SOLVING MINIMUM-COST FLOW PROBLEMS
BY
SUCCESSIVE APPROXIMATION

Andrew V. Goldberg
Robert E. Tarjan

CS-TR-081-87

February 1987

Solving Minimum-Cost Flow Problems

Successive Approximation

Andrew V. Goldberg®

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge MA 02139

Robert E. Tarjant
Department of Computer Science
Princeton University
Princeton, NJ 08544
and
AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

We introduce a framework for solving minimum-cost flow problems. Our approach measures the
quality of a solution by the amount that the complementary slackness conditions are violated. We
show how to extend techniques developed for the maximum flow problem to improve the quality

of a solution. This framework allows us to achieve O(min(n®, n**m

time.

1 Introduction

The minimum-cost flow problem is that of finding a feasible
flow of minimum cost in a network with capacity constraints
and edge costs. Extensive discussion of the problem and its
applications appear in the books of Ford and Fulkerson (8],
Lawler [22], Papadimitriou and Steiglitz [28], and Tarjan
[35].

All known polynomial-time algorithms for the problem
are based on the idea of scaling.!This idea was introduced
by Edmonds and Karp [7], who used it to design the first
polynomial-time algorithm for the problem. The Edmonds-
Karp algorithm scales capacities. The first algorithm that

*Supported by a Fannie and John Hertz Foundation Fellowship
and by the Advanced Research Projects Agency of the Depart-
ment of Defense under the contract NO0014-80-C-0622.

This paper constitutes a part of the author’s research work to-
wards his Ph.D. degree.

TPartially supported by the National Science Foundation un-
der grant DCR-8G05962.

1For applications of scaling to other network problems, see
[13].

22 nmlogn)log(nC)) running

scales costs is due to Réck [29].

Table 1 summarizes polynomial-time algorithms for the
minimum-cost flow problem. The running times of the al-
gorithms are given in terms of the number of vertices n, the
number of edges m, the maximum absolute value of capaci-
ties U, and the maximum absolute value of costs C. When U
(or C) appears in a bound, the capacities (or the costs) are
assumed to be integer. When stating the running times, we
assume the best time bounds known for the shortest path
and maximum flow subroutines used by some of these al-
gorithms: O(m + nlogn) for the shortest path subroutine
[10] and O(nm log(n®/m)) for the maximum flow subroutine
[20]. Algorithms 1, 2, 5, 6, and 8 use capacity scaling and
algorithms 3, 4, 7, and 9 use cost scaling. The algorithms 4,
5, 6, and 8 are strongly polynomial, i.e., their running time
does not depend on U or C.

Since the running times of the algorithms in Table 1 are
expressed in terms of different parameters, the algorithms
cannot be compared directly. The previous algorithms 1-8
can be divided into the three comparable groups and ranked
as follows. Algorithms 1 and 2 give the best capacity-
dependent bound, algorithms 3 and 7 give the best cost-
dependent bound, and algorithm 8 gives the best strongly
polynomial bound. For most applications, however, one can
assume that U = n®®) and € = n°") [13]. Under these as-
sumptions, the bound of O{m(logn)(m + nlogn)) achieved
by the capacity-scaling algorithms 1 and 2 is the best among
previous algorithms.

In this paper we present a general approach to the
minimum-cost flow problem. The approach combines
methods for solving the maximum flow problem with

| Date | Discoverer Running Time References
1 [1972 | Edmonds and Karp | O(m(logU)(m + nlogn)) [7]
2 | 1980 | Rock O(m(logU)(m + nlogn)) (29]
3 | 1980 | Rock O(n(log C)(nm log(n?/m))) (29]
4 | 1984 | Tardos o(m*) (34]
5 | 1984 | Orlin O(m?>(log n)(m + nlogn)) (27]
6 | 1985 | Fujishige O(m?(logn)(m + nlogn)) [11]
7 | 1985 | Bland and Jensen O(n{log C)(nm log(n®/m))) [5]
8 | 1986 | Galil and Tardos O(n*(logn)(m + nlogn)) (16]
9 | 1987 | Goldberg and Tarjan | O(min(nmlogn,n®**m?/? n®)log(nC)) [19]

Table 1: Polynomial-time algorithms for the minimum-cost flow problem. Algorithm 9 is presented in this paper.

successive approximation techniques. We use our ap-
proach to construct algorithms for the problem with upper
bounds of O(nm log(n) log(rC)), O(n*/*m?/® log(nC)), and
O(n®log(nC)), which significantly improves the best previ-
ous cost-dependent bound achieved by algorithms 3 and 7 in
the table, as well as the best bound under the assumptions
U =n°Y and ¢ = n®W) discussed above. The algorithm
gives the best bound on the complexity of the problem for
C = o(n") and C = o(U"/n). Our approach combines the
ideas of Rock used to develop algorithm 3, of Bland and
Jensen [5] used to develop algorithm 7, and of Bertsekas [3]
used to develop an exponential-time algorithm for the prob-
lem. Our techniques are more powerful, however, and lead
to more efficient algorithms.

The new algorithm starts by finding an approximate solu-
tion and then iteratively improves the current solution, each
time doubling the quality of approximation by halving the
error parameter €. The inner loop subroutine that improves
the approximation is based on generalizations of techniques
for solving the maximum flow problem; one version of the in-
ner loop is almost identical to the algorithm of Bertsekas [3].
When the error parameter is small enough, the current solu-
tion is optimal, and the algorithm terminates. To measure
the quality of a solution, we use the notion of e-optimality,
which is related to the classical technique of perturbing a
linear programming problem to avoid degeneracy (see, for
example, [18]). The notion of e-optimality is motivated by a
relaxation of the complementary slackness conditions [4,34].
The termination condition used in our algorithm is due to
Bertsekas [3].

The successive approximation approach can be viewed as
a generalization of the cost-scaling approaches of Réck [29]
and of Bland and Jensen [5]. However, our use of true costs
throughout the algorithm simplifies its analysis and imple-
mentation.

A more extensive discussion of the results presented in
this paper appears in [19].

2 Definitions and Notation

In this section we define the minimum-cost circulation
problem and introduce the notation and terminology used
throughout the paper. The minimum-cost circulation prob-
lem is a generalization of the maximum flow problem. Asa
special case of the linear programming problem, it is usually
defined in linear programming terms. Although we use sev-
eral theorems that have their roots in the theory of linear
programming, most arguments presented in this paper are
graph theoretic. Consequently, we formulate the problem
in graph-theoretic terms. Our formulation is equivalent to
other formulations of the minimum-cost flow and minimum-
cost circulation problems that can be found in the books
and papers cited in the introduction.

