PERFORMANCE OF VLSI ENGINES FOR LATTICE COMPUTATIONS

Steven D. Kugelmass
Richard Squier
Kenneth Steiglitz
CS-TR-083-87
March 1987

Performance of VLSI Engines for Lattice ComputationsT

Steven D. Kugelmass
Richard Squier
Kenneth Steiglitz

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

We address the problem of designing and building efficient custom VLSI-based
processors to do computations on large multi-dimensional lattices. The design tradeoffs
for two architectures which provide practical engines for lattice updates are derived and
analyzed. We find that I/O constitutes the principal bottle-neck of processors designed
for lattice computations, and we derive upper bounds on throughput for lattice updates
based on Hong and Klimg’s graph-pebbling argument that models I/O. In particular we

show that R =O(BSF), where R is the site update rate, B is the main memory
bandwidth, § is the processor storage, and d is the dimension of the lattice.

1. Introduction

This paper deals with the problems of designing and building practical, custom VLSI-based comput-
ers for lattice calculations. These computational problems are characterized by being iterative, defined on a
regular lattice of points, uniform in space and time, local, and relatively simple at each lattice point. Exam-
ples include numerical solution of differential equations, iterative image processing, and cellular automata.
The recently studied lattice gas automata, which are microscopic models for fluid dynamics, are proposed
as a testbed for the work.

The machines envisaged — lattice engines — would typically consist of many instances of a custom
chip and a general-purpose host machine for support. In many practical situations, the performance of such
machines is limited, not by the speed and size of the actual processing elements, but by the communication
bandwidth on- and off-chip, and by the memory capacity of the chip.

A familiar example of lattice-based computational tasks is two-dimensional image processing. Many
useful algorithms, such as linear filtering and median filtering, recompute values the same way everywhere
on the image, and so are perfectly uniform; they are local in that the computation at a given point depends
only on the immediate neighbors of the point in the two-dimensional image.

Another class of calculations, besides being uniform and local, have the additional important charac-
teristic of using only a few bits to store the values at lattice points, and so are extremely simple. Further,
they operate on local data iteratively, which means that they are not as demanding of external data as many
signal processing problems. These computational models — uniform, local, simple, and iterative — are
called cellular automata. We will next describe a particular class of cellular automata, one that provides a
good testbed for the general problems arising in the design of dedicated hardware for lattice-based compu-
tations.

T This work was supported in part by NSF Grant ECS-8414674, U. S. Army Research-Durham Contract DAAG29-85-K-
0191, and DARPA Contract N00014-82-K-0549

e =

2. A paradigm for lattice computations: the lattice gas model

Quite recently, there has been much attention given to a particularly promising kind of cellular auto-
maton, the so-called lattice gases, because they can model fluid dynamics. These are lattices governed by
the following rules:

. At each lattice site, each edge of the lattice incident to that site may have exactly zero or one particle
traveling at unit speed away from that site, and, in some models, possibly a particle at rest at the lat-
tice site.

® There is a set of collision rules which determines, at each lattice site and at each time step, what the
next particle configuration will be on its incident edges.

. The collision rules satisfy certain physically plausible laws, especially particle-number (mass) con-
servation, and momentum conservation.

These lattice gas models have an intrinsic exclusion principle, because no more than one particle can
occupy a given directed lattice edge at any given time. It is therefore surprising that they can model fluid
mechanics. In fact, in a two-dimensional hexagonally connected lattice, it has been shown that the Navier-
Stokes equation is satisfied in the limit of large lattice size. This model is called the FHP model, after
Frisch, Hasslacher, and Pomeau [2]. The older HPP [3] model, which uses an orthogonal lattice, does not
lead to isotropic solutions.

The idea of using hexagonal lattice gas models to predict features of fluid flow seems to be less than
two years old, and whether the general approach of simulating a lattice gas can ever be competitive with
more familiar numerical solution of the Navier-Stokes equation is certainly a premature question. Exten-
sions to three dimensional gases are just now being formulated [1], and quantitative experimental
verification of the two-dimensional results is fragmentary. The Reynolds Numbers achievable depend on
the size of the lattices used, and very large Reynolds Numbers will require huge lattices, and correspond-
ingly huge computation rates. For a discussion of the scaling of the lattice computations with Reynold’s
Number, see [6].

But what is clear is that the ultimate practicality of the approach will depend on the technology of
special-purpose hardware implementations for the models involved. Furthermore, the uniformity, locality
and simplicity of the model mean that this is an ideal testbed for dedicated hardware that is based on cus-
tom chips. We will therefore use the lattice gas problem as a running example in what follows. We espe-
cially want to study the interaction between the design of custom VLSI chips and the design of the overall
system architecture for this class of problems.

We will present and compare two competing architectures for lattice gas cellular automata (LGCA)
computations that are each based on VLSI custom processors. The analysis will focus on the permissible
design space given the usual chip constraints of area and pin-out and on the achievable performance within
the design space. Following this, we will present some theoretical upper bounds for the computation rate
over a lattice based on a graph-pebbling argument.

3. Serial Pipelined Architectures for Lattice Processing

We are primarily interested in special-purpose, VLSI-based processor architectures that have more
than one PE (processing element) per custom chip. It is important to recognize that if the PE’s are not kept
busy, then it might be more effective (in terms of overall throughput) to have fewer PE’s per chip but to
use them more efficiently. Although there are many architectures that have the property of using PE’s
efficiently, we will only describe two, both based on the idea of serial pipelining. See Figure 1. This
approach has the benefit that the bandwidth to the processor system is small even though the number of
active PE’s is large. This serial technique has been used for image processing where the size of the two-
dimensional grid is small and fixed [5,8, 11], and has also been used to design a high performance custom
processor for a one-dimensional cellular automaton [10].

