facet-rings of the complex dual to the complex to which & and b belong. Since each occurence of Fnezt in
the derivations above apply only to facet-rings of the complex to which @ and b belong, we have been free to
assume (in the derivations) that Fnezrt has not been changed by splice_edges; no Fnezt is necessary in the
derivations.

We have shown correctness of an implementation for splice when its arguments are primal edges. Assume
now that splice is passed two dual edges @ and b. To show correctness of implemenation in this case, we
note that operatlons splice(a, b) and splice(&, ,(3) are equivalent, where & = @OneztRot and 2 = bOnezt Rot.
Since edges & and f are primal, it is sufficient to show that splice_edges(& ClockRev, B ClockRev) — which
implements sph'ce(&,ﬁ‘) — and splice_edges(aFEnext™", BEnezt_l) are equivalent, an easy exercise.

6.3 Meld

The operator meld is used to glue a ball complex C,; to a second complex C;. With its use one melds an
n-sided polygon f, € dC,; to an n-sided polygon f;, € Cj, thereby locating ball complex C; in the polyhedron
bPneg of Cy. More formally, it establishes the topological relations for

U(C;) C bPneg, and
U(Ca) NU(ObPneg) =

A two-dimensional analogue of the situation is depicted in Figure 9.

)
2 P

meld(a,b)

h?ﬂﬁ.s (K

Fig. 9. This figure depicts a 2-dimensional analogue of the effect of meld. Edges of the figure correspond to
facets, and polygons to polyhedra. Note that C, -’,ﬁ C in the figure, but this need not be the case.

Let a and b be facet-edge pairs, and assume that

(i) |fal = [fe] =n, and
(ii) aPpos = p™

18

Condition (ii) ensures that C, is a ball complex, and that f, € 8C,. Where a; = aFEnezt' and b; = bEnezt",
meld(a,b) identifies polygon f, with f;, and edge e,, with e;, for 0 < i < n—1. The operation first coalesces
distinct edge rings £, and &, forming a “pillow” consisting of the edges of £, (= &) and the polygons f,
and f;, and then removes polygon f, from the complex. The two polyhedra that end up incident to f; are
bPpos and p (which is essentially aPneg).

The boundary of polyhedron aPneg is slightly changed to produce polyhedron p — facet f, is replaced
by fi. In addition, polyhedra aPpos (= p*) and bPneg are combined to form a new polyhedron g, the effect
of locating C, inside bPneg. We have

facets_of (p) = facets_of(aPneg) — f, + [, and
facets_of(q) = facets_of (bPneg) U facets_of (aPpos) — fs — f5.

Also, additional edges are made incident to each vertex v; = b;Org of f;. To the edges already incident to
v; are added those edges of C, incident to a;Org, less the edges of £,. We have

edges_of (v;) = edges_of (b; Org) U edges_of (a;0rg) — eq, — €4, Enexi-1, for 0 <i <n-—1.

To build the facet-rings of the “pillow” formed by coalescing &, and &, facet-rings of C,; and Cj are
combined as follows.

fori=0,---,n—1
iffa.' - Fy;
replace F,; and Fy; by concat(Fa;Frects Fb; Frest);

Facet f; is removed as follows.

fori=0,---,n—1
replace Fy,; by first(split(Fa, prest, bi Fnext));

Operator meld, given in Figure 10, is implemented by a single loop in which the construction of the
“pillow” and removal of f, are interleaved. The facets incident to polyhedra p and ¢, and edges incident
to vertices v;, are specified by {ransfer operations. The necessary facet-ring manipulations are done with
splice_facets. Note that the facet-edge pairs a;Sdual® Clock® Rev” (where 0 < i < n-1l,and e, d,r € {0,1})
are effectively deleted from the data structure; the n facet-edge nodes representing these could be garbage-
collected, or used again elsewhere.

meld(a,b)

firsta — a;

transfer(bPneg,aPpos);

do {
if(Fs £ F)

splice_facets(a,bFnext™');

splice_facets(a,aFnext™);
transfer(bOrg, aOrg);
transfer(aPneg, {bSdual,bSdual Rev});
transfer(, {aSdual® Clock® Rev"|d, ¢, € {0,1}});
a «— aFEnext
b — bEnext
} until a = firsta;

Fig. 10. Procedure meld.

