CONCISE SPECIFICATIONS OF LOCALLY
OPTIMAL CODE GENERATORS
Andrew W. Appel
CS-TR-080-87

February 1987

Concise specifications of locally optimal code generators

Andrew W. Appel

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

Dynamic programming allows locally optimal instruction selection for expression
trees. More importantly, the algorithm allows concise and elegant specification of code
generators. Aho, Ganapathi, and Tjiang have built the Twig code-generator-generator,
which produces dynamic-programming code-generators from grammar-like
specifications.

Encoding a complex architecture as a grammar for a dynamic-programming code-
generator-generator shows the expressive power of the technique. Each instruction,
addressing mode, register and class can be expressed individually in the grammar. Twig
specifications for the VAX and MC68020 are described, and the corresponding code gen-
erators select very good (and under the right assumptions, optimal) instruction sequences.

Limitations and possible improvements to the specification language are discussed.

1. Introduction

One of the last phases of a typical compiler is the translation of an intermediate representation of a
compiled program into target-machine instructions. This instruction selection phase has been the subject of
much research in the last decade, with two primary goals: to find algorithms for selecting optimally
efficient instruction sequences, and to find ways to automatically generate instruction selection programs
from concise specifications of the target machine’s operations.

This paper describes techniques for using Twig, a code-generator generator that uses tree matching and
dynamic programming. The instruction sets of the DEC VAX and Motorola 68020 are used as an illustra-
tive examples. The VAX architecture can be described with only 112 rules; the 68020 is somewhat more
complicated.

Some of the problems of using Twig are described, and solutions to these problems are proposed.

1.1. Optimal instruction selection

An intermediate representation can be considered as a directed graph, in which edges point from
uses of values to sources of values. Most of the work in optimal instruction selection has considered only
trees -- graphs in which each source of a value has only one use. (The *‘trivial”” sources, such as constants
and the addresses of program variables, may have several uses; each use will be a leaf of the tree.) For
more general graphs, optimal instruction selection becomes NP-complete[1, 2].

For trees, it is possible to find optimal solutions (with appropriate restrictions on the scope of the problem).
For example, the problem of optimal register allocation[3,4] can be solved using a simple bottom-up label-
ling algorithm. Optimal instruction selection for machines with one class of general registers is solved
using a bottom-up dynamic programming algorithm[5] (the algorithm uses dynamic programming in that
the optimal solution for each node is determined from the optimal solutions of its descendants). For
machines with complicated addressing modes, this algorithm becomes unwieldy, with hundreds of cases.

i

Dynamic programming can be extended to machines with several classes of registers[6] by an algorithm
analogous to the CYK algorithm([7, 8] for parsing by dynamic programming.

While these algorithms are powerful and useful, it is important to note that they select optimal code
sequences only for the particular trees they are given; and those trees are not necessarily optimal versions
of the programs they represent.

1.2. Formal description of instruction sets

The automatic generation of instruction selectors from a specification of the target machine requires
a formal specification language for target-machine semantics. The ISP language for specifying machine
instruction-sets[9] has been used to automatically generate instruction selectors for intermediate representa-
tions based on trees[10] and peephole optimizers for more general graphs[11, 12]. These target-code gen-
erators rely on heuristics to match patterns (derived from the semantics of target-machine instructions) to
portions of the intermediate representation tree (or graph).

The heuristic used on trees leads to a sequence of pattern-matches identical to that made by an LR parser;
this led to the formalization of target-machine semantics as LR(1) grammars[13]. Instruction selection is
thus reduced to LR(1) parsing, which is efficient and well-understood. Unfortunately, the LR(1) grammars
tend to be very large: typical descriptions of the VAX instruction set use hundreds of productions [14, 15].

Context-free grammars have difficulty in efficiently describing certain features of real instruction sets, par-
ticularly those involving operand size constraints. For this purpose, attribute grammars are convenient[16].
An attribute grammar describing a given machine can be much shorter than the equivalent context-free
grammar.

1.3. Optimal instruction selection from formal instruction set descriptions

Combining grammar-based machine descriptions with dynamic programming, as in the Twig sys-
tem[17], leads to concise and powerful instruction selection specifications.

Dynamic programming, as a parsing technique, has three significant advantages over LR(1) parsing: it
allows highly ambiguous (but much more concise) grammars, it allows attribute information to be used
with no extra trouble, and it produces optimal instruction selection. (It has the disadvantage that it tends to
use more time and space.)