Figure 1: One-Dimensional Pipeline

Consider what is required to pipeline a computation. We must guarantee that the appropriate site
values of the correct ages are presented to the computating elements. In the case of the LGCA, we can
express this data dependency as:

v(a,t+1) = f(N(a).t)

where v(a,t) is the value at lattice site a at time £, N (@) is the neighborhood of the lattice site a, and f'is the
function that determines the new value of g based on its neighborhood. The LGCA requires all the points
in the neighborhood of a to be the same age in order to compute the new value, v(a,t+1). The LGCA has a
neighborhood that looks like:

OOC)@O@OOO
OC)@@@@@OO
ONOCHONONC

Figure 2: Hexagonal Neighborhood
The circled site is a; the sites with Xs constitute its neighborhood.

One-dimensional pipelining also requires a linear ordering of the sites in the array. That is, we wish
to send the values associated with the sites one at a time into the one dimensional pipeline and receive the
sequence of sites in the same order possibly some generations later. Therefore, we would like sites that are
close together in the lattice to be close together in the stream. In this way, the serial PE requires a small
local memory because neighborhoods (sites that are close together in the array) will also be close together
in the stream. Unfortunately, the Lattice Gas Automaton can require a large amount of local memory per
PE because there is no sub-linear embedding of an array into a list [7].

The natural row-major embedding of the array into a list preserves 2-neighb0rhoods* with diameter

A
Sites that are two edge traversals apart in the lattice

il

2n—2. This means that a full neighborhood of a site from an n X n lattice is distributed in the list so that
some elements of the neighborhood are at least 2n—2 positions apart. This embedding is undesirable for
two reasons. The amount of local memory required by a PE is a function of the problem instance, forcing
us to decide in advance the size of one dimension of the lattice (one can actually process a prism array,
finite in all but one dimension) because the chip will only work for a single problem size due to its fixed
span. The second deficiency is due to the size of the span. If n=1000, then each PE would require about
2000 sites worth of memory. This puts a severe restriction on the number of PE’s that can be placed on a
chip.

Unfortunately, the 2n—2 embedding is optimal. Rosenberg showed this bound holds for prism array
realizations but it has been unknown whether it is possible do better for finite array realizations.
Rosenberg’s best lower bound for the finite array case has never been achieved and he suspected that the
row-major scheme was optimal. Sternberg [12] also questioned whether or not the storage requirement for
a serial pipelined machine could be reduced. Supowit and Young [13] showed that the row-major embed-
ding is optimal and therefore a serial pipeline must use at least 2n —2 storage.

Theorem 1: Place the numbers 1, ...,n%2ina square array a(i,j), and define the span of the array to be
maX{ |a@+1,))-a@.)| . |aG.j+1)-a(.j)l }

Then span 2n.

Proof: Put the numbers in the array one at a time in order, starting with 1. When, for the first time, there is
either a number in every row or a number in every column, stop. Without loss of generality, assume this
happens with a number in every row.

We claim that there cannot be a full row. Suppose the contrary. The last number entered was placed
in an empty row, so there must have been a full row before we stopped. This would mean there was a
number in every column before there was a number in every row.

Since there is no full row, but a number in every row, there is at least one vacant place in every row
that is adjacent to an occupied spot. Choose one such vacant place in each row, and call them set F (with
| F| =n). Now if we stopped after placing the number ¢, the places in F will get filled with numbers greater
than ¢. The largest number that will be put in a location in F is > t+n, and will be adjacent to a number
<t. QED

The critical system parameters for the one dimensional pipeline architecture, system area and total
system throughput, can be varied over a range of values. The actual selection of the operating point on the
throughput-area curve depends on several factors, for example, the problem instance size and total system
cost.

The appealing aspects of the serial architecture are the simplicity of its design, its small area in com-
parison to other architectures, and the small input/output bandwidth requirement. The computation
proceeds on a wavefront through time and space, each succeeding PE using the data from the previous PE
without the need for further external data.

4. Wide Serial Architecture (WSA)

Throughput in a serial architecture can be improved by adding concurrency at each level of the pipe-
line. One way to accomplish this is to have each pipeline stage compute the new value of more than one
site each clock period. For example, if the computation at PE j is at the point where site a, circled, is to be
updated, then PE j contains the data indicated by strike-out in the following:

OO0 0O B D OO0
O O 0O 666—6066-
o0 -0 O-66-6-669
6666 0000 0O0
O 0O 0O0O0O00OO0OO0O0
OO0 0O0O0O0OO0OO0oO0

We could allow a second PE j” to compute site a+1 at the same time if we store just one more data point.

OO0 000000 D
O 0 0 6660669
P o N o S\ W N . W . WY . WY . W
T e S T SR G\ R S R e o R (e |
G000 0 0O 0 0 O
O 000000 0 0
@ DO 0 0 000 Q0 0

The most attractive feature of this scheme is that performance is increased, but at a cost of only the
incremental amount of memory needed to store the extra sites. The on-chip memory per PE is also
improved dramatically; it decreases linearly with the number of PE’s per chip. However, there is a price to
pay: two new site values are required every clock period so that two site updates can be performed. The
extra PE’s require added bandwidth to and from the chip and this implies that the main memory system
must provide that bandwidth as pins or wires.

