THE PROCESSOR IDENTITY PROBLEM

Richard J. Lipton
Arvin Park

CS-TR-088-87

April 1987

The Processor Identity Problem

RichardJ. Lipton
Arvin Park

Department Computer Science
Princeton University

Princeton, New Jersey 08544

April 9, 1987

Abstract

In this paper we pose the problem of establishing unique identities for a group of N identical
processors which possess a common shared memory to which asynchronous read and write operations
can be performed. We introduce a set of protocols which successfully assign unique integers from the
set {0,1,2, ... ,N-1} to each processor.

By applying these simple protocols to a shared memory multiprocessor system under development
at Princeton [Park87], we have eliminated the need for hardwired addresses, or customized software
for individual processing nodes. Individual processing nodes can now be installed or replaced without

tedious configuration work. We have thereby greatly improved system modularity.

Keywords and Phrases - Multiprocessor, Probabilistic Algorithms, Shared Memory, Synchronization.

1. Introduction

Standard solutions to the dining philosophers problem claim that no philosophers starve. These
solutions commendably synchronize communal utensil manipulation. However, they fail to address
the more fundamental issue of identity.

Suppose we have N philosophers named Bruce. Consider the dilemma the philosophers encounter
while trying to seat themselves. “Bruce -, why don’t you sit in chair number one. And you, Bruce,
can sit in chair number two, ... , Bruce, you and Bruce can sit in the remaining two chairs.” Our
cadre of philosophers would scarcely be able to seat themselves round a table let alone ponder the
cumbersome of the task of dining. In addition to burdening the intellectual faculties of a group of
dining philosophers, the identity problem has implications in the seemingly unrelated field of
multiprocessor system development.

We encountered the Processor Identity Problem while writing communication primitives for a
shared memory multiprocessor system which is being built at Princeton [Park87]. This system allows
processors to communicate by performing asynchronous read and write operations to a common
shared memory. To implement these primitives it is necessary to assign each processor to a unique
task and set of memory locations. Our protocols allow a set of identical processors running the same
program to arrive at such a unique assignment.

Of course this problem may be trivially solved by loading a different program into each processor.
But we have found that this entails a great amount of inconvenience. As updated versions of the
software are created, the software must be custom tailored for each processor. The programs must
subsequently be individually loaded into each processor. It is more efficient to maintain a single
version of a program which can be broadcast in parallel to all processors.

Another option is to provide each processor with a special file, jumper configuration, or ROM
location which contains a unique identification tag. (Ethernet socket addresses are maintained this
way [Metce76].) This solution requires the overhead of maintaining global tables of unique addresses,
as well as extra processor configuration work.

A third option is to provide the system with an atomic read-modify-write or test-and-set operation.
This capability will allow processors to serially grab control of a single shared variable and thereby
establish an ordering of processors. This type of architectural feature must be built into the hardware
of the machine, and it can entail a great deal of design complexity. (Especially if arbitration circuits
must be constructed for multiple data paths.)

Instead of accepting one of these standard alternatives, we decided to look for a simple algorithm
that could be used by a group of identical processors running identical programs to agree on an

assignment of unique identities for each processor.

If two truly identical processors begin running the same program at precisely the same time, it
would clearly be impossible arrive at unique identities for each processor through shared memory
communication. These two processors would proceed in lock step performing identical actions to the
same memory locations. It would be impossible for one processor to detect the existence of the other
processor let alone worry about distinguishing itself from the other processor.

An analogy can be made between the Processor Identity Problem, and the problem of differentiating
between identical twins. Identical twins are structured around identically coded strands DNA in
much the same way as our processors are structured around identically coded finite state machines.
Twins differentiate themselves through interactions with random processes in their environments.
One twin might receive a scar from a falling rock will the other one does not. One twin might win the
New York state lottery and and spend the rest of his life tanning in Hawaii, while the other one
remains an untanned‘elevator repairman in Trenton.

To differentiate between identical processors we similarly introduce an element of randomness.
We assume that each processor possesses a random number generator. We argue that this is a
“reasonable” assumption in section six of this paper.

In section two of this paper we present a model for, and precisely state the Processor Identity
Problem. In section three we present our solution for the synchronous case. In section four we
describe and analyze the Random Wait Protocol for solving the asynchronous case. We present the
Random Key Protocol as an alternate solution to the asynchronous case in section five. In section six

we discuss methods of producing different streams of random numbers from identical processors.
2. Model

Our model consists of a collection of N processors which all access a common shared memory SM
which consists of & words of size b bits. SM[i] refers to the ith word of shared memory SM. Each
processor can perform asynchronous read and write operations to fixed sized words of shared memory
without conflict from the other processors. When more than one processor simultaneously write to a
single memory location two outcomes are possible. If the both processors write the same word, the
memory location will contain that word. If both processors simultaneously write different bit
patterns to the same memory location, the contents of the memory location is indeterminate. The
only way processors can communicate to each other is through the shared memory SM (see Figure
2.1).

Each processor possesses its own local memory which is not accessed by other processors. LM[k]
denotes the kth word of local memory LM. In addition, each processor possesses a random number

generator (which we discuss further in section six).