A circulation network is a directed graph G = (V, E) with
upper and lower capacity bounds and costs on edges. We
denote the size of ¥V by n and the size of E by m, and
we assume that m > n — 1. We call an unordered pair
{v, w} such that (v,w) € E or (w,v) € E an undirected edge
of G. For notational convenience, we extend the capacity
functions and the cost function to all pairs of vertices. Let
R denote the set of real numbers. The capacity bounds are
given by functions u: V x V — Rand [: V XV — R with
the following consistency and aniisymmetry constraints for
all (v,w) €V x V:

(v, w) < u(v, w), (1)
ulv,w) = —Il(w,v). (2)

To extend the capacity functions to all pairs of vertices,
we define

l(v,w) = ulv,w) =0 (3)

for all (v, w) such that (v,w) € E and (w,v) € E.

A pseudoflow’ is a function f:V x V — R satisfying the
following capacify and flow antisymmetry constraints for all
(vyw) EV x V:

2The concept of a pseudofiow is different from the preflow
concept of Karzanov [21] in that the flow conservation constraints
are completely dropped.

l{v,w) < fv,w) < vv, w), (4)
flv,w) = = f(w,v) (5)

A circulation is a pseudoflow that satisfies conservation con-
straints

Z flv,w) =0 (6)
weV
forallve V.

We assume that the costs of edges are given by a cost
function ¢ : V x V — R that satisfies the following cost
antisymmetry constraints for all (v,w) €V x V:

c(v,w) = —c(w, v). (N

We extend the cost function to pairs of vertices by defining
¢(v,w) = 0 for all (v, w) such that (v,w) ¢ E and (w,v) &
E. The cost of a circulation [is given by the following
expression:

DY

{v,w)EV XV

(v, w) f(v, w). (8)

(The factor of 1/2 appears because the sum counts the
cost of the flow between each pair of vertices twice.) The
minimum-cost circulation problem is to find a circulation of
minimum cost (an optimal circulation).

Remark: We refer to equations (2), (5), and (7) as the an-
tisymmetry constraints. One should think of a positive and
a negative direction for each undirected edge of G, with the
capacity and cost constraints given for the positive direction
and derived for the negative direction using the antisymme-
try constraints.

Another important concept that we shall use is that of
vertezr prices. Consider a vertex v and a real number z.
Suppose that we add z to prices of all edges going into v and
subtract z from prices of all edges going out of v. Because
of the conservation constraints at », the cost of f is not
changed by this transformation (the cost of each unit of flow
going into v increases by z, and the cost of each unit of flow
going out of v decreases by z). Therefore the transformed
problem is equivalent to the original one. A price function
p is a function from V to R; the price of a vertex v is p(v).
The reduced cost function ¢, is defined by ¢, (v, w) = ¢(v, w)—
p(v) + p(w). In the linear programming formulation of the
problem, prices are the dual variables.

Given a pseudoflow f, we define the residual capacity func-
tionr; : V xV — R by rf(v,0) = u(v,w) = f(v,w). The
residual graph Gy = (V, Ey) is the directed graph with ver-
tex set V containing all edges with positive residual capac-
ity: Ey = {(v,w)|rs(v,w) > 0}. The balance by(v) of a
vertex v is the difference between the incoming and outgo-
ing flows, ie. the function by : V x V — R defined by
by(v) = 3 oy f(w,v). I f is a circulation, then by(v) =0
for all v. Given a pseudoflow f, we say that a vertex v is

active if by(v) > 0. Note that), b(v) = 0 for any pseud-
oflow, so a pseudoflow is a circulation if and only if there
are no active vertices.

We also need the following standard definitions. An aug-
menting path (cycle)is a simple path (cycle) in Gy. The cost
of a path (cycle) is the sum of the costs of all edges on the
path (cycle).

3 Optimality and Approximate
Optimality

In this section we define the notion of an e-optimal pseud-
oflow and show that for € < 1/n, an e-optimal circulation is
optimal.

The following theorem of Ford and Fulkerson [8] provides
an optimality criterion for a circulation.

Theorem 3.1 A circulation f is of minimum cost if and
only if there ezists a price function p such that ¥(v,w) €
VxV,

cp(v,w) < 0= fv,w) = u(v, w). (9)

The optimality conditions (9) are called complementary
slackness conditions, and an edge (v, w) satisfying these con-
ditions is said to be tn kilter. We use the term kilter because
of the relationship between our algorithm and the out-of-
kilter method [12,25].

The following theorem [8] gives an optimality criterion
that does not involve prices.

Theorem 3.2 A circulation [is optimal if and only if the
residual graph Gy contains no cycles of negative cost.

To define e-optimality, we use the notion of e-relaxation of
the complementary slackness conditions [4,34]. Given e > 0,
we say that a pseudoflow f is e-optimal with respect to a
price function p if the following relaxations of the comple-
mentary slackness conditions hold: V(v,w) €V x V,

co(v,w) < —e = f(v,w) = u(v,w). (10)

A pseudoflow f is e-optimal if there exists a price function
p with respect to which the pseudoflow [is e-optimal. The
antisymmetry constraints (2), (5), and (7) imply that if a
circulation f is e-optimal, then ¢p(v,w) > € = f(v,w) =
(v, w).

The following simple fact is used extensively in our pre-
sentation.

Lemma 3.3 Suppose that pseudoflow f is e-optimal with re-
spect to a price function p. Then for any residual edge (v, w),
we have c,(v,w) > —e. (Le., the cost of a residual edge can-
not be too small.)

The following theorem of Bertsekas [3] shows that if the
costs are integers and ¢ is small enough, then an e-optimal
circulation is optimal.

Procedure Min-Cost(V, E, [, u,c);

€ « max(, w)ee |c(v, w);
fe + feasible circulation;
Vv, p(v) « 0

while e > 1/n do

€—€/2;

(fer pe) < Reﬁ“e(huP?f:e);
end;
return(f.);

end.

Figure 1: The minimum-cost flow algorithm.

Theorem 3.4 Assume that all edge costs are integers. Then
for any 0 < € < 1/n, an e-optimal circulation f is optimal.

Proof: Consider a cycle in G;. By Lemma 3.3, the e-
optimality of f implies that the cost of the cycle is at least
—ne, which is greater than —1. Since the costs are integers,
the cost of the cycle must be at least 0. The theorem then
follows from the optimality criterion given by Theorem 3.2.

4 High-Level Description of the
Algorithm

Theorem 3.4 suggests the algorithm Min-Cost summarized
in Figure 1. First, the algorithm finds a circulation (using a
maximum flow algorithm) and sets the prices of all vertices
to zero. The resulting circulation is C-optimal (recall that
C is the largest absolute value of an edge cost). Then, the
algorithm iteratively improves the approximation (using the
Refine subroutine), until the error becomes less than 1/n.
At this point, the current solution is optimal.

