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Abstract

A Boolean function P from {0,1} into {0,1} is said to be evasive, if every decision tree algorithm
for evaluating P must examine all ¢ arguments in the worst case. It was known that any nontrivial
monotone bipartite graph property on vertex set V x W must be evasive, when |V|-|W| is a power of
a prime number. In this paper, we prove that every nontrivial monotone bipartite graph property

is evasive.

!This research was supported in part by the National Science Foundation under grant number DCR-8308109.



1 Introduction

In [RV2], Rivest and Vuillemin proved the Aanderra-Rosenberg Conjecture [R] which states that,
to evaluate any nontrivial monotone graph property on n vertices, every decision tree algorithm
must examine 2(n?) entries of the adjacency matrix in the worst case. A stronger conjecture,
suggested by Karp (see [R]), that all such graph properties are evasive, i.e., all entries must be
examined in the worst case, was left unresolved. Recently, Kahn, Saks, and Sturtevant [KSS] gave
a partial solution by showing that, when n is a power of a prime, all such graph properties are

evasive; their proof employed an ingenious topological approach to this complexity problem.

The method used in Rivest and Vuillemin [RV1] [RV2] (also discovered in Best, et al. [BBL])
yields immediately that any nontrivial monotone bipartite graph property on vertex set V' x W
must be evasive, when |V|-|W]| is a power of a prime number. The purpose of this paper is to
show that, in fact, every nontrivial monotone bipartite graph property is evasive. We will adopt

the topological view for this problem as espoused in [KSS].

2 Main Theorem

Let V = {1,2,...,m} , W = {1,2,...,n}, and Gp,, be the set of all bipartite graphs G =
(V x W, E) where E C V x W. For any two G = (Vx W, E), G' = (V x W, E'), we write G < G’
if E C E'; we say that G and G’ are isomorphic if there exist permutations py, pa of V, W such
that (¢,7) € E if and only if (p1(7),p2(7)) € E'. A bipartite graph property on V x W is a function
P : Gpnn — {0,1} satisfying the constraint that P(G) = P(G’) if G and G’ are isomorphic. A
bipartite graph property P on V x W is monotone if P(G) < P(G") for all G < G’ ; P is nontrivial
if it is not a constant function.

Let P be any bipartite graph property on V' x W. We are interested in evaluating P(G),
where the input graph G' = (V x W, E) is given as an m X n adjacency matrix (a;;) with a;; = 1
for (i,7) € E and 0 otherwise. A decision tree algorithm T proceeds by asking a sequence of
queries: a;;; = 7, a5 = 7, ..., until the value of P(G) can be determined; the choice of the
(k + 1) — st query can depend on the results of all the preceding k values a;,j, ,...,ai. ;.. The cost
of T, cost(T'), is the maximum number of queries asked for any input G € Gy n. The complezity
of property P is defined as min{cost(T)|T' € T(P)} , when T(P) is the set of all decision tree
algorithms for property P. We say that P is evasive if C(P) = |V|-|W/|. Our main result is the
following theorem; the remainder of this paper is devoted to its proof.

Theorem 1 Every nontrivial monotone bipartite graph property is evasive.



3 Preliminaries

We review some needed terminology and facts from standard topology and from [KSS].

3.1 Abstract Complex

An abstract complez on a finite set X = {z1,22,...,2:} is a collection A of subsets of X with the
property that A C B € A implies A € A. Each A € A is a face; the dimension of A is |A| — 1.
We call z; the vertices. The Euler characteristic of A is x(A) = Yiso(=1)'f; , where f; is the
number of i — dimensional faces of A. We say that A is rationally acy;lz'c if the homology groups
of A are Ho(A) = Z and H;(A) =0 for all i > 0.