Local

Processors —| pp B Memory

Figure 2.1: Shared Memory System Model

The goal of the identity problem is to produce a single protocol which is executed by every processor
to produce a one-to-one assignment of the N processors to the integers {0,1, 2, ... , N-1} . If all
processors are active, this protocol must terminate with probability one in a finite amount of time.
Note that it is impos;ible to guarantee that a solution can be arrived at in any fixed amount of time.

We state this fact more precisely in the following theorem.

Theorem 2.1: For any fixed time t, no protocol exists which always solves the Processor Identity

Problem within time t.

Proof: Let us examine the case of two processors. Assume such a protocol exists. After a fixed
length of time £, one processor is assigned to the number 1 and the other processor is assigned to the
number 2. This means the two processors must have performed different assignment operations
within the time ¢. However, it is possible for two processors to remain exactly synchronized during
the time ¢ performing identical sequences of operations. Even queries to different local random
number generators may produce the same results for any fixed length of time ¢. (Of course this
probability rapidly drops to zero as the number of queries to the local number generator increases.)
Therefore, no protocol exist which always solves the Processor Identity Problem in any fixed length of

time . [
3. Synchronous Case

We first examine the synchronous case. This admits to the easiest solution, since one can
guarantee that all processors execute a given instruction simultaneously. We first examine the two
processor case.

3.1 Synchronous Protocol for Two Processors

For this protocol we only require two shared memory words of size 1 bit. We assume that both

processors start at the same time and proceed in lock step. Both memory words are first initialized to

0 by each processor. The processors then pick one of the words at random, and then write a one to this
word. There are two possible outcomes to this process: (1) Either both processors picked different
words in which case the algorithm terminates. (The processor which picked the first word becomes
number 0 and the other processor becomes number 1). (2) Or both processors pick the same word in

which case the algorithm is repeated. The algorithm is stated more formally below:

SM[0] = 0,
SM[1] = 0;
while(SM[0] = 0 or SM[1] = 0) do begin
SM[0] = 0;
SM[1] = 0;
i = random() modulo 2;
SM[il =1,
}

processorid = i,

The program will halt with probability 1/2 after each iteration. The process can conceivably
proceed for any fixed number of iterations but the expected number of trials can be calculated by

considering each iteration to be a Bernoulli trial [Tuck80].

L]

] 1 J'
Expected number of trials = Z JP() = Z J(5) =92
j=1 =t
The expected number of trails is shown to be two. We next examine the synchronous case for N =

3.2 Synchronous Protocol for N = 2

The solution to the Identity Protocol for N processors is a generalization of the protocol for two
processors. The protocol uses N shared memory words of size 1 bit. Processors initially set each word
to 0. Each processor then picks a random word and sets it to one. If less than N bits are marked, then
at least one bit was selected by more than one processor so the memory is re-initialized, and the
process is repeated. If N bits are set, each processor has chosen a unique word. The processors use
their word addresses as a unique identification tags and exit the protocol. The algorithm is stated

more formally below:

for all x between 0 and N-1 { /*set shared memory words to 0%/

SM[x] = 0;

}
while(one or more shared memory bits are not set to 1) {
for all x’s from 0 to N-1 { /*set shared memory words to 0%/
SM[x] = 0;
}
i = random() modulo N; [*pick a random bit and set it to 1*/
SM[il = 1;

}

processorid = i;

The algorithm will succeed with probability NI/NN in each iteration. The algorithm terminates
with probability one as time goes to infinity but it may take a long time. The success probability can
be increased by using M bits of shared memory words where M = N. Each processor picks one of the
M bits at random and marks it. If N bits are marked, each processor has a unique location. To
produce an identification tag, each processor counts the number of marked locations with lower
shared memory addresses, and uses this as an identification tag. This succeeds with probability P’ =

(MY/(M-N))/MN, The expected number of trials is then.

, J 1 1
Expected number of trials = Z JP() = Z JP’(l—P’) £ e i

For example, if M = 20 and N = 8 the expected number of trials is five.
4. Asynchronous Case: The Random Wait Protocol

We now introduce the “Random Wait Protocol” which solves the asynchronous Processor Identity
Problem. For the Random Wait Protocol to operate, each processor must be capable of producing a
distribution of waiting times. It is not required that processors be synchronized, or that they produce
the same distribution. It is only essential that each processor have some notion of time. This model of
processing lies somewhere between the synchronous and the asynchronous extremes.

In practice, a waiting time can be generated by a timing loop which a processor executes for a given
number of iterations. (Though clock skew between processors may make it impossible for these
waiting times to be calibrated between processors.)

For some multi-tasking processors, however, it may be impossible to assume that a single process

can execute a timing loop without interruption. They may simply be unable produce a distribution of

waiting times. For these systems we have developed the Random Key Protocol which is presented in

section 4.

4.1 Random Wait Protocol for N = 2

In the Random Wait Protocol processors communicate by changing certain locations in memory at
random intervals. If one processor periodically “toggles” a bit from 0 to 1 and 1 to 0, the other
processor will eventually detect its presence even if both processors are toggling the same bit.