Remark: The algorithm need not use a maximum flow sub-
routine in the initialization stage. It can start with any
pseudoflow. If the problem is infeasible, we can discover
this fact during the first execution of Refine because the in-
crease in vertex prices will be greater than that allowed by
the analysis below. We use the maximum flow subroutine
only to be able to assume, without loss of generality, that the
input problem is feasible, so that we do not have to worry
about feasibility in our presentation.

Theorem 4.1 Let D(n, m) be the running time of the Refine
subroutine. Then the minimum-cost flow algorithm runs in
O(D(n,m)log(nC)) time and returns a minimum-cost flow.

Proof: Immediate from Theorem 3.4 and the above discus-
sion. 1

Procedure Refine(f,p,€);

{{ initialization)}
V(v,w) €V x V do begin
if ¢p(v,w) > 0 then f(v,w) « (v, w);
if ¢,(v,w) < 0 then f(v,w) « u(v,w);
end;
((loop))
while 3 a basic operation that applies
select a basic operation and apply it;
return(f, p);

end.

Figure 2: The generic Refine subroutine.

The inputs to the Refine subroutine are a circulation fa,
a price function pa¢, and an error parameter €, such that
foe is 2e-optimal with respect to pae. The outputs of the
subroutine are a circulation fe and a price function pe such
that f is e-optimal with respect to p.. The subroutine be-
gins by setting the flow through every out-of-kilter edge to
the upper or lower bound to bring the edge into kilter. The
resulting pseudoflow is e-optimal (in fact, O-optimal), but
the conservation constraints (6) may be violated. Then,
the pseudoflow is transformed into a circulation by applying
a sequence of operations that preserve e-optimality. This
transformation uses generalizations of maximum flow tech-
niques.

The cost scaling algorithms of Réock and of Bland and
Jensen use a maximum flow algorithm in the inner loop.
Since the Refine subroutine is a generalization of a maxi-
mum flow algorithm, our minimum-cost flow algorithm is
similar to the cost scaling algorithms. The cost-scaling al-
gorithms, however, halve the error in O(n) iterations of the
inner loop, whereas our algorithm halves the the error in a
single iteration.

5 Generic Reﬁ:he Subroutine

The generic Refine subroutine is a generalization of the
generic maximum-flow algorithm of Goldberg and Tarjan
[20]. An implementation of the generic subroutine using the
discharge operation as described in Section 7 is almost identi-
cal to the earlier minimum-cost flow algorithm of Bertsekas
[3], but we use the subroutine in a different way. In our
algorithm the subroutine is used repetitively to reduce the
approximation parameter € by a factor of two each time. In
the algorithm of Bertsekas, the value of € is set to 1/(n+1)
at initialization, so the algorithm terminates in one iteration
— but may take exponential time.

The generic Refine subroutine is described in Figure 2.
The subroutine forces all edges in kilter and then transforms

Push(v, w).

Applicability: v is active, ry(v,w) > 0, and cp(v,w) < 0.

Action: Send § = min(by(v), rs(v, w)) units of flow
from v to w.

Update-Price(v).
Applicability: v is active and

Yw €V rp(v,w) > 0= cp(v,w) > 0.
Replace p(v) by

ming, wyee, (P(w) + ¢(v, w) + €)-

Action:

Figure 3: Push and update-price operations.

the resulting pseudoflow into an e-optimal circulation. The
basic operations used to manipulate the pseudofiow and the
prices are push and update-price. These operations are de-
scribed in Figure 3. A push through an edge (v, w) increases
f(v,w) and by(w) by § = min(bs(v),rs(v,w)) and decreases
f(w,v) and by(v) by the same amount. For the purpose of
the analysis, we distinguish between saturating and nonsat-
urating pushes. A push is safurating if ry(v,w) = 0 after the
push and ronsaturaiing otherwise. An updafe-price opera-
tion sets the price of a vertex v to the highest value allowed
by the e-optimality constraints.

The following lemmas give important properties of the
push and update-price operations.

Lemma 5.1 A pushing operation preserves the e-optimality
of a pseudoflow.

Proof: Obvious. |}

Lemma 5.2 Suppose f is an e-optimal pseudoflow with re-
spect to a price funclion p and a price updafe operation is
applied to a vertez v. Then the price of v increases by at
least € and the pseudofiow f is e-optimal with respect to the
resulting price function p'.

Proof: First we prove that the price of » increases by af
least €. The price updating operation changes the price of
the vertex v from p(v) to p'(v) and does not affect prices of
other vertices. Since a price updating operation is applicable
to v, we have c(v,w) — p(v) + p(w) = 0 for all residual edges
(v,w). Therefore, we have c(v,w) + p(w) + ¢ > p(v) for
all edges (v,w) € Ej, so the new price p'(v) > p(v) + € by
definition of the price updating operation.

To prove the second claim of the lemma, consider an
undirected edge {v,w}. ;From the first part of the prove
we know that cp(v,w) < cp(v,w) and by antisymmetry
cpr(w,v) > cp(w,), so the constraint 10 for (w,v) remains
satisfied. For (v,w), either f(v,w) = u(v,w) and the con-
straint 10 does not apply, or (v,w) € E; and therefore
¢(v,w) — p'(v) + p'(w) = c(v,w) — p'(v) + p(w) > —€ by
the definition of the price update operation.

Lemma 5.3 If a pseudoflow f is e-optimal with respect to
a price funciion p and v is an active veriez, then either a
pushing or a price updating operation is applicable fo v.

Proof: Obvious. |

The generic version of Refine, described in Figure 2, repet-
itively performs an applicable basic operation on the current
pseudoflow f and price function p until no basic operation
applies. We shall prove that the generic version of Refine is
correct if it terminates, and then we shall prove termination.

Theorem 5.4 If the generic Refine subroutine terminates,

then the pseudoflow f output by the subroutine is an e-optimal
circulation.

Proof: The subroutine terminates when there are no ver-
tices with positive balance and therefore no vertices with
negative balance, so f is a circulation. The e-optimality of
f follows from Lemmas 5.1 and 5.2 and from the fact that
the pseudoflow computed during the initialization step of
Refine is e-optimal (in fact, O-optimal). |

6 Analysis of the Generic Sub-
routine

In this section we analyze the generic Refine subroutine. The
analysis is similar to the analysis of the generic maximum
flow algorithm. We start by bounding the amount of in-
crease in vertex prices during an execution of the generic
subroutine.

Lemma 6.1 Let f be a pseudoflow and let f' be a circu-
lation. Then for any vertez v with a positive balance bs(v),
there exists a vertez w with a negative balance by(w) and a se-
quence of vertices ¥y1,...,u%;—y such that (ﬂ,ul,.. .,u;_l,w)
is a simple path in Gy and (w,%i—1,...,%1,v) is a simple
path in Gfr.