19

T Decomposing a Polyhedron

The process of partitioning a polyhedron into simpler constituent polyhedra is called decomposition. One
reason for decomposing a polyhedron 7 is that § may possess properties that preclude certain algorithms
from being applied to it — for instance, it may be non-convex, or possess cavities or handles. Sometimes the
difficulty may be overcome by decomposing 7 into more amenable pieces, and then applying the algorithm to
these[CD). Alternatively, 7 may be well behaved but its volume might be too large to allow efficient solution
of equations via finite element methods, and further decomposition may be desired [IB].

There are various strategies for performing decomposition. We will concern ourselves with an incremental
strategy in which polyhedra are iteratively detached from the original polyhedron until nothing of the original
remains. Each simpler piece split off from the original is not subject to further decomposition, and satisfies
whatever “simplicity” criteria is required of the algorithm. Such an algorithm maintains a current polyhedron
S (initially P), and a current collection of constituent polyhedra C (initially #). The algorithm iteratively
detaches a polyhedron p; (in iteration i) from S and transfers it to C. The process stops when S represents a
null polyhedron — collection C then represents the decomposition of 7. In the present section, we show how
collection C assembled during the course of decomposition can be represented by the facet-edge structure.
Each polyhedron detached from S is attached to C' by meld operations. For simplicity, we assume that pis
polyhedral in the sense we have been using the word (that is, having genus zero and no cavities), and that
C' always consists of zero or more ball complexes.

Waérdenweber uses this incremental strategy in [W9] to decompose a polyhedron into tetrahedra. He
makes no attempt to assemble the pieces, but allows the sequence of operations by which they were detached
to represent the resulting decomposition. Chazelle uses a more general divide-and-conquer strategy in [Ch] to
decompose a polyhedron into convex parts — each time a polyhedron is split into two, both pieces are subject
to further decomposition. He represents each complex created during the decomposition with collections of
edge-to-facets, facet-to-edges, and vertex-adjacency pointers. Facet-edge operations that accommodate the
divide-and-conquer strategy will be presented in [La].

We briefly describe Wordenweber’s algorithm to make these notions more concrete, and to introduce
new notions. We refer the reader to [Wo] for a description of how the algorithm selects a tetrahedron to
be detached from the current polyhedron S in each iteration. The actual removal of the tetrahedron from
S is accomplished by one of the four operators op0, opl, op2 or op3. Each opk modifies the polyhedron
S to reflect the removal of the tetrahedron. The index k of opk indicates how the tetrahedron ¢ that opk
is designed to detach is connected to the rest of S: k is the number of triangular facets that connect t to
the rest of S, while 4 — k is the number of #’s exposed facets (that is, belonging to the boundary of S). In
modifying S, opk removes each of the 4 — k exposed facets of ¢, a consequence of detaching ¢ from S. In
general, some of these facets correspond to facets of C' (in fact, to facets of C); where f is such a facet,
J denotes that facet of C' to which f corresponds. Facet f will have been created when S was modified in
some earlier iteration (say iteration j where j < i); the polyhedron p; transfered to C' at that time contains
f which was then cleaved from f. The rest of the 4 — k exposed facets of ¢ belong to the boundary of
the original polyhedron P, and so correspond to no facets of C. Let S’ denote S immediately after being
modified by opk. S’ contains k new facets, the “connecting” facets of t; these facets are created by opk —
again the consequence of deleting ¢ from S — and replace the 4 — k exposed facets removed by opk. Each of
the k facets revealed by opk corresponds to an exposed facet of the tetrahedron that has been added to C.
Figure 11 illustrates the effect each opk has upon S.