This protocol requires three bits of shared memory. One bit is used to signify that the operation is
completed. We call this the “completion bit”. The other two bits are “toggled” (periodically flipped
from 0 to 1 and 1 to 0) by the processors. We call these the “T bits” (See Figure 4.1.1).

Figure 4.1.1: Shared Memory Organization for Two Processor Random Wait Protocol

The protocol operates in much the same manner as the synchronous protocol. Each processor first
initializes the completion bit to a 0 value. The processors then pick one of the two T bits at random.
Since the processors are not synchronized it is harder for the processors to detect the fact that they
have picked the same T bit. This is what the toggle operation is used for. Each processor periodically
toggles the T bit they have selected. After the toggle operation each processor reads both T bits, then
waits a random amount of time before reading the 7 bits again. If either of the T bits was toggled an
odd number of times during the waiting time, this will be detected.

If a processor detects a change in its own T bit, it knows that both processors are occupying the
same location. It also knows it is the first processor to detect this fact So it selects the number of the
other T bit as its processor identification tag and exits the program after setting the completion bit to
1.

If a processor detects a change in the other T bit, it knows that the other processor is "occupying”
that bit so it sets the completion bit to one and then terminates. If a processor at any time detects that
the completion bit has been set by the other processor it terminates. The protocol is stated more

formally below and is graphically depicted in Figure 4.1.2:

completion = 0; [*set completion bits to zero*/
i = random() modulo 2; /*select a random T bit*/
while(1) {

toggle(Tlil); /*toggle your T bit*/

myThit = TTil; /*read your T bit*/
otherThit = T[(i+1) modulo 2]; /*read other T bit*/

waitrandomtime(); /*wait for a random amount of time*/

if(completion==1) { /*if completion bit already set*/
processorid = i; /*get processor identification number*/
exit(0); /*and exit program*/

}

if(TTi] not = myThbit) { /*compare your T bit with its previous value*/
completion = 1; /*if different set completion bit*/

processorid = (i+ 1) modulo 2; /*get processor identification number*/

exit(0); /*and exit program*/

/*compare other T bit with previous value*/
else if(TT(i+ 1)modulo 2] not = otherThit) {

completion = 1; /*if different set completion bit*/
processorid = i; /*get processor identification number*/
exit(0); /* and exit program?*/
}
Read T bits > If change: i = random() modulo 2

Ifno change: |Toggle TTi] |- I

Read T bits

Wait Random Time

Read T bits

> [f change: i = random() modulo 2

Ifno change: | Toggle TTi] |« |

Read T bits

Wait Random Time

Figure 4.1.2: Random Wait Protocol For Two Processors

The random waiting time can be generated by a random number generator and a timing loop. We
would like to use an exponentially distributed random waiting time. However, this cannot be exactly
produced by a timing loop that executes only a discrete number of iterations. An exponential
distribution can, however, be approximated to the nearest discrete interval.

To produce a waiting time from a random integer (which is assumed to be uniformly distributed
from one and its maximum value) first produce a random number between 0 and 1 by dividing the
random integer by its maximum possible value. them produce any exponentially distributed waiting
using the following formula which we derived from the standard exponential probability distribution.

n(1 — random)

-\
Where) is the standard exponential parameter for the exponential distribution P(t<T) = 1 -e-AT.

time =

We next show that the protocol is guaranteed to terminate.

Lemma 4.1.1: If two active processors enter the two processor Random Random Wait Protocol, both

processor will eventually exit the protocol.

The protocol will terminate whenever one processor performs an odd number of toggle operations
between two of the other processor’s read operations. There is a constant probability of this occurring
during each pair of read operations. Since read operations, and toggle operations continue to be
performed while the protocol hasn’t terminated, a detection event will occur with probability one as
time goes to infinity. When one processor detects the presence of the other processor, it sets the
completion flag and exits the protocol. The other processor will eventually read the completion flag
and also terminate. The protocol will therefore always terminate. We next establish a lemma

concerning detection.

Lemma 4.1.2: Only one of the two processors can detect the presence of the other processor during a

single execution of the Random Wait Protocol.

Assume both processors were able to detect each others presence. Processors only detect toggles
that occur between pairs of read operations. And processors perform no toggle operations between
these read operations, or during the exit sequence if detection occurs. So if processor A detects the
presence of processor B, this means the processor B has toggled between a pair of processor A’s read
operations. This implies that processor B has not yet detected anything. If both A and B detect each
others presence this means processor A must have toggled sometime after processor B’s toggle
operations, however, processor A never toggles after detecting processor B. Contradiction! []

We can now prove that our protocol correctly solves the Processor Identity Problem.

Theorem 4.1: The Random Wait Protocol solves the Processor Identity Problem for two processors.