Because there are often several different instruction sequences that accomplish the same thing, ambiguous
grammars occur naturally in the description of code generators. An LR(1) grammar cannot be ambiguous,
so the ambiguities must be removed at compiler-generation time. This has the effect of deciding in
advance which kind of instruction sequence to use for a given class of operations — even though the best
choice might depend on attributes of the specific instance. The dynamic programming algorithm allows an
ambiguous grammar, with the ambiguity resolved only when the instance is parsed. This allows the best
instruction sequence to be chosen for each instance.

An example of the problems in writing LR(1) descriptions of instruction sets is ‘‘overfactoring’’[14]. Con-
sider the following example:

displ — PLUS CONST reg
binop — PLUS

binop — XOR

reg — binop operand operand

An LR(1) parser cannot know, after it has seen PLUS (with CONST as a lookahead symbol) whether to
shift or to reduce the PLUS as a binop. This shift-reduce conflict can be solved by removing the rule

binop — PLUS
and adding rules like
reg — PLUS operand operand

for each context in which binop appears.

Unfortunately, the grammars tend to get very large when this — and other similar necessary changes — are
made. Large grammars are inefficient to process, but — more important — they are hard to get right. Gra-
ham, Henry, and Schulman state, ‘“Most of the outstanding bugs in our code generator are caused by
remaining instances of overfactoring.’*[14].

Twig handles highly factored grammars with no difficulty. For the (human) specifier of an instruction set,
the ability to write concise but ambigous grammars, rather than large but unabiguous ones, is an invaluable
advantage of the dynamic programming algorithm.

Another example of the limitations of LR(1) grammars for machine description is shown graphically
below. There are two machine instructions that can cover different, but overlapping parts of an intermedi-
ate representation tree:

The instructions that cover the (overlapping) circled areas correspond to the register transfers:

Mlconstant] « register
and
Mlregister] « M[constant]

Either instruction can be used to cover the root (and some immediate descendants) of the tree. (The
uncovered nodes must be covered similarly by instructions.) The LR(1) parser will find a shift-reduce
conflict here; if (as is typical) it resolves this by shifting, then it will always choose the first of these two
instructions, even if the second might be less costly. A dynamic-programming parser, on the other hand,
can evaluate the cost of both instruction sequences and choose the better one.

This paper demonstrates the concise and powerful nature of code generators based on dynamic-
programming parsers by using the VAX and MC68020 instruction sets as illustrative examples.

2. Overview of Twig

Aho, Ganapathi, and Tjiang’s code-generator generator, Twig, is been described in[17] and[18].
This section provides just a brief overview of the system.

The Twig system takes a specification in the form of an annotated grammar, and produces a code genera-
tor. The input to the code generator is a tree, which is (presumably) a machine-independent representation
of a program being compiled. The code generator translates the tree into object code (assembly language,
for example) by finding tree-patterns from the grammar that match portions of the tree.

Typically, the internal nodes of the tree are operators like MEM or PLUS and the leaves are constants
(often address constants). Each node in the tree is labelled by some such symbol, so that the entire tree can
be represented in a functional notation. Here is an example representing the addition of 5 to the contents of
address 44, and the storing of the result at address 36:

MOVE
MEM PLUS
CONST 36 MEM CONSTs
(:01\151'“44

MOVE(MEM(CONST;), PLUS(MEM(CONST,),CONST5))

The Twig specification is a grammar for trees that are written in this functional notation. The code genera-
tor attempts to parse its input (a tree) according to this grammar. Since the grammars are often highly
ambiguous, many parses may be legal. In this case, the code generator picks the parse with the lowest cost.
The cost of a parse is (typically) the sum of the costs of the reductions in the parse. The cost of a reduction
is given as an annotation to the corresponding grammar rule in the specification.

Finding the lowest-cost parse can be done fairly efficiently. Working from the bottom up, the cost of
matching each node to each nonterminal symbol is computed. The cost of matching higher nodes in the
tree can be computed just from the costs of their immediate descendents. For a fixed grammar, this takes
time and space linear in the size of the input tree.

2.1. Format

A Twig specification has several parts. First, the interface to the concrete representation to the tree is
described by macro definitions for the C preprocessor. (The annotations to the grammar will be written in
the C language.) The terminal symbols of the input grammar are listed in a node declaration; the nontermi-
nal symbols are listed in a label declaration. Then, each grammar rule is presented with its annotations.
The first annotation is the cost phrase, which consists of C statements that compute the cost of applying this
rule in a given situation. The second annotation is the action phrase, which (typically) emits the object
code for a parse reduction when this rule is used.