A decomposition algorithm employing the incremental strategy requires the use of an operator op,
analogous to Wordenweber’s opk operators, for transfering a polyhedron p; from S to C. The operator must
build a facet-edge representation for p;, attach p; to C' (using calls to meld), and modify S (to reflect it’s
loss of p;). The operator’s most formidable task is in determining exactly how p; is to be attached to ¢ —
that is, in determining the arguments to each of its calls to meld. To guide op in attaching p; to C, each
facet f € S possesses a link pointer link(f) which references that facet f € 8C to which f corresponds. The
facets of S that belong to the boundary of the original polyhedron do not correspond to any facet of C,
and so have null link pointers. To elaborate, in iteration i, op performs the following steps in succession:

(i) constructs a facet-edge representation for polyhedron p;, to be transferred from S to C,
(i) attaches p; to C, thereby forming C’ (to serve as C' in the next iteration),
(iii) modifies S to reflect its loss of p;, thereby forming S’ (to serve as S in the next iteration), and

20

Az~ Oz P
opl0 op2
ANz /\ /\2
opl op3

Fig. 11. This figure demonstrates how each opk locally modifies S to produce S’. Each drawing depicts a patch
on the boundary of S or $’.

(iv) updates the link pointers of 5.

We do not elaborate on step (i); it is performed using the quad-edge operators, whose implementation
in terms of the facet-edge operators was given in section 6. Assuming S is suitably represented — for
concreteness we assume by the quad-edge structure — step (iii) also need not be treated. Presumably the
description of p; handed to op is adequate for op to perform steps (i) and (iii). Steps (ii) and (iv) do require
elaboration. Henceforth denoting by p the polyhedron p; constructed in step (i), we discuss in turn how we
ascertain which facets of p are to be melded to C, how the link pointer is used to guide each meld operation,
and how the link pointers are updated in S’ to serve later iterations.
Consider the relation between p and S. That patch of p to be glued to C coincides with subcomplex
Sp = U{star f|f € S is removed by op}. (Recall that star f is the complex consisting of the faces of cell
J; in this case since f is a facet, it consists of f and the vertices and edges that bound f.) Subcomplex
Sp is generally a patch of S, homeomorphic to a closed disk. (In the final iteration however, S itself is
transfered to C, in which case S, = S.) We denote by ¢(c) that cell of p that coincides with cell ¢ € S,.
The mapping ¢ : S, — p is an isomorphism, not generally onto. Consider next the relation between
p and S’. That patch of p that lies in 8C (after op has attached p to C) coincides with subcomplex
= |U{star f|f € S' is created by op}. (At the last iteration however, S’ = S, = 0). We denote by ¢'(c)
that cell of p that coincides with cell ¢ € S; the isomorphism ¢’ : S, — pis not onto The patches ¢(S,) and
#'(Sy) cover polyhedron p. Their mtersectmn #(Sp) N ¢'(S,) is a vertex—edge cycle in p, called the silohette
of p. These notions are depicted in Flgure 12. ,_,

?T

I

C

¢(¥)
I
Z/!J// §
Fig. 12. This figure depicts a 2-dimensional analogue of the effect of op. Each edge of the figure corresponds to
a facet, and each polygon to a polyhedron.

To attach p to C, for each facet f € S,, facet ¢(f) € p is melded to facet f € C. Each facet of Sp
is obtained by treating the dual 2-complex S,* as a graph, and performing a search in S,*. Each vertex
visited corresponds to a facet of S,. The silohette of p is used to restrict the search to S,*, prohibiting it
from passing into the rest of S*. Specifically, the search algorithm considers two vertices adjacent iff the
edge that connects them is not dual to a silohette edge of p. Pointer link(f) consists of two fields edge and
pair, whose contents are as follows.

21

link(f).edge : a pointer to directed, oriented edge e € S such that eLeft = f.
link(f).pair : facet-edge pair b such that, where edge ¢’ € 8C is given by (b,0), we have
(a) €'Left = f, .
(b) €¢'Lnext' = ELnext' for all i, and
(c) bPneg = p*™.

When facet f € S, is visited, facets ¢(f) and f are melded by the following operation.

if link(f) # 0 {
e «— link(f).edge;
a « that facet-edge pair a for which (a, 0) is ¢(e);
b — link(f).pair;
meld(a,b);

Edge ¢(e) € p, required in the above block of code, is obtained by performing an identical graph search in
p*, coincident with the search in S,*.