Assume the Waiting Protocol doesn’t solve the Processor Identity Problem. By lemma 4.1.1 the
algorithm is guaranteed to terminate, this means the algorithm terminates with both processors
assigned to the same identification number. However by Lemma 4.1.2 only one processor can detect
the presence of the other processor. And the detecting processor always chooses an identification tag
which is different from the present location tag of the other processor. This means that both

processors cannot have selected the same identification tag. O

Let’s now analyze the expected running time of the algorithm. The algorithm terminates
whenever one processor detects the presence of the other processor. Assume that the read-toggle-read
(RTR) sequence of operations oceurs instantaneously. (This is a valid assumption if the waiting times
are on average much longer than the duration of an RTR operation.) Each processor repeatedly
performs RTR operations followed by exponentially distributed waiting times. Label one of the
processors as A, and the other processor as B. Processor A can detect the presence of processor B if
processor B performs an odd number of RTR operations during processor A’s waiting time. We can
now represent any sequence of RTR operations as a series of A’s and B’s. The process stops when an
odd number of consecutive B’s is terminated by an A, or an odd number of A’s is terminated by a B.
Assuming that both processor A and processor B have the same waiting time distributions, then the
next number in the sequence is just as likely to be an A or a B (see Figure 4.1.3).

Consider odd-even pairs of numbers in the sequence. Half of these pairs lead to a processor being
detected (AB or BA). The other half lead to no detection (AA or BB). Each case is equally as likely, so
after each pair of RTR operations, detection will occur with probability 1/2. This means the expected

number of RTR operations to detection will be.

o«

o 1 i
Expected number of RTR operations = 2(Z jP(]')) - 2(z J(E)) =t
j=1 =1

After one processor detects the other and exits, it the remaining processor will have to finish its
waiting time before terminating. The expected value of this final waiting time is 1/A. The expected
time between RTR events of two active processors is half the expected time for one processor or 1/2).
For exponential distributions, the expected time for the kth event, is just k times the expected time for
one event [Klei75]. The expected time for the first four RTR operations is then 4*(1/2\) = 2/A. The
total expected waiting time is then becomes 2/A + 1/A = 3/A.

10

: Consider this to be an
Heald T'ope atomic RTR operation

Toggle TTil > RTR
Read T bits
ProcessorA o |RTR}—->|RTR > RTR >

Processor B —| RTR RTR

Y
Y

Alternate Representation:

Figure 4.1.3: Random Wait Protocol For Two Processors

Note that the processors involved in the Random Wait Protocol need not generate the same
exponentially distributed waiting time. It is only essential that each processor produces an
exponential waiting time whose expected value is much larger than the time required for the slowest

processor to perform an RTR operation.
4.2 Waiting Protocol for N = 2

We generalize the Random Wait Protocol for the case N = 2. This requires N+ 1 bits. Like the
previous protocol one, of the bits is reserved as a completion flag. The other N bits are used as toggle

bits (see Figure 4.2.1). The algorithm proceeds similarly to the N = 2 case. Each processor initially

Figure 4.2.1: Shared Memory Organization for N Processor Random Wait Protocol

sets the completion flag to 0. It then chooses a random T bit and toggles it. Next, it reads all of the
toggle bits, waits a random amount of time and reads all of the toggle bits again. If any of the T bits
have changed, it marks the changed T bits as occupied in a table located in its local memory area. Ifa
processor detects a change in its own T bit, it moves to a random T bit that it has not yet detected as

occupied. If any processor detects toggling in all of the T bits, it sets the completion flag to a 1 and

11

exits using its T bit location as its processor identification tag. A processor which detects the
completion bit is set exits the program using its toggle location for its processor identification tag.

The algorithm is stated more formally below.

completion = 0; /*initialize completion bit to zero*/
i = random() modulo N; /*select a random T bit*/
LM[i] = 1; /*note this T bit as occupied®/
while(1) {
toggle(TTi)); I*toggle your T bit*/
readThits(); /*read your T bits*/
waitrandomtime(); /*wait for a random amount of time*/
readThits(), [*read your T bits*/
if(completion= = 1) { /*if completion bit already set*/
processorid = i; /*get processor identification number*/
exit(0); /*and exit program*/
}
if(T[i] changed between reads) { /*if your T bit changed*/
while(LM[i] == 1){ [*get new T bit that has not been detected*/
i= random() modulo N; /*as occupied.*/
}
LMIi] = 1, /*mark this new T bit as occupied*/
}
for all x from 0 to N-1{ /*if any T bit changed between reads*/
if(TTx] changed between reads)
LM[x] =1, /*note this bit as occupied*/
}
if(all LM[x] ==1) /*if all T bits have been detected as occupied*/
processorid = i; [*get processor identification number®/
completion= 1, /*set completion bit*
exit(0); /* and exit program*/
}

This protocol works because any toggle bit that has one or more processors assigned to it will

always have at least on processor assigned to it. Thisis Lemma 4.2.1.

12

Lemma 4.2.1: If a T bit is occupied by one or more processors during the Waiting Protocol, it will

remain occupied by at least one processor until the protocol completes.

This is similar to Lemma 4.1.2. If a processor detects a toggle operation on its own T bit it moves to
a different T bit. However, the processor which performed the toggle must still remain on the original
T bit.

Suppose that a T bit which was occupied by one or more processors during the Waiting Protocol is
occupied by no processors. One of the processors must have performed the last toggle operation that
caused a processor to leave. Call this processor A. Processor A must have been prompted to leave by
a subsequent toggle operation, since A was the last to perform a prompting toggle operation, it must
have prompted itself to leave. This is impossible because A performs no toggle operations while
looking for a change in its own toggle bit. Our original assumption produces a contradiction. So at
least one processor must remain on the toggle bit until the end of the protocol. O

This leads into the next lemma.