The cost phrase of a rule will be evaluated many more times than the action phrase: the code generator
must determine the costs of applying all relevant rules before it finds the minimum cost parse. After that
parse is found, all of the action rules of the constituent reductions are applied (usually) in bottom-up order.

Here is a specification of a simple instruction set that contains just three instructions: add, load, and store.

node MEM MOVE PLUS CONST;
label reg;

reg: MEM(CONST)
{cost=2;}
={$$->reg = getreg();
emit ("load r3d, 3d", S->reqg, $1S$->value);
}

reg: PLUS (reg, req)
{cost+=1;}
={givereg($2%); $$->reg=1->reg;
emit ("add r$d, r3d", 1->reg, $25->regqg):;
}

reg: MOVE (MEM (CONST), reqg)
{cost+=2;1}
={$$->reg=%$2%->reg;
emit ("store 3%d,r%d", 1->value, 2->req):;
}

In this specification, the initial part (giving the C-language interface to the concrete representation of trees)
has been omitted.

The terminal symbols of the grammar — those to be found labelling the tree nodes in the input to the code
generator — are listed in the first line. The nonterminals — specifying the different ‘‘modes’” in which a
subtree may be matched — are listed on the second. The remaining lines are the three productions of the
grammar.

The cost phrases specify that an add instruction costs one unit, while load and store cost two units each.
In particular, the cost of evaluating a subtree whose root matches an add pattern is 1 plus the cost of fetch-
ing the arguments of the add into registers. Thus, the cost phrase for this pattern is {cost+=1; } where
the variable cost is initially equal to the sum of the costs of the two reg nodes that are the leaves of this
pattern.

The action phrases for this particular specification include statements to allocate and deallocate registers,
and to emit assembly-language instructions.

In the cost and action phrases, $$ represents the root of the subtree matched by the instruction, and 1,
$28, efc. represent the children. Other descendants are represented by giving the paths to them; so 2.1 is
the first child of the second child of the root.

The costs of the subtrees are accessed in a different manner, although there are no cases of this in the
example above. In general, $%n$—scost is the cost of the n™ leaf of the match. Leaf nodes of a match
always correspond to nonterminal symbols in the grammar rule. Thus, if the third rule (in the example
above) wants to refer to the cost of the reg child, then it uses the notation $%1$—cost.

3. Intermediate Representation Trees

This section describes the abstract syntax of, and interface to, an intermediate-representation-tree
language for compilers of Algol-like languages. The instruction-selection algorithm takes trees in this
language and translates them into machine instructions.

Each node in a tree has an operator specifying what kind of node it is, and zero to three children; each child

-6-

is another tree. In addition, each node has several attributes.

The trees are represented (concretely) in memory as records and pointers. They are represented
(abstractly) in a functional notation, e.g. OP(PLUS ,FETCH(NAME),CONST).
They are built (by the front end of the compiler) using a specified set of tree-building interface routines.

3.1. Syntax
Figure 1 gives the syntax of IR trees.

It is tempting to confuse IR trees and parse trees. The grammar given in figure 1 will lead to parse
trees, but these are not the same as IR trees. One should think of Figure 1 as a grammar for expressions
written in the functional notation; these expressions correspond to IR trees.

body: PROC(exp,stm)

stm: SEQ(stm, stm)
stm: LABEL

stm: JUMP(exp)

stm: CJUMP(test, exp)
stm: exp

exp: OP(binop, exp, exp)
exp: UNOP(unop, exp)
exp: UNOP(cvtop, exp)
exp: MEM(exp)

exp: MOVE(MEM(exp), exp)
exp: MOVE(TEMP, exp)
exp: ESEQ(stm, exp)
exp: BOOL(test)

exp: NAME

exp: CONST

exp: CONSTF

exp: ALLOC(TEMP, exp)
exp: TEMP

exp: CALL(args, exp)

test: CAND(test, test)
test: NOT(test)
test: OP(relop, exp, exp)

args: ARG(exp, args)
args: NOARGS

binop: FPLUS FMINUS FMUL FDIV
binop: PLUS MINUS MUL DIV MOD AND OR LSHIFT RSHIFT XOR

relop: EQ NEQ LT LEQ GT GEQ

relop: ULT ULEQ UGT UGEQ

relop: FEQ FNEQ FLT FLEQ FGT FGEQ

unop: NEG COMP FNEG

cvtop: CVTSU CVTSS CVTSF CVTUU CVTUS CVTES CVTFF

Figure 1. Syntax of IR trees

3.2. Attributes

Each node may have one or more attributes, depending on which terminal or nonterminal symbol it
corresponds to.