As an example, the following figure shows how two PE’s on the same chip can cooperate on a com-
putation. Each square of the shift register holds the value of one site in the lattice. Every clock period, two
new site values are input to the chip, two sites updated and their values output to the next chip in the pipe-
line.

PE PE

Figure 3: Wide Serial Architecture

5. Sternberg Partitioned Architecture (SPA)

In [12] Sternberg proposes that a large array computation can be divided among several serial pro-
cessors, each of which operates as described earlier. The array is divided into adjacent, non-overlapping
columnar slices and a fully serial processor is assigned to each slice. See Figure 4.

The processors are not exactly the same as those described above; they are augmented to provide a
bidirectional synchronous communication channel between adjacent partitions so that sites whose neigh-
borhoods do not lie entirely in the storage of a single PE can be computed correctly and in step with other

Site Lattice

W sites

L sjtes

-

'

]

'

I

[

1

1

1

1

1

[

1

i

1

Il

1

1

1

1

1

-

1

1

Il

-
—
-
pett————

Pipeline

5
&
P et SE TR T R EE

T
=
u..----.t.......-..-...:.

Voo

Chip Boundary

g Y

Figure 4: Sternberg Partitioned Architecture

site updates. See [12] for details.

Dividing the work in this way accomplishes three things. First, it decreases the amount of storage
that each PE needs in order to delay site values for correct operation of the pipeline. This comes about
because each PE needs to delay only two lines of its slice, not of the whole line width. Second, it increases
the ratio of processing elements to the total number of sites, permitting an increase in the maximum
throughput by a multiplicative constant equal to the number of slices. Third, it provides a degree of modu-
larity and extensibility. It is possible to join two smaller machines along an edge to form a machine that
handles a larger problem.

In the case of a VLSI implementation, decreasing the size of the local storage is extremely important
because most of the silicon area in the implementation of a serial processor is shift register. Since each PE
in the SPA architecture requires fewer shift register storage cells, it is possible to place several PE’s on a
chip, whereas if each serial PE were required to store two lines of the whole lattice, then only one or two
PE’s could be placed on a VLSI chip with current technology. The only way around this limitation is to
use another technology to implement the required storage, such as off-chip commercial memories, in which
case we quickly encounter pin limitations.

It is important to recognize that the fofal amount of storage required under this organization is two
lines of the whole lattice per pipeline stage. Thus the total storage requirement under this implementation
is not reduced below that of the fully serial approach presented earlier. We should also not forget that each
column of serial processors requires its own data path to and from main memory. This data path is a rela-
tively expensive commodity. In fact, as we shall see in the upcoming analysis, the data path is the most
expensive commodity in a VLSI implementation of this architecture.

The analysis will demonstrate an underlying principle of VLSI implementations of architectures for
multi-dimensional spatial updates, namely that I/O pins are the critical resource of a VLSI chip.

6. Analysis and Comparison of WSA and SPA

In this section we analyze and compare the Sternberg partitioned architecture (SPA) with the wide-
serial architecture (WSA) that we proposed in section 4. The analysis derives the optimum throughput and
area of processing systems composed of VLSI chips for the two-dimensional FHP lattice gas problem. We
define the design parameters for each system and derive the design curves and optimum values of those
parameters. For the analysis, we assume that a memory system capable of providing full bandwidth to the
processor system is available. Finally, we compare the systems on the basis of maximum throughput, total
system area, and throughput-to-area ratio. We also discuss the relative advantages and disadvantages of
both architectures with an emphasis on system complexity and ease of implementation.

6.1. Wide-Serial Architecture (WSA)

The wide-serial architecture (WSA) has system parameters: (assumes 1 pipeline stage per chip, P
processing elements wide)

N =k chips (System Area)
sites
R=FPk —— hrough
k prer (System Throughput)
and chip constraints
2D-P <I1 (Chip Pins)
BQRL+7P+3) +YP <o (Chip Area)

where

N is the total number of chips constituing the processor,

P is the number of PE’s per VLSI chip,

k is the total depth in PE’s of the processor pipeline (path length),

F is the major cycle time of the chip,

D is the number of bits required to represent the state of a lattice site,
L is the number of sites along an edge of the square lattice,

I1 is the total number of pins usable for input/output,

B is the area of a shift register that holds a site value, in A2,

vis the area of a PE, in A2,

o. s the total usable chip area, in A2,

For convenience, we also define:

B = % =normalized site storage area

I'= % = normalized processor area

Less formally, this says that the number of chips that we need for the processor equals the total pipe-
line depth required, k. The processing rate that this system achieves is equal to the depth of the pipeline,
multiplied by the number of processors at each depth, multiplied by the rate at which a processor computes
new sites. We are assuming that each VLSI chip will contain only a single wide parallel pipeline stage.
That is, the chip is not internally pipelined with wide-serial processors.

‘We wish to maximize R subject to having a fixed number of chips, N = N, and subject to constraints

on the pin count and area of the VLSI custom chip. Notice that the problem is equivalent to maximizing P
subject to the chip constraints because R = F-P-k = F-P-N, where F and N are fixed (V is fixed at N).
The constraints are described in the L—P plane by the following two inequalities:
I1

il
P“ZD

e : 2
This is a very important assumption.