Proof: Fix a vertex v with a positive balance. Let G4 =
(V, Ey) where By = {(i,) '(4,5) > f(3,7)} and let G_ =
(V, E-) where E— = {(4,7)|f'(1,5) < f(i,7)}. This defini-
tion implies that Ey C Ey, because for any edge (%, 7) € Ey
we have f(4,7) < f'(4,7) < u(i,7). Similarly, we have
E_ C Ep. Furthermore, if (4,7) is an edge in G4, then
(5,7) is an edge in G_ by antisymmetry. Therefore it is
enough to show that if b7(v) > 0, then there is a simple
path (v, u1,...,u—1,w) in G4 such that by(w) < 0.

Assume by the way of contradiction *hat such a path does
not exist, i.e. all vertices reachable from v in G4 have non-
negative balance. Let S be the set of all vertices reachable
from v in G4 and let § = V —5. The vertices in S have non-
negative balance, and since v € § and by(v) > 0, we have
Zjes b(j) > 0. Also, for every pair of vertices (i,7) € S x5,
we have f(4,7) > f'(4, j), for otherwise we would have j € 5.

Now we obtain a contradiction as follows:

0 Z(:’,;:)ESXE '(4,9)

S (l‘,j)ésng(i’ j)

= (;,,')ESxS’f(irj)+E(;,,')es><s f(i,9)
s Zﬁﬂesw G

= T lijes bf(])

< 0.

The following key lemma bounds the amount of increase
in prices during an execution of the subroutine. This lemma
is similar to the lemma of Bland and Jensen (5] that bounds
the number of maximum flow computations in a scaling step.

Lemma 6.2 The price of any vertez v increases by at most
3ne during an ezecution of Refine.

Proof: Since prices of vertices with zero or negative balance
cannot change, it is enough to prove the lemma for a vertex
v that has a positive balance at some time ¢ during the
execution of Refine. Let f and p be the e-optimal pseudoflow
and price function at this point. Recall that fac and pa.
are the 2e-optimal circulation and the price function at the
beginning of the execution of Refine. Let v,u1,...,u—1,w
be a sequence of vertices satisfying Lemma 6.1. Applying
the 2e-optimality conditions to the edges on the path Fy, =
(w,ti-1,--.,%1,v) in Gy, we obtain

p(w) < pev) +2le+ Y clird)- (11)

(i,7) on Py,

Applying the e-optimality conditions to the edges on the
path Py = (v,uy,...,u-1,w) in Gy, we obtain

p(v) < p(w)+le+ E(J‘,.‘) on P, c(4,1)
= plw)+le—3

(12)

(i,7) on Py, c(i, j)'

Vertex w has had a negative balance throughout the ex-
ecution of Refine up to time £. The prices of vertices with
negative balance do not change, so p(w) = pc(w). Combin-
ing this observation with inequalities (11) and (12), we get
p(v) < p(v) + 3le < pe(v) +3ne.

Lemma 6.3 The number of the price updates during an ez-
ecution of Refine is at most 3n>.

Proof: Immediate from lemmas 5.2 and 6.2. [

Lemmas 6.2 and 6.3 enable us to amortize the operations
performed by the algorithm over increases in vertex prices.

Lemma 6.4 The number of the saturating push operations
during an ezeculion of Refine is af most Snm.

Proof: For any undirected edge {v,w}, consider saturating
pushes from v to w and from w to v. Consider a saturating
push from v to w. In order to push flow from v to w again,
the subroutine must first push from w to v, which cannot

happen until the price of w increases by at least . Similarly,
p(v) must increase by at least ¢ between saturating pushes
from w to v. By charging all saturating pushes from v to w
(except for the first one) to price increases of v and applying
Lemma 6.2, we can bound the number of pushes that use
the undirected edge {v,w} by 2+3n < 5n (assuming n > 2).
Summing over all undirected edges gives the desired bound.

We define an admissible edge and an admissible graph
as follows. Given a pseudoflow f and a price function p,
we say that an edge (v,w) is admissible if (v,w) € Ey and
cp(v,w) < 0. Note that if (v, w) is an admissible edge and
v is active, then a pushing operation is applicable to (v, w).
For a given price function p, the admissible graph G 4 is the
graph of all admissible edges: G4 = (V, E4), where E4 =
{(v,w) € Eg|cp(v,w) < 0}.

The admissible graph changes during the execution of the
subroutine. We show, however, that the admissible graph is
always acyclic.

Lemma 6.5 Immediately after a price update operation has
been applied to a vertez v, there are no admissible edges en-
tering v.

Proof: Before the price update, the reduced cost of any
residual edge entering v is at least —e. The price update
increases this cost by at least e. Therefore after the price
update, the cost of any edge entering v is nonnegative. E

Using Lemma 6.5, we can easily prove the following fact.

Lemma 6.6 Af any time during the ezecution of the generic
Refine subroutine, the admissible graph G 4 s acyclic.

The next lemma bounds the number of nonsaturating
pushes. This lemma has been strengthened to its current
form with the help of Ron Rivest.

Lemma 6.7 The number of the nonsaturating pushing oper-
ations in an ezecution of Refine is O(n*m).

Proof: For each vertex v, let k(v) be the number of vertices
reachable from v in the current admissible graph G 4. Define
the potential function ® by ® = »_{h(v)|v is active}. (We
define & = 0 if there are no active vertices). It follows that
0<® < n.

Consider the changes in ® caused by operations performed
during the execution of the generic subroutine. After the
initialization ® < n. A nonsaturating push decreases @
by at least one. @ can increase only because of a saturating
push or because of a price update. In either case ® increases
by at most n; in the latter case this follows from Lemma 6.5.
The total number of nonsaturating pushes is bounded by the
initial value of ® plus the total increase in @ throughout the
execution of the generic subroutine, which is O(ngm). |

The following theorem bounds the number of basic oper-
ations in the generic Refine subroutine.

Theorem 6.8 The generic Refine subroutine terminates af-
ter O(n*m) basic operations.

Proof: Immediate from Lemmas 5.1, 5.2, 6.3, 6.4, and 6.7.

Remark: The definition of admissible edges as unsaturating
edges of negative cost can be changed to require admissible
edges to have cost at most <, for any fixed constant —e <
4 < 0. This change affects only the constant factors of
the above analysis. Choosing a value of strictly less than
zero, such as —¢/2, may be desirable from a theoretical or
practical standpoint, but justification of this choice would
require further analysis or experimentation.

7 Sequential Implementation

The running time of the generic subroutine depends upon
the order in which the basic operations are applied and on
the details of the implementation, but it is clear that any
reasonable sequential implementation will run in polynomial
time. As a first step toward obtaining an efficient sequential
implementation, we shall describe a simple refinement of
the subroutine that runs in O(r*m) time. Then we shall
describe an implementation that runs in O(n®) time. In the
next section, we shall describe implementation of the generic
subroutine that uses the dynamic tree data structure and
runs in O(nm logn) time.