Symbol Attributes possessed by nodes of this symbol.

body proclabel [the assembly-language name of the procedure]
LABEL label [the assembly-language label of this point in the program]
exp size [the number of bytes* needed to hold the expression-value]

TEMP temp [a descriptor of the register or temporary location]
NAME label [the assembly-language label referred to]

CONST ivalue [the integer value of this node]

CONSTF fvalue [the floating-point value of this node]

Note that some nodes have more than one atiribute. For example, a CONST node is also an “‘exp’’, so that
is has both an ivalue and a size.

3.3. Semantics of the nodes

Each production in the grammar derives nodes with particular meanings. The semantics of each kind
of node are given here.

body: PROC(exp,stm)

The “‘localsize’ of a procedure is an expression (‘‘exp’’) denoting the number of bytes of local-variable
space that must be allocated for each invocation of the procedure. A procedure ‘‘body”’ is simply a state-
ment (“‘stm’’) as the second child of a PROC node. The “‘proclabel’” attribute specifies the label by which
the assembly-language program can call the procedure.

stm: SEQ(stm,stm)

A statement can be a sequence of statements, with the meaning that the first is to be executed, then the
second (unless of course, the first statement executes JUMP to somewhere else).

stm: LABEL

A statement may be a LABEL. This statement does nothing at execution time; it serves as the target of
JUMP instructions, etc.

stm: JUMP(exp)

A statement may JUMP to any address. The address may be computed as an expression. The simple case
of jumping to a fixed label is a special case: JUMP(NAME).

stm: CJUMP(test,exp)

A statement may be a conditional jump to any address. If the test evaluates to “‘true’” at run-time, then the
jump will be made to the location indicated by the expression exp.

stm: exp

A statement may be an expression. At run-time, the expression will be evaluated (for possible side-
effects), and the result will be thrown away.

* The description here assumes a byte-addressable machine, but the model can easily be made more general.

exp: OP(binop, exp, exp)
An expression may be the sum of two expressions, etc. The ‘‘binop’* specifies which binary operator is to
be used. Thus, OP(PLUS expl,exp2) represents the sum of the two expressions exp1 and exp2.

The size attribute of the OP-expression must be the same as the size of the children. Explicit coer-
cions (see below) can be put in the tree to overcome this.

exp: UNOP(unop, exp)

Unary operators are just like binary operators, except that there is only one expression-child. Thus, nega-
tive 3 is UNOP(NEG,CONST;). Of course, this particular tree could be rewritten as simply CONST_;.

exp: UNOP(cvtop, exp)

Type-conversions serve two purposes: to convert from one machine data type (signed-integer, unsigned-
integer, floating) to another, and to convert from one precision (size) to another. These are unusual opera-
tors in that the children may differ in “‘size’” from the parent.

The distinction between long-integer, short-integer, and character is not a difference of machine data
type, but simply of size. The same holds for single- and double-precision floating-point.

exp: MEM(exp)

An expression may be the result of fetching from an address of memory. The child represents the address
to be fetched, and must have a size equal to addressSize. The size of the MEM node indicates the amount
of data 1o be fetched, starting at that address of memory. The size may be any number representable as an
address.

exp: MOVE(MEM(exp),exp)

exp: MOVE(TEMP,exp)

An expression may be stored at an address in memory, or moved into a temporary location (e.g. a register).
The first argument (el) is the destination; the second argument (e2) is the value. The number of bytes
stored is the size of the MOVE node (which is equal to the size of the nodes el and e2). The
MOVE(el,e2) node is an expression; the value is that of 2.

The size may be any number representable as an address. Note, however, that one can’t do much
with expressions of large size other than fetch them and store them. Thus, the following represents a block
move:

MOVE(MEM][1000](NAME[dest]),MEM[1000](NAME[source]))

This tree moves 1000 bytes from label “‘source’’ to label ‘‘dest,’’ and is an
example of an expression whose size is larger than will fit in a register

or a register pair.

exp: ESEQ(stm, exp)

The statement ““stm”’ is evaluated, then the expression ‘‘exp™ is evaluated. The result and size of
the ESEQ are that of the expression.

exp: BOOL(test)

The test is converted into an n-byte integer, where n is ‘‘size.’” If the test evaluates to true, the in-
teger 1 is the result; else 0.

exp: NAME

This kind of expression yields the value associated with the label. Such a value is typically an ad-
dress, so the size is usually ‘‘addressSize.”” However, many assemblers and loaders are capable
of treating 1-, 2-, or 4-byte quantities as labels,

exp: CONST

An integer constant. The size is the number of bytes used to hold the value (typically 1, 2, or 4).
The value is the result of the expression.

exp: CONSTF
A floating constant. The size depends on the desired representation; 4 or 8 is typical.

exp: ALLOC(TEMP,exp)

A temporary variable ‘‘temp’’ is allocated; the ‘‘exp’’ is evaluated and its value is saved; then the
temporary variable is discarded. The result of the ALLOC-expression is the result of exp. There
should be no references to ‘‘tmp’’ outsize of “‘exp”’.

exp: TEMP

The value of a temporary variable is used. The size of the expression is the size associated with
the temporary variable. The temporary variable may have been allocated with ALLOC, or may
have been allocated in some other way.