", 1-3B-2BL
T TR

If we consider an example where D =8, IT=72, B = 576x107%, and I" = 19.4x10™® (figures derived from
our actual layouts) we get the following graph:

40 —

30—

P
(PEs/Chip) 20—

10 4
=] N
| | i
0 500 1000
L
(Sites)

The chip constraints require that the operating point determined by P and L lie below both curves. The
intersection of the two curves is P =4 and L = 785. Beyond that point, we need to decrease the number of
processors on a chip to make room for more memory — an undesirable situation because throughput then
drops off linearly. Furthermore, we want L to be as big as possible, so the corner is the logical choice of
operating point.

We are also interested in the ultimate maximum performance that the architecture can deliver using
any number of chips. It is easy to see that the maximum throughput for a fixed clock frequency, F, comes
when the pipeline depth, £, is at a maximum. A maximum value, k.., = L, arises because at that point the
pipeline contains all the values of the sites in the lattice and there is no new data to introduce into the pro-
cessor pipeline. The maximum values for processor system area and processor system throughput are
therefore:

Noax =L chips
R = I .. sites
)) sec

It is also interesting to note that there is an upper bound on L even if we were to accept arbitrarily
slow computation. At a certain point all the chip area would be used for memory, leaving no room for PE’s.

The major limitation of this architecture is that the largest problem instance is fixed by the chip tech-
nology, but it has the redeeming features of simplicity, ease of implementation, and small main memory
bandwidth.

6.2. Sternberg Partitioned Architecture (SPA) ;
This processor computes updates for a lattice L sites on a side by partitioning the lattice into non-
overlapping slices that are each W sites wide (there are % such slices). Each of the VLSI chips that com-

pose the processor computes P, slices and the computation of each slice is pipelined on the chip to a depth
P,. See Figure 4. It is then easy to see that the system has area and throughput:

L
N= %Pik chips (System Area)

e

L. sites

R =F+%:
W sec

(System Throughput)

To derive the constraints on the VLSI chip, notice that the communication path between chips in the
direction of the data pipeline requires 2DP,, pins, and that the *‘slice to slice’’ path requires 2EP;,, where E
is the number of bits required to complete the information contained in a single site’s neighborhood, when
that neighborhood is split across a slice boundary. However, the chip must use no more than o. area, of
which processors each require 7y, and memory to hold a site value requires B. Thus the whole chip is
governed by the constraints

2DP,, + 2EP, <11 (Chip Pins)
(QW+9B+v)P,Pr < (Chip Area)
‘We again wish to maximize throughput with respect to a fixed number of chips, N =N, while at the

same time satisfying the VLSI chip constraints of area and bandwidth. This again turns out to be
equivalent to maximizing the total number of processors on the chip because we can easily verify by direct

substitution that R = F-k-—l‘% =P, P, F-N,. Since F and N are fixed, it suffices to maximize the product
PP, = P subject to the constraints above.
To evaluate the design space of SPA, it is helpful to view it in the W-P plane. We do this via a
change of variables:
P=EP; .
Rewriting the chip inequalities yields:
2DP,, + 2E PL <II

(@W+9)B +T)P <1

where P,,, P, and W are variables. This is the logical choice of variables for this architecture because they
are the ones that are constrained by the chip technology and govern the optimal design of the chip. Once
we know good values for them, a machine which can compute for an arbitrary lattice width L can be built
by increasing the number of slices of width W.

When these curves are projected onto the W— P plane using the values for D, IT, B from the previous
example; and setting E to 3 (three bits must be passed to complete a neighborhood) we have:

40

30

P
(PEs/Chip) 20

I l

0 500 1000
14
(Sites/Slice)

The constant curve is a projection of the first constraint where P,, is given the value which permits P to

achieve its maximum value. For this example, this occurs at P,, = —3— As before, we need to operate below

=

both curves, and the comer at P = 13.5 and W =43 yields the best choice. Beyond this point, throughput
drops off quite rapidly as the silicon real estate is used by memory.

6.3. Discussion

The analysis above seems to indicate that with P =13.5, the optimal SPA configuration is about
three times faster per chip than the optimal WSA configuration. The higher throughput per chip of SPA is
offset by the cost of increased main memory bandwidth and system complexity. The memory bandwidth
required for the SPA system grows as L/W, which is the number of processors computing slices, whereas
the WSA system has a memory bandwidth requirement that grows as P.

System timing is an important consideration. The WSA architecture has connectivity only in one
dimension whereas the SPA system requires communication in both the pipeline direction and the synchro-
nous side-to-side data paths. This added complexity favors the WSA system when it comes to considering
an implementation. There is also the matter of the data access pattern in the memory. The WSA machine
accesses the data in a strict raster scan pattern which is much simpler than the row-staggered pattern that
the SPA scheme requires for its operation.

The SPA architecture has one major advantage over the WSA scheme. Smaller instances of an SPA
machine can be joined together to form a machine that computes a larger lattice. This is not true for the
WSA case, where computation is limited to lattice sizes which do not exceed L as given by the chip area
constraint, because all the required data must fit on the chip. This requirement is relaxed in the SPA
scheme because data can be moved between adjacent chips as W is adjusted to the chip constraints and an
arbitrary lattice width L can be supported by composing a suitable number of slices.

6.4. Summary

We have analyzed the critical parameters of two system architectures for high performance computa-
tion on a cellular automaton lattice. We see that the WSA architecture offers good throughput at a modest
system area and complexity, while the SPA architecture offers higher performance, but at the price of
increased complexity and memory bandwidth.