Having attached p to C' and modified S to produce S’, the link pointers of S’ must be updated. This
involves setting the link pointer of each facet created by op (that is the facets of Sp); the link fields of the
other facets of S’ are still correct. Much as before, we perform a graph search in S;,* and a coinciding search
in p*, using the silohette of p to limit both searches. When we visit a vertex of S;,*, dual say to facet f € S},
link(f) is set by the following.

let e be an edge for which eLeft = f;
link(f).edge — e;
link(f).pair — a where ¢(e) is represented by (a, 0);

The isomorphisms ¢ and ¢’ are each computed on the fly by performing identical searches in two distinct
graphs. Each pair of searches must start at coinciding cells for each isomorphism to be correctly computed.
To do this, we select some silohette edge e — since e belongs to both S, and S';,, it can be used to compute
the starting point for both pairs of searches. Let e € S be oriented and directed so the eLeft € S,, and
let #(e) € p be oriented and directed so that ¢(e)Org = ¢(eOrg) and ¢(e)Left = ¢(eLeft). The searches
in S,* and p* then begin at vertices eLeft Dual and ¢(e)LeftDual, respectively. To compute ¢', we note
that coinciding cells of S}, and p have orientations that disagree: facets f and ¢(f) appear to have the same
orientation when viewed for instance from a point beyond f but beneath ¢(f), say from the interior of a
convex p. To determine the starting points for the searches in S;,* and p*, let edge e be oriented and directed
as above. Facet eLeft € S is replaced by eLeft € S’. The edge of S’ coinciding with e is then ¢(e)Flip,
so the searches of S;,* and p* begin at the vertices eLeft Dual and ¢(e) FlipLeft Dual, respectively. This is
illustrated for Wordenweber’s op2 in Figure 13.

¥'(e) Fig. 13. This diagram depicts a tetrahedron ¢
transfered by Wordenweber’s op2. The tetrahedron
is attached to C' along the two facets behind the page,
while the two facets in front of the page occur in 8C'.

8. tal Construction of a imensional Delaunay Triangulation

We describe how to build the Delaunay triangulation DT'(S) of a set S of n > 4 points (called sites) of R3,
in general position. Since the facet-edge structure represents both a complex and its dual, the algorithm also
serves to construct the Voronoi diagram of S. The strategy is to first construct some tetrahedron of DT'(S) -
called a D-tetrahedron - to serve as an initial current complex C. C is then grown by iteratively discovering,
constructing and melding a new D-tetrahedron to one or more triangular facets on the boundary of C, until

22

delaunay(S)

t + an initial D-tetrahedron of S;
F «— facet_edges_of (t);
while (F # 0) {
a «— some element of F;
t « find tetrahedron(f, aPpos);
if (¢ does not exist)
F e— F —a;
else {
for each a € facet_edges_of(t) {
a «— .7:'(&);
if (a #0) {
F — F —a;
a «— align(a,aClock);
meld(a, a);

else
F — F+ a;
}

}
}
}

Fig. 14. Procedure delaunay.

it is known that C = DT(S). The algorithm is described in [AB], and under geometric inversion that maps
S to a set of points S’ on a 3-dimensional hypersphere in R* [Br], corresponds to the gift-wrapping method
of [CK] for building the convex hull of S’. The process of finding an initial and subsequent D-tetrahedra
is described in [AB], so we describe this only briefly in the next paragraph, before presenting the entire
algorithm.

Assume triangle f of DT(S) is on the boundary of complex C, and that the D-tetrahedron ¢ incident
to f is known. Operation find_tetrahedron(f,t) constructs the other D-tetrahedron ¢’ adjacent to f (if it
exists). Let H;; denote that open half-space determined by aff f which does not contain ¢. The vertices
that define ¢’ are then the vertices of f together with site ¢, where ¢ € Hy , is that site for which the sphere
determined by g and the vertices of f is of minimal radius. It is shown in [Bh] that the interior of this sphere
contains no sites, hence ¢’ is indeed a D-tetrahedron. If SN Hy , is empty, then f lies on the convex hull of
S and ¢’ does not exist.

An initial D-tetrahedron is found by first finding some triangular facet f on the convex hull of S by
the method of [CK]. The D-tetrahedron adjacent to f is discovered using the strategy given above, where
candidate sites g range over all sites (except for the three that determine f).

The algorithm deleunay of Figure 14 constructs the Delaunay triangulation DT(S) of a finite set of sites
S of R3, in general position. The algorithm initializes the current complex C to contain a D-tetrahedron,
then iteratively melds D-tetrahedra to C until, for every facet of C, a D-tetrahedron has been sought on
both sides of the facet.