A TEMP node represents a register that the front end of the compiler is using as an explicit
temporary. Whereas an intermediate result of a tree calculation may be used only once (in the cal-
culation of its parent), a TEMP register may be used in several calculations.

TEMP nodes can be used to represent specific machine registers like stack pointers and
frame pointers. In this case the generation of the intermediate tree is somewhat dependent on the
stack-frame layout being used. This slight machine-dependency can easily be made transparent to
the front end of the compiler.

exp: CALL(args.exp)

A function is called with arguments. The argument list ‘‘args’’ is evaluated; these are passed to
the function, whose address is given by “‘exp.”” The function returns a result of size “‘size,”” and
this result is the value of the CALL-expression. The arguments may be evaluated left-to-right, or
right-to-left, or in some other order. All arguments are call-by-value.

test: CAND(test, test)

The CAND (condition-and) operator first evaluates the test el. If this is false, the result of the
CAND is false. Otherwise, €2 is evaluated; if both el and e2 are true, the result is true; else false.

-10-

This is one of the few expression-operators to guarantee the order of evaluation of the sub-
expressions.

test: NOT (test)

The boolean value of a test is complemented. Note that tests are not expressions, and do not have
sizes.

test: REL(relop,exp,exp)

A boolean test-value is created from the comparison of two equal-sized expressions. The ““op’” is
a relational operator: equality, inequality, greater-than, etc.

args: ARG(exp, args)

One element of an argument-list, with two fields: ‘“This element’’ (exp), and *‘rest-of-list’
(args). Note that an ‘‘args’’ node has a size field, which is computed as the sum of the sizes of the
two fields.

args: NOARGS
This is an empty argument list, or it is the “‘end”’ of an argument list. The size is zero.

binop: FPLUS FMINUS FMUL FDIV
These are the floating point arithmetic operators, in single- or double-precision.

binop: PLUS MINUS MUL DIV MOD AND OR LSHIFT RSHIFT XOR
These are the integer arithmetic operators, which work on 1-, 2-, or 4-byte integers.

relop: EQ NEQ LT LEQ GT GEQ
These are the signed-integer comparison operators, which work on 1-, 2-, or 4-byte integers.

relop: ULT ULEQ UGT UGEQ

These are the unsigned-integer comparison operators. Equality and inequality of unsigned in-
tegers are tested with EQ and NEQ, just as for signed integers.

relop: FEQ FNEQ FLT FLEQ FGT FGEQ

These are the floating-point comparison operators, which work on single- or double-precision
numbers. (Both arguments must be of the same precision, of course.)

unop: NEG COMP FNEG

These are the unary operators. They specify the integer-negation, integer-complement, and
floating-negation, respectively.

unop: CVTSU CVTSS CVTSF CVTIUU CVTUS CVTFS CVTFF

These are the type-conversion operators. They convert between the three types *‘Signed-integer”,
*“Unsigned-integer’’, and ‘‘Floating-point.”” Thus, CVTSU converts from signed to unsigned in-
tegers.

These are among the only expression operators that take arguments whose size is different
from their result. Thus, one may use CVTSU to convert from a 1-byte signed integer to a 4-byte
unsigned integer, or from a 2-byte unsigned integer to a 1-byte signed integer, etc.

3.4. Layout of the nodes in storage

The concrete representation of the nodes in the computer is done with structs (in the C
language) pointing to other structs. Here is the declaration of the type Tree:

-11-

typedef struct tree *Tree;

struct tree {char op; char reg, kind;
union {int size;
Label proclabel;
. other fields
box;
union {Tree child[3]:
Label label;
int ivalue;
double fvalue;
struct temp *temp;
other fields
} u;

}i

The fields named x.size, x.proclabel, u.label, u.ivalue, u.fvalue, and u.temp correspond to the simi-
larly named attributes described in a previous section. The u.child vector points at the zero, one,
two, or three children of a node. Any child-bearing node with fewer than three children will have
NULL’s in the higher-numbered entries of the child vector. To know whether a node is child-
bearing it is necessary to look at the op field, which specifies the kind of node this is.