We need some data structures to represent the network
and the pseudoflow. We associate a positive direction and
the following four values with each undirected edge {v,w}:
I(v, w), u(v,w), c(v,w), and f(v,w). Each vertex v has a
list of the incident undirected edges {v, w} in a fixed order.
Each edge {v, w} appears in exactly two lists, the one for v
and the one for w. Each vertex » has a balance bs(v) and
a current edge {v,w}, which is the current candidate for a
push out of v. Initially the current edge is the first edge on
the edge list of v. After the initialization, the refined sub-
routine repeatedly selects an active vertex and applies the
push/update operation described in Figure 4 to this vertex
until there are no active vertices.

We need to show that push/updafe uses the price update
operation correctly.

Lemma 7.1 The push/update procedure uses a price updat-
ing operalion only when this operation is applicable.

Proof: The push/update procedure applies the price updat-
ing operation only to active vertices with positive balance.
Just before the price update, for each edge (v,w) either
ep(v,w) > —ef4 or rg(v,w) = 0, because p(v) has not
changed since {v,w} was a current edge, ry{v,w) cannot
increase unless ¢, (v, w) > —¢/4, and p{w) never decreases.
The lemma follows from the definition of the price updating
operation. [

The refined subroutine needs one additional data struc-

ture, a set Q containing all vertices with positive balance.

Initially Q contains vertices whose balance has been made
positive during the initialization. Maintaining Q takes only
O(1) time per push/update operation. (Such an operation

Push/update(v).
Applicability: v is active.
Action: Let {v,w} be the current edge of v;
if push(v,w) is applicable then apply it
else
if {v,w} is not the last edge
on the edge list of v then
replace {v, w} as the current edge of v
by the next edge on the edge list of v
else begin
make the first edge on the edge list of v
the current edge;
apply Update-Price(v);
end.

Figure 4: The push/update operation.

applied to an edge {v, w} may require adding w to Q and/or
deleting v.)

Theorem 7.2 The refined algorithm runs in O(nm) time
plus O(1) time per nonsalurating pushing step, for a total of
O(n’*m) time.

Proof: Let v € V and let A, be the number of edges on
the edge list of v. A price update of v requires a single scan
of the edge list of v. By the proof like that of Lemma 6.3,
the total number of passes through the edge list of v is at
most 6n + 1: one for each of the at most 3n price updates
of v, one before each price update as the current edge runs
through the list, and one after the last price update. Ev-
ery push/update operation selecting v either causes a push,
changes the current edge of v, or increases p(v). The total
time spent in push/update operations selecting v is O(na,)
plus O(1) time per push out of v. Summing over all vertices
and applying Lemmas 6.4 and 6.7 gives the theorem. |

In the generic maximum flow algorithm [20], a first-
in, first-out ordering of the operations equivalent to the
push/update operations leads to improved sequential and
parallel time bounds. So far, we are unable to prove these
bounds for a similar implementation of the minimum-cost
flow algorithm. The first author conjectures, however, that
these bounds hold. See [19] for details on the first-in, first-
out implementation.

Next we describe an implementation of the subroutine
that runs in O(n®) time. This implementation is due to
Charles Leiserson. We call this implementation the wave
subro-dine because of its similarity to the maximum flow
algorithu described in [36]. When applied to the generic
maximum tiow algorithm of [20] the wave method yields an
O(n®)-time algorithm as well.

The wave implementation does not maintain a queue of
active vertices, but instead maintains a list L of all vertices,
and preserves the invariant that L is topologically ordered

Discharge(v).
Applicability: v is active.
Action: Repeat
Apply push/update(v);
until by(v) = 0 or p(v) increases;
if p(v) has increased then
move v to the beginning of L;

Figure 5: The discharge operation.

with respect to the admissible graph G4 (i.e., for any two
distinct vertices v and w, if w is reachable from v in Ga,
then w appears after v on L).

Initially, the list L contains the vertices of G in arbitrary
order. The implementation makes passes over the list, ap-
plying the discharge operation described in Figure 5 to ac-
tive vertices. The discharge operation consists of applying
the push/relabel operation to an active vertex until the ex-
cess becomes zero or the price of the vertex increases. In the
latter case, the vertex is moved to the beginning of L, but
the processing of L continues from the previous position of
this vertex. The subroutine terminates when there are no
active vertices.

The key to the analysis of the wave subroutine is the ob-
servation that, because of the topological ordering of vertices
on the list L, if no price update occurs during a pass over
the vertex list, the subroutine terminates.

Lemma 7.3 The number of passes over the vertez list in the

ezecution of the wave implementation of the Refine subroutine
is O(n?).

Proof: First we show by induction on the number of basic
operations that the wave subroutine maintains a topologi-
cal ordering of the vertices with respect to the admissible
graph G4 (except in the middle of the discharge operation).
The basis is trivial, because immediately after initialization
there are no admissible edges. A push preserves the topo-
logical ordering, because this operation cannot create a new
admissible edge. Immediately after the price of a vertex is
changed, the vertex is moved to the beginning of the list L.
The resulting ordering is topological by Lemma 6.5.

Next we show that if the vertex prices do not change dur-
ing a pass over the vertex list, the subroutine terminates.
This implies that there is at most one pass during which the
price function does not change. The total number of passes
is therefore at most 3n% + 1, by Lemma 6.3.

Suppose that the price function does not change during
a pass. Then no price updating operations are performed
during this pass, and therefore the ordering of the vertices
on the list L does not change and every vertex is able to get
rid of all of its excess. Since the vertices are processed in
topological order, no vertex has excess after the pass, and
the algorithm terminates. [

The O(n?) bound on the number of passes allows us to
prove an O(n®) bound on the running time of the wave sub-
routine.

Theorem 7.4 The wave subroutine runs in O(n®) time.

Proof: The work done by update-price and saturating push
operations can be bounded by O(nm) by a proof like that of
Theorem 7.2. The number of nonsaturating push operations
is O(n®) because there are O(n?) passes and at most one
nonsaturating push per vertex per pass. Finally, operations
on the vertex list L require O(n) time per pass, for a total
of O(n®) time. [

8 Use of Dynamic Trees

We obtain an O(nmlogn) implementation of the generic
subroutine by using the dynamic tree data structure of
Sleator and Tarjan [32,33,35]. This data structure allows
us to maintain a set of vertex-disjoint rooted trees in which
each vertex v has an associated real value g(v), possibly co
or —oo. We regard a tree edge as directed toward the root,
i.e. from child to parent. We denote the parent of a vertex v
by p(v). We adopt the convention that every vertex is both
an ancestor and a descendant of itself. The tree operations
we shall need are described in Figure 6.

The total time for a sequence of [tree operations start-
ing with a collection of single-vertex trees is O(llogn), since
n is the maximum tree size. (The implementation of dy-
namic trees presented in [33,35] does not support find-size
operations, but it is easily modified to do so. See [20].)