The preceding analysis suggests that the ultimate limit to the performance of these architectures, and
any alternatives, will stem from chip pin-bandwidth and storage requirements, and not from processing
requirements. For example, a chip in 3 p CMOS is now being fabricated for the Wide Serial Architecture
in which about 4% of the area is used for processing. Any more processing on the chip would simply go
unused because of storage and bandwidth constraints. We can expect this fraction to shrink as the lattice
gets wider, and as we increase the dimensionality of the problems. This fact has recently become clear in
the literature on systolic arrays, and in [4] Hong and Kung present a model and a bounding technique for
quantifying this notion. In the next section we will apply their results to the class of lattice computations.

7. Pebbling Bounds

WSA and SPA are only two of many possible computation schemes for computing the evolution of a
lattice gas cellular automaton (LGCA). Once a scheme has been selected from among the possibilities (for
example, single stream pipeline, wide pipeline, column parallel) the processors and local memory must be
mapped to chips while maintaining pin, area, processing rate, and I/O bandwidth constraints. These con-
straints can be thought of as divided into hierarchical classes by scale: main memory bandwidth, total pro-
cessor memory, and overall computation rate at large scale, processing element area and speed at small
scale, and inter-chip communication and pin constraints somewhere in between. The question arises as to
which scheme makes the best use of the resources given the multi-scale constraints. To answer this par-
tially, we would like to answer the general question, ‘‘what is the best that can be done, considering only
the large scale constraints.”” By “‘best’’ we mean ‘‘fastest overall computation rate.”” We want to ignore
the particular method of progressing through the computation graph for a given LGCA, and concentrate on
the limits implied solely by the large scale constraints. We will use the red-blue pebble game described by
Hong and Kung [4] to model the computation and I/O steps. From this we will derive bounds describing
the trade-off among the minimum main memory bandwidth, the maximum overall computation rate, and
the local processor memory.

]

The red-blue pebble game is played on directed acyclic graphs with bounded indegree according the
following rules:

i) a pebble may be removed from a vertex at any time.

ii) ared pebble may be placed on any vertex that has a blue pebble.

iii) ablue pebble may be placed on any vertex that has a red pebble.

iv) if all immediate predecessors of a vertex v are red pebbled, v may be red pebbled.

The ““inputs’” are those vertices which have no predecessors, and the “‘outputs’’ are those which
have no successors. A vertex that is blue-pebbled represents the associated value’s presence in main
memory. A red-pebbled vertex represents presence in processor (chip) memory. Rules (ii) and (iii)
represent 1/O, and rule (iv) represents the computation of a new value. The goal of the game is to blue-
pebble the outputs given a starting configuration in which the inputs are blue-pebbled and the rest of the
vertices are free of pebbles.

The computation graph for an LGCA is derived in the usual manner for a data dependency graph.
An LGCA, G=(G, v), is defined by a lattice graph G =(V, E) contained in some d-dimensional finite
volume, a value v(x, t) associated with each node x in the lattice, and a function giving
v(x, t+1) =f (N (x), t) where N (x) is the ‘‘neighborhood’’ of x in G, that is,

N(x) ={z[{x, z} is an edge inG} U (x}

The values of nodes at time ¢+1 depend on the values of its neighboring nodes at time 7. For an LGCA that
models real fluids, the lattice G must be isotropic with respect to conservation of momentum and energy.
This means G must be regular. We will make use of this regularity in the proof for the bound on the com-
putation rate although we will not require the satisfaction of the isotropy condition. We form the computa-
tion graph of the LGCA by identifying the vertices in each layer of the computation graph with the vertices
in the lattice G. Each layer of the computation graph consists of a copy of G’s vertex set with arcs to the
next layer expressing the data dependency between the values associated with the vertices of the lattice at
time ¢ and those at time ¢ + 1. Thatis, if V= {1, 2, 3, ..., L} is the set of vertices in G, then the computa-
tion graph for G is C=(X, A) where

X={(x,)| xeV, and OSIST}

and there is an arc from (, t—1) to (v, ¢) in C if and only if « is in N(v). C is a layered graph of T+1
layers, each layer representing the LGCA at evolution time ¢t =0, 1, 2, ..., T. (See figures 5 and 6.) We are
usually interested in seeing an image of the LGCA at periodic time steps in its evolution, say every k time
steps, and we let T' go to infinity. However, it is easy to see from the proofs that follow that forcing T =k
will not alter the results.

We will apply the red-blue pebble game to the computation graph C. Hong and Kung have
developed some techniques which give lower bounds on I/O, that is, the number of rule (ii) and (iii) moves,
which we will use to establish a lower bound on I/O for LGCA’s. The game as described by them and
stated above is a serial game, while we are interested in modeling parallelism. Savage and Vitter [9] have
extended the definition of the red-blue pebble game to include parallel moves of up to A pebbles at a time,
and size B blocks of I/O in parallel. However, as will be seen below, these extensions do not effect the
results, and we will use the red-blue game as defined above.

Let us introduce some terms we will need, and review the results of Hong and Kung. For proofs of
the following, see [4]. A computation of an LGCA is said to be a complete computation if it begins with
only the input values v (x, 0) known and at the end of the computation the values v (x, T) have been com-
puted for all x in the lattice G of the LGCA. Thus, a pebbling P of the computation graph represents a
complete computation of the LGCA. Given any complete computation of LGCA G (a pebbling P of the
associated computation graph C ;) we assume the following, where memory and I/O are measured in units
of storage required to store a single site value v (x, t) of the LGCA.

s

§ = the number of red pebbles, i.e., the amount of processor memory.
(We assume an inexhaustible supply of blue pebbles.)
¢ = the number of I/O moves required by P.
Q = the minimum number of I/O moves required to pebble ¢, over all pebblings using § or fewer red pebbles.