The regand kind fields are used by the code generation algorithm to annotate the tree, and are
left blank when the trees are created by the front end of the compiler.

3.5. Constant folding

The code generators to be described in this paper are really just optimal instruction selectors, not
general optimizers. To simplify the instruction selection, it is useful to do some machine-
independent partial evaluation of intermediate representation trees.

This evaluation, or constant-folding, can be done as the trees are built. For example, there
is an interface function that builds an OP node given a size and pointers to its children:

Tree buildOP (size, operator, left, right)
int size; Tree operator, left, right;

All tree nodes are built using calls to such functions. When the buildoP function is called upon
to build the tree corresponding to the sum of two CONST nodes, it may return a new CONST
node whose value is the sum (instead of an OP node which formally represents the sum).

The identities listed in Figure 2 are used to simplify the structure of the trees. In general,
they try to fold CONST nodes together, and to this end they try to move CONST nodes to the
right in expressions. They also perform some specific rearrangements of PLUS and MUL that are
useful in simplifying expressions found in array indexing. Finally, they attempt to bring NAME
and CONST nodes close to each other so that the back end may take advantage of this if it is so
equipped.

name: NAME

name: OP(PLUS,name,CONST)

commute: PLUS MUL XOR OR AND
assoc: PLUS MUL XOR OR AND

id0: PLUS MINUS XOR OR

id1: MUL DIV

rel: EQ NEQ GT GEQ etc.

OP(commute, CONST, exp) -> OP(commute, exp, CONST)
OP(commute, name, exp) -> OP(commute, exp, name)
OP(op, CONST, CONST) -> CONST

190

OP(id0, exp, zero} -> exp

OP(idl1, exp, one) -> exp

OP(MUL, OP(PLUS exp, CONST), CONST) -> OP(PLUS, OP(MUL, exp, CONST), CONST)
OP(MINUS, exp, CONST) -> OP(PLUS, exp, CONST)

OP(assoc, OP(assoc, exp, CONST), CONST) -> OP(assoc, exp, CONST)

OP(PLUS, exp, OP(PLUS, exp’, exp’’) -> OP(PLUS, OP(PLUS, exp, exp’), exp’’)
OP(PLUS, OP(PLUS, exp, name), CONST) -> OP(PLUS, exp, OP(PLUS, name, CONST))
OP(PLUS, OP(PLUS, exp, name), exp’) -> OP(PLUS, OP(PLUS, exp, exp’), name)
UNOP(op, CONST) -> CONST

OP(NEQ, BOOL(test), zero) -> test

OP(rel, CONST, exp) -> OP(rel’, exp, CONST)

These rules are summarized here in a semi-formal notation — some of the details have been elid-
ed. In particular, some of combinations of rules appear to have the potential to loop indefinitely,
but in practice their application is restricted so that this will not happen. For example, the rule

OP(commute, CONST, exp) -> OP(commute, exp, CONST)

is not applicable if exp is a constant. Similar restrictions on the other rules prevent looping.

The code generator can be much simpler if it can assume that the CONST is always on the right,
so these constant-folding operations are worthwhile.

4. The VAX instruction set

The VAX has a rather complex, though mostly consistent, instruction set[19]. The operands
of VAX instructions may have several forms, known as ‘‘addressing modes.”” The instructions
themselves may be three-address (operating on two operands and placing the result in a third) or
two-address (placing the result in the second source operand). There are several instructions that
are just cheaper special cases of other instructions (like the increment instruction).

For example, the instruction
addl3 r1,8(r2),*(13)+[r4]

adds the values of the first two operands — rl and 8(r2) — and stores the result in the third —
*(r3)+[r4].

The word “*add’’ specifies that the result is the sum of the first two operands. The letter *‘I”’ indi-
cates that the operands are to be considered as longwords (4-byte integers). The 3 appended to the
opcode specifies that this is a three-address instruction (rather than a two-address instruction).

The first operand is a simple register-mode operand: the value of the operand is just the contents
of register 1. The second operand is a displacement-mode operand: the sum of 8 and the contents
of register 2 give the address of the memory cell in which the value is to be found.

The third operand is an autoincrement-deferred-indexed-mode operand, and more complicated.
First, the contents of register 3 are used as an address from which to fetch a value x. Then, regis-
ter 4 is multiplied by 4 (because this is a longword instruction) and added to x. Then x is used as
the address in which to store the result of the addl3 instruction. Register 3 is then incremented (by
4).