Let F denote the set of facets for which a D-tetrahedron has been sought on exactly one side of the
facet. I consists of those facets belonging to the boundary of the current complex C, less those facets that
have been determined to lie on the convex hull of 5. Dictionary F contains the triangles of F'; more precisely,
it contains one facet-edge reference to a for each triangle f, of F', where aPneg = p*®°. F(a) performs a
look-up in dictionary F, returning that element of F whose determining vertices are aOrg, a Enext Org and
aEnext? Org if it exists, or 0 if the dictionary contains no such element. A scheme for addressing the elements
of F using (the indices of) the three vertices that determine its elements is easily concocted.

23

A tetrahedron ¢ is represented by some facet-edge pair a such that aPpos = t. The set facet_edges_of(t)
contains one facet-edge pair @ for each of the four triangular facets of 8¢, where @Ppos = t; the set is easily
derived by traversal from that facet-edge pair a that represents ¢. Finally, align(a,b) denotes that facet-edge
bEnext' for which aOrg = bEnezt’ Org; the algorithm ensures that some such i exists for each use of align.

After we had submitted this paper, we learned that Dr. V. Rajan [Ra] at IBM had derived the 3-
dimensional Voronoi diagram by a similar technique.

9. Conclusion

The applications presented here but scratch the surface of the data structure’s potential uses. Future
research includes the development and rederivation of applications that would markedly benefit from use of
the structure. Two examples of these were mentioned in the introduction: a divide-and-conquer algorithm
for constructing 3-dimensional Voronoi diagrams, and a scheme for modelling the motion of 3-dimensional
polyhedra. Future research also includes completely characterizing the class of complexes the data structure
can model, and developing sets of construction operators with respect to which various classes of complexes
are closed.

References

[AB] D. Avis and B. K. Bhattacharya, “Algorithms for computing d-dimensional Voronoi diagrams and
their duals”, in Advances in Computing Research. Edited by F. P. Preparata, 1, JAI Press, 1983,
pp. 159-180.

[Ba] B. G. Baumgart, “A polyhedron representation for computer vision”, in 1975 National Computer
Conference, AFIPS Conference Proceedings, vol. 44, AFIPS Press, 1975, pp. 589-596.

[Bh] B. K. Bhattacharya, “Application of computational geometry to pattern recognition problems”,
Simon Fraser Univ. CS, Tech. Rep. 82-3 (1982).

[Br] K. Q. Brown, “Voronoi diagrams from convex hulls”, Info. Proc. Lett. 9, 1979, pp. 223-228.

[BHS] I C. Braid, R. C. Hillyard, and L. A. Stroud, “Stepwise construction of polyhedra in geometric mod-
elling”, in Mathematical Methods in Computer Graphics and Design, K. W. Brodlie, Ed., Academic
Press, London, 1980, pp. 123-141.

[Ch] B. Chazelle, “Convex Partitions of Polyhedra”, SIAM Journal of Computing, Vol. 13, No. 3, pp.
488-507.

[CD] B. Chazelle and D. P. Dobkin, “Detection is easier than computation”, Proc. 12th ACM SIGACT
Symposium, Los Angeles, May 1980, pp. 146-153.

[CK] D. R. Chand and S. S. Kapur, “An algorithm for convex polytopes”, JACM 17(1), Jan. 1970, pp.
77-86.

[EW] C. M. Eastman and K. Weiler, “Geometric modeling using the Euler operators”, Inst. of Physical
Planning, Carnegie-Mellon Univ., Research Rep. 78 (Feb. 1979)

24

[GS] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions and the computa-
tion of Voronoi diagrams”, ACM Trans. on Graphics, Vol. 4, No. 2, Apr. 1985, pp. 75-123.

[JB] A. Jameson and T. Baker, “Improvements to the aircraft Euler method”, ATAA 25th Aerospace
sciences meeting, paper AIAA-87-0452, 1987.

[La] M. J. Laszlo, “Manipulating Three-Dimensional Subdivisions”, dissertation, Dept. of Computer
Science, Princeton University, to appear.

[Ra] V. T. Rajan, private communication.

[Wo] B. Wordenweber, “Volume-triangulation”, C. A. D. Group, University of Cambridge (1980).

25