In our application the edges of the dynamic trees are a
subset of the current edges of the vertices. The current
edge {v,w} of a vertex v € V — {s,t} is eligible to be a
dynamic tree edge (with p(v) = w) if d(v) = d(w) + 1 and
r;(v,w) > 0. Not all eligible edges are tree edges, however.
The value g{v) of a vertex v in its dynamic tree is r (v, p(v))
if v has a parent and oo if v is a tree root. Initially, each
vertex is in a one-vertex dynamic tree and has value oo.

By using appropriate tree operations we can push flow
along an entire path in a tree, either causing a saturating
push or moving flow excess from some vertex in the tree all
the way to the tree root. The dynamic tree operations are
charged to the price updates and saturating pushes in such
a way that each price update and each saturating push is
charged a constant number of times. Therefore the total
number of charges is O(nm) and, since each dynamic tree
operation costs O(logn), the running time of the dynamic
tree subroutine is O(nm logn).

The details of the improved subroutine, which we call
the dynamic tree subroutiqe, are as follows. The heart of
the subroutine is the procedure send(v) which pushes excess
from a nonroot vertex v to the root of its tree, cuts edges
saturated by the push, and repeats these steps until bs(v) =
0 or v is a tree root.

At the top level, the dynamic tree subroutine is exactly
the same as the simple implementation of the generic sub-

find-root(v): Find and return the root of the tree containing
vertex v.

find-size(v): Find and return the number of vertices in the tree
containing vertex v.

find-value(v): Compute and return g(v).

find-min(v): Find and return the ancestor w of v of minimum
value g(w). In case of a tie, choose the vertex w closest
‘to the root.

change-value(v,z): Add real number z to g(w) for all ancestors
w of v. (We adopt the convention that co+(—o0) = 0.)

link(v,w): Combine the trees containing vertices v and w by
making w the parent of v. This operation does nothing
if v and w are in the same tree or if v is not a tree root.

cuf(v): Break the tree containing v into two trees by deleting
the edge from v to its parent. This operation does
nothing if v is a tree root.

Figure 6: Dynamic tree operations.

routine described in the previous section. However, we re-
place the push/update operation with the tree-push/update
operation.

A free-push/update operation applies to a vertex v with
positive balance that is the root of a dynamic tree. There
are two main cases. The first case occurs if the current edge
{v,w} of v is eligible for a pushing operation. In this case we
link the trees containing v and w by making w the parent of
v and do a send operation from v. The second case occurs
if the edge {v,w} is not eligible for a pushing operation. In
this case we update the current edge of v and update the
price of v if necessary. If the price of v is increased, we cut
all tree edges entering v, to maintain the invariant that all
dynamic tree edges are admissible.

It is important to realize that this algorithm stores values
of the pseudoflow f in two different ways. If {v,w} is an
edge that is not a dynamic tree edge, f(v,w) is stored ex-
plicitly, with {v, w}. If {v,w} is a dynamic tree edge, with
w the parent of v, then g(v) = u(v,w) — f(v,w) is stored
implicitly in the dynamic tree data structure. Whenever a
tree edge (v, w) is cut, g(v) must be computed and f(v, w)
updated to its current value. In addition, when the algo-
rithm terminates, pseudoflow values must be computed for
all edges remaining in dynamic trees.

Two observations imply that the dynamic tree subroutine
is correct. First, any edge {v, w} that is in a dynamic tree is
admissible. By Lemma 6.6, in case (1) of free-push/update,
vertices v and w are in different trees, and the algorithm
never attempts to link a dynamic tree to itself. Second, a
vertex v that is not a tree root can have positive balance only
in the middle of case (1) of a tree-push/update operation. To
see this, note that only in this case does the algorithm add
flow to a nonroot vertex, and this addition of flow is followed
by a send operation that moves the nonroot excess of flow
to one or more roots.

Theorem 8.1 The dynamic tree implementation of the Re-
fine subroutine runs in O(nm logn) time.

Proof: First we bound the number of link and cut opera-
tions. The number of link operations is at most 5nm by a
proof like that of Lemma 6.4. The number of cut operations
is at most the number of link operations. The total number
of link and cut operations is O(nm). It is straightforward to
establish that there are O(1) tree operations per cut or link,
from which the theorem follows. [

Corollary 8.2 The implementalion of the minimum-cost
flow algorithm that uses the dynamic tree version of the Refine
subroutine runs in O(nm(logn)log(nC)) time.

Proof: Immediate from Theorems 4.1 and 8.1. I

9 Blocking Refine Subroutine

In this section we present an alternative approach to the
design of the Refine subroutine, based on Dinic’s approach
to the maximum flow problem [6], which uses blocking flows.
A blocking flow is defined for flow networks rather than for
circulation networks. In a flow network all lower bounds on
capacity are zero and there are two distinguished vertices,
a source s and a sink f. A flow is a pseudoflow with zero
balance for all vertices except s and t. A blocking flow is a
flow with no forward augmenting path, i.e. a flow for which
every path from s to ¢ in the network contains a saturated
edge. We use blocking flows only in the context of layered
and acyclic networks. A network is acyclic if the underlying
directed graph is acyclic. An equivalent definition is to say
that a network is acyclic if its vertices can be labeled by
integers in such a way that for every edge (v,w), we have
label(v) > label(w). A network is layered [6] if its vertices
can be labeled by integers in such a way that for every edge
(v, w), we have label(v) = label(w) + 1.

There are many algorithms for finding a blocking flow in
a layered network. Although a layered network is a spe-
cial case of an acyclic network, most of these algorithms
work in the more general acyclic case as well, achieving the
same complexity bounds. In particular, the algorithms de-
scribed in [21,24,36] can be used to find a blocking flow in an
acyclic network in O(n?) time, and the algorithm described
in [31] can be used to find a blocking flow in O(m logn)
time. Galil’s algorithm [14] finds a blocking flow in a lay-
ered network in O(r*/*m?/®) time. This algorithm can be
modified to work on acyclic networks within the same time
bound [15].

The Shiloach-Vishkin algorithm [30] can also be modified
to find a blocking flow in an acyclic network in O(nlogn)
time on a PRAM using O(r) processors and O(n*) memory.

We show how to implement the Refine subroutine using
at most 3n blocking flow computations. The blocking flow
variant of the subroutine, summarized in Figure 7, starts by

Procedure Refine(f, p,€);

{{initialization))
V(v,w) €V xV do begin
if ¢p(v,w) > 0 then f(v,w) « (v, w);
if cp(v,w) < 0 then f(v,w) « u(v, w);
end;
((1oop}) |
while f is not a circulation do block(f, p, €);
return(f, p);

end.

Figure 7: The blocking flow Refine subroutine.

bringing all edges into kilter. Then the subroutine repet-
itively performs the block operation described in Figure 8
until f is a circulation.