Lemma 4.2.2: Every T bit must eventually be occupied by at least one processor during the Random

Wait Protocol.

Suppose one T bit is never occupied. Call this bit x. Since there are N bits and N processors, at
least one of the other T bits must be occupied by more than one processor. As time goes to infinity, one
of the processors occupying this bit will detect the presence of another processor occupying the same
bit, and it will choose another bit at random to occupy. If it does not select bit x it will select another
bit, and the process will repeat itself. This process cannot repeat indefinitely. Every repetition has a

1/N probability of touching bit x. As time goes to infinity, bit x will eventually be touched. O

Our next lemma guarantees that the protocol will terminate.

Lemma 4.2.3: Ifall N processors actively execute the Random Wait Protocol, then all N processors will

eventually exit the Random Wait Protocol.

Suppose one processor never exits the Random Wait Protocol. Call this processor x. This means
the completion flag is not set. Since otherwise the processor x will exit the protocol. (Note that once
the completion flag is set, it will never be erased, since is can only be set by a processor entering the
protocol, and it can only be set after all processors have entered the protocol.) Since the processor
never leaves the protocol, then the processor must never detect a toggle operation in one at least one
of the bits. Call this bit y.

13

Lemmas 4.2.1 and 4.2.2 taken together say that all bits will eventually be occupied, and once
occupied, they will remain occupied. The implies bit y will be occupied, and remain occupied. If this
is the case, processor x will eventually detect a toggle operation on bit y. Our assumption that one
processor never leaves the protocol leads to a contradiction, therefore all processors will eventually

leave the protocol. [
We can now prove Random Wait Protocol solves the Processor Identity Problem.

Theorem 4.2: If all processors remain active, the Random Waiting Protocol will eventually produce a

one-to-one assignment of the N processors to the integers {0,1,2, ... N-1}.

Proof: Suppose the Random Wait Protocol does not produce such an assignment. By lemma 4.2.3 all
processors must have exited the protocol. Since processors only exit the protocol after selecting one of
the integers {0,1,2, ... ,N-1}, each processor must have selected an integer from {0,1,2, ... ,N-1}. If the
protocol did not produce a one-to-one assignment, at least two of the processors must have selected the
same integer. This means at least one bit must not have been exited from. This bit cannot have been
occupied. If it ever was occupied, by lemma 4.2.1 it would have remained occupied and one of the
processors would have exited from it. The fact that one bit was never occupied contradicts lemma
4.2.2.

Our assumption that the Random Wait Protocol does not produce a one-to-one assignment of

processors to the integers {0,1,2, ... ,N-1} leads to a contradiction. Therefore, the Random Wait

Protocol must eventually produce a one-to-one assignment.]

To estimate the expected running time of the algorithm, note that each processor can change T bits
at most N times during the protocol. This is because processors never move to a T bit they have
occupied previously.

As we have shown in section 4.1, if a a processor moves to a bin that is already occupied by another
processor, it will take on average 1/2\ time for one of the processors to detect the fact that the bin is
doubly occupied. One of these processors will then jump to a new bin. We can produce a rough
estimate of the expected running time by assuming that every move is made to a an unoccupied bin,
and that the expected time for each of these moves is 1/2\. We also assume that N moves have to be
made to fill all the 7 bits. Because of the memory-less property of the exponential distribution, we
can assume that the expected value for the N moves equals the sum of the expected values of each of

the individual moves. Our approximate estimate of the running time then becomes N/2\.

5. Random Key Protocol

14

The Waiting Protocol may not prove satisfactory for some applications. Processors may simply be
incapable of producing a random distribution of waiting times because of multi-tasking or real-time
constraints. Even if all of the processors can produce random waiting time distributions, the waiting
process itself is quite time consuming. The Random Wait Protocol is guaranteed to produce a correct
assignment of processors to integers as time goes to infinity. However, it may be more practical to use
faster probabilistic methods.

The Random Key Protocol correctly solves the Processor Identity Problem with probability greater
than 1-, where ¢ is an arbitrarily small real number less than 1. It does not use random waiting
times so in general it operates more quickly than the Random Wait Protocol.

We first describe the Random Key Protocol for the case where the number of processors N = 2.

5.1 Random Key Protocol: Case N = 2

In the Random Key Protocol, shared memory is divided into two “bins”. Each bin contains space for
a large random number. (This random number may span one or more memory words.) Included in
each bin is a “valid” bit which indicates if the contents of the bin is a valid random number (see

Figure 5.1.1).

Bin0 Bin1

Random Key

R

Figure 5.1.1: Shared Memory Organization for Two Processor Random Key Protocol

Each processor initially generates a large random number. These random numbers are assumed to
be unique. If the random numbers are one hundred bits long, the probability that the two number
will agree is 2-100. Each processor now possesses a unique random number. One might argue that
such a number constitutes a unique identity, but for purposes of parallel processing it is more useful if
these unique tags come from a predetermined set of tags {0,1,2, ..., N-1}. Multiprocessing tasks can be
specified in terms of such a set.