O—EO—ree

Figure 5: a one-dimensional lattice of a cellular automaton G = (G,v).
Vertices 1 and r are boundary vertices of G.
The neighborhood of vertex 2 is N (2) = (1, 2, 3].

Figure 6: A Computation Graph
Cg(T) where 0< ¢ <T.
The " row corresponds to G(t).

« 13-

Definition: P’ is an §-1/O-division of P, if

P'={P,-| 15;‘5};}

where P; is a consecutive subsequence of P such that P; contains exactly ¢; I/0 moves, and
P=PoP,0---0P, where
g;=§ foralliexceptthat 0 <g,<S§.

We say the size of P’ is h.

. Clearly, a lower bound on the I/O required by a complete computation of G is determined by
h=min{h} over all pebblings of C ; using § or fewer red pebbles. That is, @ > §-(h — 1), Hong and Kung
introduced the concept of a 2§ —partition to provide a means of finding a lower bound on A.

Definition: a K —partition V is a partition of the vertices of a directed acyclic graph G=(V, A) such that

i) for every V; in 1/ there is a dominator set D; c V, and a minimum set M; c V:, both of size at most K
such that every path from the inputs to any element of V; contains an element of D;, and every v in V;
which has no children in V; is in M;.

ii) there are no cyclic dependencies among the V;. (V; depends on V; if there is an arc from an element
of V; to some element of V;.)

We say g = | V| is the size of the partition.

For every §-I/0-division of a pebbling P there is a 2S-partition determined in the following way: In P,
consider every vertex that has never had a red pebble placed on it by any moves in P;, i<k, and is red-
pebbled during P,. This set of vertices is V. Property (ii) is clearly satisfied by the set all such V,’s, V.
The dominator, Dy, is then the set of all vertices which had red pebbles on them at the end of P,_,, together
with those vertices with blue pebbles on them at the end of P,_; which get red pebbles during P,. The size
of D, is at most 2§ (there are S red pebbles and at most § I/O moves). The minimum set, M;, consists of
those vertices which were the “‘last’’ to be red pebbled during P, (i.e., have no children which were red
pebbled during P;). At the end of P; any such vertex is either

i) still red pebbled,

or

ii) now blue pebbled.
therefore M, can be at most of size 28S.

The above argument gives us the following theorem and lemma.

Theorem 1 [4]: Let G be any directed acyclic graph, and P be any red-blue pebbling of G of size & using at
most § red pebbles. Then there is a 25-partition of G of size g = h.

In particular, there is a partition such that g = h. From the comment made above concerning the minimum
1/O requirements, and letting g = min{g} over all 2S-partitions of G, we have:

Lemma 1 [4]: For any directed acyclic graph
Q >5-1)

The types of graphs represented by LGCA computation graphs have the nice feature that they are
regular and ‘‘lined.”” Lines are simple paths from inputs to outputs. A vertex is said to lie on a line if the
line contains the vertex. A line is covered by a set of vertices if the set contains a vertex that lies on the
line. A lined graph is a graph in which a set of vertex disjoint lines can be chosen so that every input is on
some line in the set. A complete set of lines is such a set of lines. For an LGCA computation graph a path
<(x 0), (x, 1), (x, 2), ..., (x, T) > is a line /,, for any node x in the lattice G. Suppose we have chosen a
complete set of lines £ for some lined graph G. If we can bound from above the maximum number of

|

. e

vertices that lie on lines in £ and are contained in a single subset of any 2S-partition of G, and we can
count the total number of vertices in G that are on lines, we will be able to lower bound g. In applying this
reasoning to LGCA computation graphs we will choose the complete set of lines

L={1,| xX€ V}.

In the case of these graphs every vertex lies on some line in L.

Definition: The line—time (k) for a lined graph G is the maximum number of vertices that lic on a single
line in any subset of any k-partition of G. That is, if we let X be the set of all k-partitions of G and L be a
complete set of lines in G, then

0= oy gy { 10 |

By observing that a dominator set of size 28 or less can dominate at most 2§ different lines, it is easy to
conclude that the maximum number of vertices in a single subset of a 2S-partition that lie on lines is
bounded from above by 2§ - 7(25), that is,

IV; 1 <28 -1(25) in any 2S-partition of G,

where V; is the smallest subset of V; containing every vertex in V; that lies on some line.

Consequently, we have:

IX*1
28-1(28)
This leads to Hong and Kung’s second result:

Theorem 2 [4]:
Al 1XT
Q= Q[1(23)]

For LGCA computations we can express this bound in terms of main memory bandwidth B, and pro-
cessing rate R. Let the total time to pebble a graph be p, where p is not necessarily the number of sequen-
tial pebbling steps but may be counted by grouping the pebbling moves of P into p groups, each group

taken to be a single parallel move. We then define R = I‘;{% (for these graphs X | = IX™1). Certainly
Bp =, and the preceeding bound becomes
R
7(25)

R =0(B1(25)) .

Lemma 2 [4]: g = for a computation graph C = (X, A).

B=Q

or equivalently

Using this result we will show that for d-dimensional LGCA computations
i
R=0(BS*?).