The block operation consists of two steps. In the first step,
the vertices are partitioned into two sets, S and 5. The set
S contains the vertices reachable from some vertex with pos-
itive balance in the admissible graph G4 (defined in Section
6), and the set S contains all remaining vertices. Then prices
of vertices in S are increased by €. The second stage con-
structs an acyclic auxiliary network, finds a blocking flow f!
in the auxiliary network, and augments the pseudoflow f by
I (ie. f(v,w) « f(v,w)+ f'(v,w) for each (v,w) €V V).
The auxiliary network Geuw: = (V U{s,t}, Eauz) is con-
structed from the admissible graph G4 by adding a source
s, a sink ¢, and edges (s, v) of capacity by(v) for every vertex
v € V with by(v) > 0 and edges (w,t) of capacity —bs(w)
for every vertex w € V with by(w) < 0. The capacities of
edges (v, w) € E4 are defined to be ry(v, w). Note that aug-
menting f by a flow f' in the auxiliary network results in a
valid pseudoflow.

Correctness of the blocking flow subroutine follows from
the following lemma.

Lemma 9.1 At the beginning and at the end of each eze-
cution of block, pseudoflow f 1s e-optimal with respect to p,
52 {u|bs(v) >0}, and § D {v|bs(v) < 0}. At the beginning
and af the end of steps 1 and 2, the admissible graph Ga s
acyclic.

Proof: Omitted. [

The following lemma is a generalization of the lemma
bounding the number of phases in a layered network algo-
rithm for the maximum flow problem. This lemma is also
similar to Lemma 6.2 and the lemma that bounds the num-
ber of maximum flow computations in a scaling step of the
Bland-Jensen algorithm [5].

Lemma 9.2 The number of blocking flow computations in
an ezecution of the blocking flow Refine subroutine is at most
3n.

Procedure block(f, p, €);

({step 1))
S « {w|3v such that b(v) > 0

and w is reachable from v in Ga};
S«V-5;
Vv € § do p(v) « p(v) +¢;
({ step 2))
construct Gauz = (V U{S, t}, Eauz);
find a blocking flow f' in Gauz;
augment f by f';
return(f, p);

end.

Figure 8: The block operation. The running time of the
operation depends on the blocking flow subroutine used.

Proof: Note that the balance of a vertex can become posi-
tive only during the initialization step of the subroutine and
the subroutine terminates when there are no vertices with a
positive balance. Thus there must be a vertex v whose bal-
ance is positive during each execution of step 1. By Lemma
9.1, the price of v increases by € during such a step, and does
not change otherwise. Prices of vertices with a negative bal-
ance do not change. By an argument similar to the proof of
Lemma 6.2, the price of a vertex cannot increase by more
then 3¢. Therefore the number of phases is at most 3n.

Theorem 9.3 Let B(n,m) be the running time of an algo-
rithm that finds a blocking flow in acyclic networks. Then the
minimum-cost flow algorithm runs in O(nB(n,m)log(nC))
time.

Proof: Immediate from Theorem 4.1 and Lemma 9.2. I

Corollary 9.4 The minimum-cost flow problem can be
solved in O(min(nm logn, n*/>m?/3, n%) log(nC)) time.

Proof: The lemma follows from Theorem 9.3 and using the
blocking flow algorithms described in [21,14,31] (extended
to acyclic networks as discussed above).

10 Parallel and Distributed Im-
plementations

In this section we discuss parallel and distributed imple-
mentations of the minimum-cost flow algorithms described
earlier. Related work on parallel and distributed algorithms
for network flow problems includes a paper of Shiloach and
Vishkin [30], and a paper of Bertsekas [3]. Shiloach and
Vishkin give an O(n."’ logn) time parallel algorithm for the
maximum flow problem, which can be combined with the

cost scaling algorithms [5,29] to obtain an O(n® log(n) log C)
time parallel algorithm for the minimum-cost flow prob-
lem. Bertsekas [3] exhibits a “chaotic” algorithm for the
minimum-cost flow problem that converges in a finite num-
ber of steps in a distributed model.

First we discuss parallel and distributed implementations
of the minimum-cost flow algorithm which are based on the
parallel version of the Shiloach-Vishkin blocking flow algo-
rithm [30]. We call the algorithm obtained by using this
parallel blocking flow algorithm to implement Min-Cost the
blocking algorithm. In PRAM [9] and DRAM [23] models of
parallel computation the results of Section 9 and [30] imply
the following theorem.

Theorem 10.1 The blocking algorithm runs in
O(n*(logn)log(nC)) parallel time using n processors and
O(n?*) memory.

The following theorem gives the performance of the block-
ing algorithm in the synchronous distributed model of par-
allel computation [1,17]. In the statement of this theorem,
A, denotes the degree of processor p in the network. The
proof of this theorem follows from the results of Section 9
and [30].

Theorem 10.2 In the synchronous distributed model, the
blocking algorithm runs in O(n*(log nC)) time using O(nA,)
memory per processor p and O(n® log(nC)) messages.

In the asynchronous distributed model [1,17], the syn-
chronization protocol of [1] can be used to implement the
blocking algorithm. The resulting bounds on message and
memory complexity of the algorithm are the same as in The-
orem 10.2 and the resulting time bound is greater then the
bound given by the theorem by a factor of logn.

The above parallel and distributed algorithms require a
large amount of memory. Alternative implementations of
the minimum-cost flow algorithm using a parallel version of
the generic Refine subroutine (similar to the parallel ver-
sion of the generic maximum flow algorithm [20]) use a lin-
ear amount of memory. The time bounds we can prove for
these implementations, however, are worse then the sequen-
tial time bounds of this paper. The first author conjectures
that the actual running time of these implementations are
better (i.e. same as the time bounds in Theorems 10.1 and
10.2). See [19] for more details about this conjecture and for
an alternative asynchronous implementation of Refine.

11 Remarks

The concluding remarks concern practicality and potential
improvements and extensions of the minimum-cost flow al-
gorithm.

We believe that our approach will yield highly practical al-
gorithms. Our belief is based on the work of Gabow [13] and
of Bateson [2] who have shown that scaling algorithms are
practical; on the experimental results of Bland and Jensen
[5] on their cost-scaling algorithm for the minimum-cost

flow problem; on experience with implementations of the
Goldberg-Tarjan maximum flow algorithm [19,26]; and on
the experimental results of Bertsekas and Tseng with an
implementation of their minimum-cost flow algorithm [4].
Experimental study is needed, however, before the practi-
cality claim can be made with certainty.

The approach presented in this paper allows a great de-
gree of flexibility. For example, the Refine subroutine can be
modified to reduce the error parameter ¢ by a factor differ-
ent from the factor of two as in our description. Fine-tuning
of this factor changes the constant factors of the running
time, and therefore the practical performance of the algo-
rithm. Also, as in the case of the maximum flow algorithm,
a different ordering of the basic operations in the generic
Refine subroutine may result in a better performance.