Each processor first initializes the valid bits of both bins to 0. It then picks a random bin, and sets
the valid bit of that bin before writing its large random number into the bin. The processor
alternately reads the contents of both bins. If it detects a valid random number in the other bin, and
verifies that its own random number remains in tact, it knows that both processors occupy different
bins. It then takes the number of its bin as its processor ID, and exits. If the processor detects no

change in either bin, it continues alternately reading each bin.

15

If the processor finds that its own random number has been disturbed, it knows that both

processors are attempting to occupy the same bin. It sets its valid bit to 0 and selects a new random

bin to write to. The algorithm is described more formally below:

validbit[0] = 0;
validbit[1] = 0;
r = random();
while(1) {
i = random() modulo 2;
validbit[i] = 1,
bin[i] = r;
while(validbit[i] =1 and bin[i] = r){
if (validbit[(i+ 1)modulo 2] = 1) {
if(validbit(i)=1 and bin[i]=r) {

processorid = i

/*set valid bits to 0%/

/*get random number*/

/*select random bin*/

/*set valid bit of selected bin*/
/*write random number to bin*/
[*repeat while your own bin is OK*/
/*read other valid bit*/

/*if your own bin remains in tact*/

/*get processor D and exit*/

exit(0);

}
valid[i] = 0; [*reset valid bit*/

We first establish that at least one processor will always finish the protocol in Lemma 5.1.

Lemma 5.1.1: At least one processor must eventually leave the two processor Random Key Protocol.

Suppose neither processor leaves the protocol. If at least one processor is continually choosing a
new random bin, the protocol will terminate as time goes to infinity because the processors will
eventually occupy different bins in which case the at least one processor will leave. If neither
processor is changing bins then both processors must always see a their own valid random number in
their own bin and no valid random number in the other bin. If this is the case, both processors must
occupy the same bin, therefore both processors must possess the same random number. Our
assumption that no processor leaves the Random Key Protocol produces a contradiction. Therefore, at

least one processor must eventually leave the two processor Random Key Protocol.[]

We establish another useful lemma.

16

Lemma 5.1.2: If both processors (A and B) initially choose distinct random numbers in the two
processor Random Key Protocol, and processor A writes the valid bit of a bin, processor A will not touch

the other bin unless its own bin is subsequently disturbed.

Assume that processor A sets the valid bit of bin 0, and that bin 0 is never subsequently written to
by processor B. Also assume that processor A subsequently writes to bin 1. Since processor A only
writes to its own bin, processor A must have switched bins. Since processor A only switches bins if its
own bin is disturbed by processor B, processor B must have disturbed bin 0 after the valid bit was set

by A. This contradicts the assumption. []

Lemma 5.1.3: If both processors initially choose distinct random numbers in the two processor
Random Key Protocol, and one processor leaves the protocol, both processors must eventually leave the

protocol.

Assume that processor A has left the protocol and processor B remains executing the protocol.
Processor A left the protocol after first making certain that the other bin contained a valid bit.
Processor B must have set this valid bit because processor A would have reset this bit before changing
bins. Processor A reads its own valid random number in its own bin before exiting the protocol. Both
bins must now contain valid random numbers, because processor A has not disturbed processor B’s
bin before exiting. And by Lemma 5.2.2 processor B will never disturb A’s bin. However, if this were
true than B will eventually the protocol. This contradicts our original assumption, therefore if one

processor leaves the protocol then both processors must leave the protocol. []

We next finally prove that the Random Key Protocol solves the Processor Identity Problem for the

case of two processors.

Theorem 5.1: If both processors initially choose distinct random numbers in the two processor

Random Key Protocol, then the protocol will successfully solve the Processor Identity Problem.

Proof: Suppose the Random Key Protocol does not solve the Processor Identification Problem.
Lemma’s 5.1.1 and 5.1.3 taken together say that both processors must eventually exit the protocol. If
the protocol failed, they both must have exited with the same processor identification number. Which
means they both must have exited while occupying the same bin. Label one processor A and the other
processor B. Processor A must have seen a valid random number in the other bin before leaving. This

can only have been written by B since A invalidates bins before leaving them. Since the other bin is

17

not disturbed in the exiting procedure, by lemma 5.1.2 processor B cannot have changed bins. If
processor B has not changed bins, it exited the protocol with the other bin’s number as a processor ID.
This means both processors must have exited the protocol with unique identification tags. This
contradicts our original assumption that the Random Key Protocol did not complete successfully. The
Random Key Protocol therefore solves the Processor Identification Problem for the case of two

processors. []

If both processors are actively performing the algorithm, then they will choose the same bin with
probability 1/2 for each trial. The expected number of trails before successful completion of the
algorithm is therefore exactly the same as the asynchronous case, 2. (Although each trial only
completes after the slowest processor finishes.)

We now extend this protocol to the general case where N = 2.

5.2 Random Key Protocol: Case N = 2

The Random Key Protocol for more than two processors is a generalization of the Random Key
Protocol for two processors. The general protocol uses M bins (where M = N). As in the two processor
case, each processor initially chooses a large random number (tag) which is assumed to be unique. It
then resets the valid bits in each of the M bins to 0. The processor chooses one of the M possible bins at
random, and sets the valid bit in the bin before writing its tag to that bin. The processor remains on
this bin unless the the bin is disturbed by another processor.