Let T' be any permutation group of X. Assume that A is invariant under I',i.e. forallc € T,
{#isTinye.. 25} € A implies? {2,(,), To(ia)s- -1%0(i)} € A. A face F = {2, %iyy..» %, } I8
said to be minimally invariant under T if, for all o € T, {0 (1), 0(i2),...,0(ix)} = {41,142, ..., ik},
and if in addition, no proper nonempty subset of F' has this property. Let A(A,T') be the set of

all nonempty faces of A that are minimally invariant under T.

Definition 1. Suppose A is invariant under I'. If A(A,T) = 0, let Ar = §. If
A(AT) = {A1,As,...,4,} # 0, let Ar be the abstract complex on A(A,T) defined by
Ap = {{Adi € DHD € 41,3 «:8); Uiep Ai € A}.

3.2 Geometric Complex

Let {v1,va,...,v;} be a set of k independent points in R? where ¢ > 0 is an integer. Denote by

(v1,v2,...,v;) their convez hull , i.e. the set
D> A\ >0 foralli,and Y N=1p.
1<i<k 1<i<k

A set M C R? is called a geometric realization of an abstract complex A on X = {z,z2,...,2:}
if there exists a set of independent points {v1,vs,... ¢}, called the base, such that M = |J e Ya,
where Y4 = (v;,,viy,...,v;,) for A = {z,2i,,...,2; }. Clearly, any abstract complex A on

X = {21, 29,...,2;} has a geometric realization in R? if ¢ > .

We will call M C R? a geometric complez if M is a geometric realization of some abstract
complex A. It is a well-known fact in Topology (See, e.g. [M]) that if M is a geometric realization
of two abstract complexes A and A’, then x(A) = x(A’). Thus, we can define x(M) as x(A)
unambiguously.

2In the paper all i,’s are distinct whenever they appear in the notation {z;,,z:,,..., 5}



3.3 Fixed Points

Let A be an abstract complex on X = {z1,®2,...,2:}, invariant under a permutation group I' of
{1,2,...,t}. Let M be a geometric realization of A with base {vy,vs,...,v;}. Then I induces a
natural automorphism group on M. Precisely, for each o € T, let f, be the automorphism on M
defined by
fs ( > Aw;) = X N v
1<i<k 1<i<k

for Ai 2 0, Xi<ickdi=1. Let M [ denote the set of fized points of this automorphism group,
ie. MU = {v|lve M, f,(v)=vV o eTl}

Theorem 2 ([KSS]) M" is a geometric realization of Ar.

For any two groups F' and L , we say that L is a homomorphic image of F if there exists a
homomorphism from F onto L. Let 2, be the cyclic group of order £.

Theorem 3 (Oliver [O]) If A is rationally acyclic and T' is a homomorphic image of 2 , then
X(M") = 1.

3.4 General String Properties and Topology

In the study of the complexity of evaluating graph properties, it has been found useful ([BBL]
[RV2]) to consider the complexity of evaluating a more general class of functions, the string
properties. A string property P is a function from {0,1}* into {0,1}. As done for graph
properties in Section 1, we consider decision tree algorithms T for evaluating P(ay,az,...,a;) by
asking an adaptive sequence of queries a;, = ? ,a;, = ?,...; we define cost(T) and C(P) in the
same way. The property P is said to be evasive if C(P) = t. We say that P is nontrivial if P is
not a constant; P is monotone if P(ay,aq,...,a;) < P(a},as,...,a}) when ¢; < a! for all 7.

In [KSS], the approach to study a string property P is to associate with P the abstract complex
Aon X = {z1,22,...,2¢} defined as follows: {z;,,@i,,...,2i, } € A if P(a1,az,. ..ya¢) = 0 where

@y, = ay, =...=a;, =1and a; =0for j # i;. The following fundamental observation was made.
Theorem 4 (KSS) If P is not evasive, then the associated A is rationally acyclic.
We need one more concept. Let I' be a permutation group of {1,2,...,1}. We say that P is

invariant under T if P(ay,a,...,6t) = P(a,(1),85(2), -+, o)) for all o € T It is clear that if
P is invariant under T', so is the associated abstract complex A.