The algorithm can start with any initial price function
such that the absolute value of the difference between the
prices of any pair of adjacent vertices is at most C (or even
O(r*C) for a constant k). In fact, in a practical implemen-
tation the initial price function should be obtained by using
a shortest path subroutine. Refine can also use a shortest
path subroutine to update the price function at intermedi-
ate points of the execution. Another heuristic improvement
is to set € to the largest amount of violation of the comple-
mentary slackness conditions before each call to Refine.

Our algorithm works essentially by scaling costs. It would
be interesting to see if a similar approach could be made to
work by scaling costs and capacities simultaneously. A possi-
ble approach is to order operations of the generic subroutine
by the change in value (i.e. cost-capacity product) caused
by these operations.

Another interesting open question is the existence of a
strongly polynomial O(n®log* n) (or O(nmlog® n), if one
is able to take advantage of sparsity) algorithm for the
minimum-cost flow problem. A possible approach would
combine the techniques of [11,16,27,34] with the techniques
described in this paper.

Acknowledgments

We would like to thank Charles Leiserson, Serge Plotkin,
Ron Rivest, and David Shmoys for many helpful suggestions
and for comments on preliminary versions of this paper.

References

[1] B. Awerbuch. Complexity of network synchronization.
Journal of the ACM, 32:804-823, 1985.

[2] C. A. Bateson. Performance comparison of two algo-
rithms for weighted bipartite matchings. 1985. M.S.
thesis, University of Colorado, Boulder, Colorado.

[3] D. P. Bertsekas. Distributed asynchronous relaxation
methods for linear network flow problems. In Proc.
25th IEEE Conference on Dectsion and Conirol, Athens,
Greece, 1986.

(4]

(5]

(6]

[7]

(8]
(9]

[10]

[11]

[12]
13
14
it

[16]

(17]

it

[19]

(20]

21]

[22]

D. P. Bertsekas and P. Tseng. Relaxation methods for
minimum cost ordinary and generalized network flow
problems. O. R. Journal, 1986. (To appear).

R. G. Bland and D. L. Jensen. On the Computa-
tional Behavior of a Polynomial-Time Network Flow Al-
gorithm. Technical Report 661, School of Operations
Research and Industrial Engineering, Cornell Univer-
sity, 1985.

E. A. Dinic. Algorithm for solution of a problem of
maximum flow in networks with power estimation. Se-
viet Math. Dok., 11:1277-1280, 1970.

J. Edmonds and R. M. Karp. Theoretical improve-
ments in algorithmic efficiency for network flow prob-
lems. Journal of the ACM, 19:248-264, 1972.

L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks.
Princeton Univ. Press, Princeton, NJ., 1962.

S. Fortune and J. Wyllie. Parallelism in random ac-
cess machines. In Proc. 10th ACM Symp. on Theory of
Computing, pages 114-118, 1978.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and
their uses. In Proc. 25th IEEE Symp. on Foundations
of Computer Science, pages 338-346, 1984.

S. Fujishige. A capacity-rounding algorithm for the
minimum-cost circulation problem: a dual framework
of the tardos algorithm. Math. Prog., 35:298-308, 1986.

D. R. Fulkerson. An out-of-kilter method for minimal
cost flow problems. SIAM J. Appl. Math, 9:18-27, 1961.

H. N. Gabow. Scaling algorithms for network problems.
J. of Comp. and Sys. Sci., 31:148-168, 1985.

Z. Galil. An O(V®/°E*/*) algorithm for the maximal
flow problem. Acta Informatica, 14:221-242, 1980.

Z. Galil. Personal communication. 1987.

Z. Galil and E. Tardos. An O(n®logn(m + nlogn))
min-cost flow algorithm. In Proc. 27th IEEE Symp. of
Foundations of Computer Science, pages 1-9, 1986.

R. G. Gallager, P. A. Humblet, and P. M Spira. A dis-
tributed algorithm for minimum-weight spanning trees.
ACM Transactions on Programming Languages and Sys-
tems, 5(1):66-77, 1983.

S. I. Gass. Linear Programming: Methods and Applica-
tions. McGraw-Hill, 1958. !

A. V. Goldberg. Efficient Graph Algorithms for Sequen-
tial and Parallel Computers. PhD thesis, M.L.T., 1987.

A. V. Goldberg and R. E. Tarjan. A new approach to
the maximum flow problem. In Proc. 18th ACM Symp.
on Theory of Compuling, pages 136-146, 198G.

A. V. Karzanov. Determining the maximal flow in a
network by the method of preflows. Soviet Math. Dok.,
15:434-437, 1974.

E. L. Lawler. Combinatorial Optimization: Networks
and Matroids. Holt, Reinhart, and Winston, New York,
NY., 1976.

(23]

[24]

[25]

[26]

(27]

(28]

(29]

[30]

(31]

[32]

[33]
[34]

(35]

[3¢]

C. Leiserson and B. Maggs. Communication-efficient
parallel graph algorithms. In Proc. of Infernational
Conference on Parallel Processing, pages 861-868, 1986.

V. M. Malhotra, M. Pramodh Kumar, and S. N. Ma-
heshwari. An O(|V|®) algorithm for finding maximum
flows in networks. Inform. Process. Lett., T7:277-278,
1978.

G. J. Minty. Monotone networks. Proc. Roy. Soc. Lon-
don, A(257):194-212, 1960.

A. T. Ogielski. Integer optimization and zero-
temperature fixed point in Ising random-field systems.
Physical Review Leit., 57(10):1251-1254, 1986.

J. B. Orlin. Genuinely Polynomial Simplez and Non-
Simplez Algorithms for the Minimum Cost Flow Prob-
lem. Technical Report No. 1615-84, Sloan School of
Management, MIT, December 1984.

C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complezity. Prentice-
Hall, Englewood Cliffs, NJ, 1982.

H. Rock. Scaling techniques for minimal cost network
flows. In V. Page, editor, Discrete Structures and Algo-
rithms, Carl Hansen, Munich, 1980.

Y. Shiloach and U. Vishkin. An O(logn) parallel con-
nectivity algorithm. Journal of Algorithms, 3:57-67,
1982.

D. D. Sleator. An O(nmlogn) Algorithm for Maxzi-
mum Network Flow. Technical Report STAN-CS-80-
831, Computer Science Department, Stanford Univer-
sity, Stanford, CA, 1980.

D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. System Sci., 26:362-391,
1983.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32:652-686, 1985.

E. Tardos. A strongly polynomial minimum cost circu-
lation algorithm. Combinatorica, 5(3):247-255, 1985.

R. E. Tarjan. Data Structures and Network Algo-
rithms. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983.

R. E. Tarjan. A simple version of Karzanov’s blocking
flow algorithm. Operations Research Letters, 2:265-268,
1984.