The termination condition is harder formulate in the general case. Even if a processor reads N
unique valid tags in the M bins. This does not guarantee that all processors have settled into
different bins. A valid tag may be overwritten after it is read, but before all of the other bins have
been read. This means reading a processor’s valid tag does not guarantee that it will have settled into
a unique bin after the all M bins are read.

To solve this problem, each processor keeps a count of the number of times it has changed bins. It

writes this number into its bin along with its tag (see Figure 5.2.1). If a processor reads all M bins

Bin 0 Binl1 T Bin M

Figure 5.2.1: Shared Memory Organization for N Processor Random Key Protocol

twice, and if each occupied bin contains the same valid random number and count value, then it can

be assured that for at least some point in time all M processors have settled into unique bins. Once

18

they have settled in to unique bins, no processor will move, because no processor will subsequently
disturb another processor.

The general protocol is stated more formally below:

set all valid bits to 0;
r = random(); /*get random number*/
count = 0; /*initialize count®/

do forever {
i = random() modulo N; /*select random bin*/
bin[i] = (1,r,count); [*write (valid bit, random number, count) to bin i*/
while(bin[i] = (1,r,count)) {
read all bins;
if(N valid random numbers and bin[i] = (1,r,count)) {
read all bins;
if(no change between reads) {
processorid = i,

exit(0);

}
bin[i] = (0,*,*); /*reset only the valid bit of bin i*/

count = count + 1;

The count value makes it possible for the protocol to successfully determine the termination
condition. However, it imposes a limit on the number of times a processor may change bins. If the
count value is stored in L bits then the count value will eycle if it is incremented more than 2L -1
times. If the L is made sufficiently large, then all processors will successfully complete the protocol
with probability greater than 1-a before changing bins 2L times. (Where a is an arbitrarily small real
number less than 1.)

If we assume that processors initially choose unique random keys, and that the Random Key
Protocol will terminate before any processor’s count value exceeds the maximum limit (2L), then we
can prove that the Random Key Protocol solves the Processor Identity Protocol. We first establish

preliminary Lemmas.

19

Lemma 5.2.1: A processor will only terminate the Random Key Protocol if each processor has a valid

bit written to a bin, and no bin is occupied by more than one processor.

Before exiting the protocol, a processor reads all of the bins in one pass, then reads the bins in a
second pass. The processor only exits, if it sees that no bins have changed between reads, and that N
valid bits are set.

The count value ensures that the bin has not been altered between read operations, if the count
value were not included, it would be possible for a valid key to be overwritten one processor and then
rewritten by the original processor between read operations. This sequence of actions will change the
count value, and this will be detected on the second read.

If the values remain the same between reads, then at some point in time between the two read
passes N bins are guaranteed to contain N set valid bits (see Figure 5.2.2). Since processors erase
valid bits before changing bins, there can be at most one valid bit for each processor. The existence of
N valid bits means the N processors must have each written one of these valid bits, and that no bin is

occupied by more than one processor. []

A Read :
Bin ket é : 5
Unchanged : : Read § Read Pass 1
Between A | . :
Reads : :
N S T . T R . Read : _ Shared Memory
Read ’ A In Known State
Read L _
T : z : :
i . Read : : : Read Pass 2
m : : - s @ : :
" : Y
Read

Figure 5.2.2: Termination Condition (Two Read Passes)

Lemma 5.2.2: If each of the N processors has a valid bit written to a different bin in the Random Key

Protocol, then no processor will ever subsequently change bins.

20

Assume that each processor has a valid bit written to a unique bin, and that one or more processors
subsequently move. One of these processors must be the first to move (processor A). (If more than one
processor moves simultaneously, pick one of these at random and call it processor A.). Processor A
must have been prompted to move because its bin was written to by another processor (call this
processor B). This writing must have occurred before all processors had valid bits written to different
bins, because A was the first to move afterwards. However, processor B would have first erased A’s
valid bit before moving to its own bin. This means A must have subsequently rewritten its valid bit,
and that processor B could not have subsequently interfered with A’s bin. Our assumption that
processors move produced a contradiction. Therefore, if each of the N processors has a valid bit
written to a different bin in the Random Key Protocol, then no processor will ever subsequently
change bins. [

We next prove that the all processors will eventually have valid bits written to unique bins.

Lemma 5.2.3: If all N processors are actively performing the Random Key Protocol, then each

processor will eventually have a valid bit written to a unique bin.

If all processors are active and fewer than N valid bits are written to the shared memory, then some
processors do not have a valid tag in any bin. These processors will subsequently either write valid
tags to empty bins (in which case N valid bits will be set) or they will write to occupied bins, causing
collisions and more displaced processors. Even if we assume that each collision causes all processors
to change bins, the protocol has a probability P’ = (MY/(M-N)!)/MN of assigning each processor to a
unique bin after each collision. The collisions cannot go on indefinitely because the unique
assignment of bins to processors will take place with probability one as the number of collision events

goes to infinity. [

Theorem 5.2.: If all processors remain active, the Random Key Protocol will produce a one-to-one

assignment of the N processors to the integers {0,1,2, ... N-1}.