4 Proof of Theorem 1

First we rephrase the problem in the terminology of string property (Section 3.4). Let D =
Sm ® Sn where Sp,, S, are the symmetric groups on V = {1,2,...,m} , W = {1,2,...,n}. Each
0 € Ypp is a permutation of {(4,5)]1 < i < m, 1 < j < n}, that is, if ¢ = (p1,p2) where
P1 € Sm, P2 € Sn, then o(i,j) = (p1(3),p2(s)) for all 7,5. Let us regard a bipartite graph
property P on V X W as a string property in the following way: Any input graph G € Om,n i8
identified with a = (a11,@12,...,0i,...,8ms) € {0,1}™" where a is obtained from the adjacency
matrix (a;;) of G by concatenating the entries row by row; this naturally induces a string property
P':{0,1}™" — {0,1}. It is easy to see that if P is nontrivial and monotone, so is P’ as a string
property; also P is evasive if and only if P’ is. In addition, P’ is invariant under %, .

To prove Theorem 1, let P be a nontrivial monotone bipartite graph property on V x W.
Denote by P’ the corresponding string property on {0,1}™". Assume that P is not evasive,

implying that P’ is not evasive; we will derive a contradiction.

Let D C {1,2,...,m}. Denote by bp the vector (a11,@12,...,aij,...,0mn) Where a;, = 1 for
1€ D, 1<{<mnand 0 otherwise.

Lemma 1 There ezists an integer 0 < r(P') < m such that P'(bp) = 0 if |D| < r(P) and 1

otherwise.

Proof. As P’ is invariant under X, », P'(bp) = P'(bp:) if |D| = |D’|. It then follows from the
monotonicity of P’ that there exists an integer —1 < r(P’) < m such that P'(bp) = 0 if and only
if |D| < r(P"). Finally, 7(P") # —1,m, since P’ is nontrivial. ®

Let A be the abstract complex associated with P’. Then A is rationally acyclic by Theorem 4.
Let I' be the subgroup 16 Z,, of Xp n, i-e. T = {00,01,...,00-1} with 04(3,7) = (3, (j +£)mod n).
Then A is invariant under I' since P’ is invariant under I'.

Now let M be a geometric realization of A. As I' is clearly a homomorphic image of Z,,, we
have by Theorem 3 that x(MT) = 1. Thus, x(Ar) = x(MF) = 1, since by Theorem 2 M" is a

geometric realization of Ar.

On the other hand, we have from the definition of Ar that
Ar = {{4;li € D}|D C {1,2,...,m}, P'(bp) =0} whenever Ar # (). Thus, either Ar = § in
which case x(Ar) = 0 # 1, or we have by Lemma 1 that

x(ar) = % (—1)]‘(3.3?1)

0<i<r(P’)

| fm—1 m—1
) osj;ﬁpf)(_l)j{(j“)Jr( J )]



r(P')-1 m—1
= 14 (-1)"®) (T(P’))
# 1.

This contradicts the conclusion of the last paragraph.

We have proved Theorem 1.

5 Remarks

The most tantalizing open question in this subject is whether all nontrivial monotone graph
properties are evasive. As mentioned in [KSS], their topological approach cannot resolve this
question when only the transitive nature of the underlying group for graph properties is exploited.
The proof of our result on bipartite graphs, as well as the proof of evasiveness for graph properties
on six vertices in [KSS], suggests that further progress might be possible if one examines in detail
the structures of the geometric complexes associated with graph properties.

Another interesting direction for further work is to prove evasiveness for other classes of string
properties. For example, any nontrivial monotone string properties that are transitively invariant
under cyclic group Cp,, must be evasive (as can be seen from Theorem 2 in [KSS], or from Theorems

3 and 4 in this paper). Is the analogous result true for string properties invariant under C,, @ C,,?
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