Specifically, we will show that

£
7(28) < 2(d125) ¢
for their computation graphs.

e 1

In proving this we will make the following simplifying assumptions, which are in any event worst-case.

1) The graph G of a d-dimensional LGCA is an orthogonal grid defined on the integer lattice points
contained in the d-cell in R* consisting of the points {x| 0<x; <r (i=1,2, .., d)) where r is a
non-negative integer. There are edges between a vertex and its nearest neighbors. We will refer to
G as a lattice. Although G as defined above is inadequate for isotropic lattice gases [2], we are
assuming the minimum connectivity for G in the sense that any lattice that satisfies isotropy requires
at least the same degree of connectivity.

2) The boundaries of LGCA’s can be handled in a variety of ways. They can be null (zero valued),
independently random, dependently random or deterministic with truncated neighborhoods, or
toroidally connected with full connectivity. In the first two cases above, the boundaries do not
appear in Cat all. We will assume boundary vertices appear in C with dependencies defined by the
lattice. The boundaries can be thought of as deterministic or randomized, but dependent on their
neighbors as defined in (1).

3) If the size of the vertex set of the lattice G is r¢, then we assume that the processor memory size § is
less than 7%, In fact, if § =r¢ only 2S of main memory I/O is required to pebble C, and the bounds
mentioned are irrelevant.

4) In the following we will use the notation C,; when refering to a computation graph C, for a d-
dimensional LGCA G, with lattice G.

Let us derive some properties of the computation graph Cg.

Definition: A (u,v)—path is a path from vertex u to vertex v. The length of path p, I(p), is the number of
edges in p. the distance d (u,v) between two vetices u and v is the minimum of / (p) over all (u,v)-paths p.

Lemma 3: In C, every (u,v)-path p has length d (u,v).

Proof: Since every arc in C, goes from some layer ¢ to a layer 1+1, paths of different lengths starting from
the same vertex end in different layers.

Lemma 4: In (C, every vertex w which has a distance from some specified vertex u of
d(uw)= —;—I_d (u,v)] lies on some (u,v)-path, provided u and v both lie on the same line in £.

Proof: Let d (u,v)= 2k + & where k>0 and 8§ is either zero or one. Let u = (x, £), and v = (x, t+2k+d). If
k=0 the result is trivial, so suppose that k>0. There is some (u,w)-path p; = (u=ug, u;, ..., p=w). Let
u; = (x;, t+i). Since there is an arc (i;, u;,1), x; is in the neighborhood N (x;,;), and vice versa. Conse-
quently, there is a path p, = (W=v, Vi_y, ..., Vo=(x, t+2k)), where v; = (x; t+k + (k—i)). Thus, the path
p=piep, is a path from u to (x, t+2k) on the (u,v)-path along [,. Concatenating the path
((x, t42k), (x, t+2k+1), (x, t+2k+2), ..., (x, t+2k+3)) onto the end of p gives us a (u,v)-path containing w.

Lemma 5: In C, every line I, covered by a path of length at most j from some specified vertex u, is
covered by a path of length exactly j such that the last vertex on the path lies on ;.

Proof: Let p be a path from u of length j or less covering line [,. Let z be a vertex on path p such that z lies
on [,. Let p, be that portion of p from u to z. By assumption /(p;) =k < j. Concatenating onto p, the path
starting from z and continuing along [, for j — k steps gives us the required path.

Lemma 6: In C, the number of lines covered by all paths of length j or less from a specified vertex u is
equal to the number of vertices reachable from u in exactly j steps.

Proof: By the definition of £ every vertex in a single layer lies on a unique line. By the argument of
Lemma 3 the end point of every path of length j lies in the same layer. So, for every vertex reachable in
exactly j steps there is a line covered by a path of length j. The lemma then follows from the previous
lemma.

116:

Lemma 7: If in C; vertex v = (z, t+j) is reachable from vertex u = (x, ¢) in j steps, then in G vertex z is
reachable from x in at most j steps. The converse holds if t < T'—j.
Proof: Consider a (u,v)-path p = (u=uq, u,, u, ..., u=v) in Cq4, where u; = (x; t+i). Since x;eN(x;41)
either there is an edge {x x4} in G, or x;=x;,. Deleting the self loops from the path
q = (x=xo, X1, X, ..., X;=z) gives us an (x, z)-path in G of length at most ;.

Conversely, consider a path g = (xo=x, x;, X3 ..., x;=z) in G where 0 <i < j. By hypothesis t < T—j,
and consequently the path
p=((x=xg,), (x1, t+1), ..., (x;=2, t+i), (z, t+i+1), ..., (z, t+j)) is a (u,v)-pathin C,.

Definition: The line-spread from a vertex u in graph G is
. o0 , if no vertex z exists such that d(u, z)=j
to(u, j) = the number of lines covered by paths of length j or less , otherwise.

Definition: The line —spread of a graph G = (V, E) is
T5(j) = min{ tG(u, j) }
ueV

If the graph G is C; we write T,(j).

id
Lemma 8: 7,(j) > %

Proof: By Lemmas 5, 6, and 7 we have shown that the number of lines covered by paths from some vertex
u = (x, t) of length at most j in C is equal to the number of vertices reachable from x in at most j steps in
G, provided at least one path of length j exists in C4. By the definition of G, that is, an integer grid in the
non-negative orthant, the minimum number of vertices reachable in j or fewer steps in G occurs when the
origin is chosen as the specified vertex. The latter quantity is then given by
j ’ -d
Ta() = 2Ta4@) = [J}d] =2l > _[dx = J:I_'
i=0 3 b :
where ¢ is the region in R? defined by the set {x| x; +x3+ *** +x4<j, (x; 20)}, and & is the set of
integer lattice points in ¢.