Because the autoincrement and autodecrement modes cause side-effects as well as yield values,
they are difficult, though not impossible, to use in code generation. The code-generator
specification described here does not use these addressing modes. However, it uses all the other
addressing modes, including the indexed modes.

<13«

4.1. Nonterminals for the VAX

The terminal symbols for the VAX’s Twig specification must, of course, be exactly those of
the IR trees. These were described in the previous chapter. The nonterminal symbols are free to
be different, as long as the resulting grammar describes the same language of trees.

The nonterminal symbols will be:

body the start symbol of the grammar: an entire procedure

stm statement; i.e. code executed for side-effects only

reg a VAX register

operand a VAX addressing mode

location an address in memory specifiable as an addressing mode

ioperand a VAX indexed addressing mode

destination an operand that denotes a storable memory location

computation roughly, all but the last operand of a machine instruction. (This will be ex-
plained in greater detail.)

test boolean condition: code that will branch if true

ntest negated boolean condition: code that will branch if false

flag an expression that will set condition codes

bigval an expression too large to fit in registers (like an array or record)

binop binary operator symbol (PLUS, MINUS, etc.)

unop unary operator symbol (NEGATE etc.)

relop relational operator (EQ, NEQ, etc.)

cvtop a conversion operator

cvtopu an unsigned conversion operator

name a constant or a label

args a list of actual parameters to a procedure

Zero a constant with value O (integer or floating).

4.2. Cost definitions

Each match of a nonterminal to a tree-node is associated with a given cost. These costs
have several components:

space The number of bytes occupied by the instruction

time the amount of time taken by the instruction (measured in tenths of mi-
croseconds on a VAX-11/780). Because of pipelining variations, cache misses,
etc., this must be an approximation. Newer implementations of the VAX archi-
tecture have significantly different costs; in particular, access to memory is
cheaper relative to register access.

setFlags whether the instruction sets the condition codes appropriately

sideEffect whether the tree rooted at this node has side effects (like a jump or a store)
dontDestroy whether the register holding the value of this node must be saved for later use
hold the number of registers needed to hold the value of this node (in the specific

way it was matched)
maxregs the number of registers needed to compute the children of this match

-14 -

These cost values will be discussed in more detail in the next section.

The COSTLESS rule, to determine which of two costs is the lesser, simply compares the sum of
space and time:

#define COSTLESS(x,y) (x.space+x.time < y.space+y.time)

By adjusting this formula, it is possible to ‘‘tune’’ the code generator to optimize for code space
or for execution time, but it is not clear whether any significantly different code sequences will
emerge.

The DEFAULT_COST for each node is (roughly) the sum of the costs of the children. That is,
the space values of the children are summed, the time values are summed, and the sideEffect
values are unioned.

In addition, a variant[20] of the Sethi-Ullman algorithm[4] for minimizing register-usage is used.
This will require reordering the computation of the children of expression-nodes (as long as there
are no side-effects among the reordered children). The cost of the optimal ordering is computed
in DEFAULT_COST, yiclding the cost value maxregs.

All other fields of the DEFAULT_COST are set to zero.

4.3. Grammar rules for the VAX

Now the production rules of the grammar will be explained. With each rule will be the cost
evaluation and the code-generating action. This is the entire code generator specification, except
for the prolog and epilog which contain the following components: The C language interface to
the tree representation, the computation of default costs, the Sethi-Ullman reordering, and the list-
ing of terminal and nonterminal symbols of the grammar.

4.3.1. The top-level rule
To match an entire procedure or function, the start symbol body is the left-hand-side:
body: PROC(operand,stm)
{ TOPDOWN; }

={Label masklabel = newLabel();
emit (".align\tl\n.globl\t%s\n",$$->x.proclabel->s);

emit ("%s:\n.word\t%s\n", $$->x.proclabel->s,masklabel->s) ;

tDO(3%18) ;

emit ("subl2\t"); emitoperand(1); emit (",sp\n");
tDO($%28) ;

emit ("ret\n.set\t%s,0%0\n",masklabel->s, regmask&07774) ;
}i

The word TOPDOWN in the cost fragment specifies that the children of the PROC node should
not be emitted until explicitly called for (by tDO).