Proof: Lemmas 5.2.2 and 5.2.3 taken together say that each processor will eventually settle into its
own bin and remain there. The processors will then eventually read N set valid bits on two separate
scans of the bins without any of the bins changing. All processors will therefore terminate while
occupying different bins. Each processor will therefore choose a unique number from {0,1,2, ... ,N-1}.
The Random Key Protocol will therefore produce a one-to-one assignment of the N processors to the
integers {0,1,2, ... ,N-1}. O

21

An issue to be concerned about is the probability of two processors choosing the same random key
at the beginning of the protocol. If the random numbers are L bits long, the probability that N
processors choose unique random numbers is (2L)/(2L-N)!/(2L)N. As in the two processor case, this
number can be made arbitrarily close to one by increasing the size of L.

The expected number of trials that the protocol will have to complete will be similar to the
asynchronous case. (The definition of a “trial” will have to be clarified though. Each processor moves
a certain number of times during the protocol. The maximum of this number over all processors will
be the number of trials for the protocol.) In the worst case all processors will be forced to move with
each new trial. In this case the expected number of trials will be identical to the synchronous case.

Expected number of trials = 1/P’. Where P’ = (MY/(M-N)!)/MN.
6. Generation of Random Numbers

It is no trivial task to generate a stream of random numbers from a deterministic computing
system. Random number generators are typically a deterministic program which takes as input a
random seed. Finding unique seeds for all processors is not a trivial task. If each element of the
computing system were truly deterministic, it would clearly be impossible. There are, however,
channels through which random processes from the physical world can be be tapped from within a
computing system.

On system power up, the contents of random access memory assumes a somewhat random state.
Processors typically initialize the entire memory to a known state before proceeding. Before this
initialization takes place, a random number can be generated as the result of a function performed
one the contents of each local memory. (Remember that each processor possesses its own local
memory.) One must make certain that correlations due to spatial locality do not affect the final
random number. For instance, one might exclusive-or all bits whose addresses are multiples of the
ith prime number to produce the ith bit of a random number.

A disk drive is a physical device that is affected by random processes. Variations in the power
supply, vibrations, variable air friction, and rotational velocity all affect seek and latency times. The
time for any given disk seek will be randomly distributed around an expected value. One can use
deviations from the expected time of a disk operation as a source for random numbers.

Even if a processor has no disk drives, or uninitialized RAM locations, processors can reference
their system clocks for unique random number generators seeds. If all processors are started at
different times, and some amount of clock skew is present, then system clocks will suffice for seed

generation.

22

Clock skew may also be used to generate unique random number seeds. The following program
uses clock skew between processors to arrive at unique random number generator seeds. It requires

one “bit” in shared memory, and one “count” value in local memory.

count = 0;

while (bit not = 1){
if (count = N) bit = 1;
count = count +1;

}

seed = count;

The first processor to terminate will take on the seed value N. slower processors will take on lower
values.

Even if all processors are tied to the same clock, and memory is assumed to be initialized, one can
provide each processor with a large unique random number seed beforehand. This is not the same
with assigning each processor a name from a small set of names that can be referred to by a program.
Two processors will not have the same random number seed in practice. Processors can then be
replaced without reconfiguration work, or modifications to global tables of processor to name
assignments.

In practice there exist reasonable methods of providing each processor with a unique stream of
random numbers. In theory some of them may not always work. However in theory, we can assume

the existence of a perfect random number generator anyway.
Conclusions

We have presented and analyzed a set of protocols which solve the Processors Identity Problem.
These protocols can be used to greatly enhance system modularity by reducing configuration work
associated with installing or replacing individual processor nodes.

Acknowledgments

We'd like to thank Jonathan Sandberg, K. Balasubramanian, Bill Lin, and Rafael Alonso for their

contributions in refining the ideas of this paper.

References

23

[Klei75] L. Kleinrock, Queuing Systems, Volume 1: Theory, John Wiley & Sons, New York, 1975.

[Lamp86a] L. Lamport, “The Mutual Exclusion Problem: Part I - A Theory of Interprocess
Communication”, JACM, Volume 33, Number 2, April, 1986, pp. 313-326.

[Lamp86b] L. Lamport, “The Mutual Exclusion Problem: Part II - Statement and Solutions”, JACM,
Volume 33, Number 2, April, 1986, pp. 327-348.

[Mete76] R. M. Metcalfe, D. R. Boggs, “Ethernet: Distributed Packet Switching for Local Computer
Networks”, Communications of the ACM, Volume 19, Number 7, July, 1976, pp. 395-404.

[Park87] A. Park, "Design Issues in Shared Memory Multiprocessor Systems”, Ph.D. Dissertation,
Department of Computer Science, Princeton University, Princeton, New Jersey, 08544, In
preparation.

[Rabi82] M. O. Rabin, “The Choice Coordination Problem”, Acta Informatica, 17, 1982, pp.121-134.

[Tuck80] A. Tucker, Applied Combinatorics, John Wiley & Sons, New York, 1980.

24