‘We are now in a position to prove the main result:

1

Theorem: In C; T(25) <2(d!125)¢.
1 1

Proof: Suppose that ©(25) =2 (d125) ¢. Let j =(d!25)? . Then there exist vertices u and v in some subset
V; of some 2S-partition V of C, such that d (u,v) =2/, and u and v both lie on the same line in L. Since
the subsets of the partition ¥/ are not cyclically dependent, every vertex z on any (u,v)-path is in V;. By
Lemma 4 every vertex in the set Z = {z 1d (u,z) = j} is on a (u,v)-path, and therefore Z c V;. Then Z cov-
ers at least T,(j) lines. The dominator for V; must cover these lines. Since the lines in £ are disjoint

d
| D;| = T,(j), and employing Lemma 8 we have | D;| > -dL' =2§. This contradicts the assumption that V;

is an element of a 25-partition, and we are done.

8. Conclusions

We have described two architectures for lattice-update engines based on VLSI custom chips, and
derived their design curves and best operating points. The Wide Serial Architecture (WSA) has extremely
simple support logic and data flow, while Sternberg’s Partitioned Architecture (SPA) is more easily exten-
sible to lattices of arbitrary sizes and provides higher throughput per custom chip, albeit at the expense of
support logic and main memory bandwidth. Each has its preferred operating regime in different parts of
the throughput vs. lattice-size plane. A prototype lattice-gas engine, using the WSA architecture, and

17+

based on a custom 3 p CMOS chip, is now being constructed. It should provide 5 million site-
updates/sec/chip with a workstation host.

We have also presented a graph-pebbling argument that gives upper bounds for the computation rate
for lattice updates. The asymptotic upper bounds show clearly that memory bandwidth, and not processor
speed or size, is the factor that limits performance. One goal for further research is the tightening of these
pebbling-game arguments so that they give estimates of absolute, as well as asymptotic, performance.

This work supports the growing recognition that communication bottlenecks — at all scales of the
architectural hierarchy — are the critical limiting factors in the performance of highly pipelined, massively
parallel machines. In our conservative VLSI design, not nearly at the limits of present integration technol-
ogy, the processors themselves comprise only a small fraction of the total silicon area. As feature sizes
shrink and problems are tackled with larger lattices in higher dimensions, this effect will become even
more dramatic. This suggests that a search for more effective interconnection technologies, perhaps using
optics, should have high priority.

References

1. d’Humiéres, D., P. Lallemand, and U. Frisch, ‘‘Lattice Gas Models for 3D Hydrodynamics,”” Euro-
physics Letters, vol. 4, no. 2, 15 August 1986.

2. Frisch, U., B. Hasslacher, and Y. Pomeau, ‘‘A Lattice Gas Automaton For The Navier Stokes Equa-
tion,”” Preprint LA-UR-85-3503, Los Alamos National Laboratory, Los Alamos, New Mexico, 1985.

3. Hardy, J., Y. Pomeau, and O. de Pazzis, ‘‘Time evolution of a two-dimensional model system. I.
Invariant states and time correlation functions,”” J. Math. Phys., vol. 14, no. 12, pp. 1746-1759,
December 1973.

4. Hong, Jia-Wei and H. T. Kung, ‘*‘I/O Complexity: The Red-Blue Pebble Game,”” Proceedings of
ACM Sym. Theory of Computing, pp. 326-333, 1981.

5. Kittler, Josef and Michael J. B. Duff, eds., Image Processing System Architectures, Research Studies
Press, Ltd., John Wiley and Sons, Inc., 1985.

6. Orszag, Steven A. and Victor Yakhot, ‘‘Reynolds Number Scaling of Cellular Automaton Hydro-
dynamics,”’ Physical Review Letters, vol. 56, no. 16, pp. 1691-1693, April 21, 1986.

7. Rosenberg, Arnold L., “‘Preserving Proximity in Arrays,”” SIAM J. Computing, vol. 4, no. 4, pp.
443-460, December 1975.

8. Ruetz, Peter A. and Robert W. Brodersen, ‘‘Real-Time Image Processing ICs,”” Technical Report,
Electronics Research Laboratory, University of California, Berkeley, September 1985.

9. Savage, John E. and Jeffrey Scott Vitter, ‘‘Parallelism in Space-Time Tradeoffs,”” in VLSI: Algo-

rithms and Architectures, ed. F. Luccio, pp. 49-58, Elsevier Science Publishers B.V. (North Hol-
land), 1985.

10. Steiglitz, K. and R. R. Morita, ‘A Multi-Processor Cellular Automaton Chip,’” Proc. 1985 IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, Tampa, Florida, March 1985.

11. Sternberg, Stanley R., ‘‘Computer Architectures Specialized for Mathematical Morphology,’” in
Algorithmically Specialized Parallel Computers, ed. Howard Jay Siegel, pp. 169-176, Academic
Press, 1985.

12. Sternberg, Stanley R., ‘‘Pipeline Architectures For Image Processing,”” in Multicomputers and
Image Processing, Algorithms and Programs, ed. Leonard Uhr, pp. 291-305, Academic Press, 1982.

13. Supowit, Kenneth and Neal Young, Personal Communication, 1986.

)