The emit procedure works just like the printf procedure in the C language. This rule specifies
that the assembly code for a procedure abe follows this pattern:

.align 1
.globl abc
abc:

.word L23

computation to determine size of local-variable space
subl2 local-variable-size, sp

o L

body of procedure
ret

.set L23, register-mask

4.3.2. Rules for statements

The next few rules give the specification of code generation for the nonterminal symbol
stm.

stm: SEQ(stm,stm);

A statement may be a sequence of two statements. The cost is simply the sum of the two subcosts,
and the emitted code is simply the concatenation of the two children. These are the default rules,
S0 no extra specification is necessary.

stm: LABEL
s{emit ("$s:\n", $5->u.label->s);};

A statement may be a label definition. The cost is zero (the default), and the assembly language to
emit is simply the label name followed by a colon.

stm: JUMP(name)
{ cost.space=3; cost.time+=8; cost.sideEffect=1;}
={emit (“‘jbr\t’'’"); emitname($1S); emit(*‘*\n’’);};

A statement may be an unconditional jump to a fixed address. Depending on the distance between
the jump and its destination, the instruction (and its cost) will vary. Jump size resolution can’t be
handled easily by a one-pass algorithm, so we make an approximation for the cost and let the as-
sembler resolve the instruction.

This instruction has a side effect, which must be noted in the cost phrase by setting the
sideEffect field of the cost.

stm: JUMP(location)
{ cost.space+=1; cost.time+=8; cost.sideEffect=1l; }
={emit ("Jjmp\t™); emitlocation($1%); emit ("\n");}:

Unconditional jumps to variable addresses cannot use the ‘‘branch’ instruction; they must use the
slightly more expensive “‘jmp’’ instruction. The space cost is 1-byte (for the opcode) plus the
space taken by the addressing mode location. The initial value of the cost variable on entry to
the cost phrase is the sum of the costs of the leaves of the pattern. This pattern has only one leaf
— location — so the initial value of cost is that of the space, time, etc. taken by the location. It
thus suffices to execute {cost.space+=1;} to add 1 to the cost of the location. The time cost
is about 0.8 microseconds (on a VAX-11/780) plus the cost of evaluating the location.

stm: CJUMP(test, NAME)
{ cost.sideEffect=1; TOPDOWN; }
={1->x.truebranch=$2%$->u.label;
EVAL;
};

A conditional jump to a fixed address may be accomplished by evaluating a fest, which branches
if true to the label specified in its ruebranch attribute. This attribute must be set before the test is
emitted, so the match is TOPDOWN.

stm: CJUMP(ntest,location)
{ cost.space+=1; cost.time+=4; cost.sideEffect=1; TOPDOWN; }
={1->x.truebranch=newlLabel () ;
tDO($%18) ;
tDO($%28);

-16-

emit ("Jmp\t"); emitlocation ($28);
emit ("\n%$s:\n",3$15->x.truebranch->s);
}:

The VAX can execute conditional jumps only to fixed addresses. Therefore, there must be a con-
ditional jump over an unconditional jump. The conditional jump must, of course, test the negated
condition, so nfest is called for. As usual, the cost is computed as the sum of the childrens’ costs
plus the number of extra bytes and microseconds called for here. In this case, there is one extra
byte (the opcode of the ‘‘jmp’’ instruction). When the jump is taken, the time will be 0.8 mi-
croseconds; we assume that the jump is taken half the time, for an average cost of 0.4 mi-
croseconds. The cost of the ntest includes the cost of the conditional jump contained within it.

stm: operand
={emit ("# throw away "); emitoperand($$); emit ("\n");};

A statement may be an expression which is evaluated solely for side effects. The most general
kind of expression that will fit here is an operand. It is necessary to call ‘‘emitoperand’’ to free
the registers (as will be explained later), so an assembly-language comment is emitted.

stm: bigval
={emit ("# throw away r%d\n",$$->reg):; givereg($$);};

Since operand doesn’t match any expression whose value won’t fit into a register (or register-
pair), this rule is added.

There are also several rules for MOVE statements. These will be explained later.

4.3.3. Calculating values into registers

The reg nonterminal represents subtrees that calculate some value (possibly with side-
effects) that ends up in a register.

The nonterminal computation represents three-address operations, unary operations, and
move instructions. Computations will be described in detail in their own subsection, but here are
some examples:

movl 8(12),
addI3 15,16(r4)[2],
mnegl varA,

Note that in each case the last operand — the destination — is missing. A computation specifies
everything about an arithmetic operation except the destination.

reg: computation
{cost.space+=1; cost.setFlags=1; HOLD1l;}
={emitcomputation (3$%);
getreg($8);
emit ("r%d\n", $$->req) ;
}i

To generate code to evaluate a computation into a register, there are two steps. First, the instruc-
tions to compute the values of the subtrees of the computations must be emitted. Then, the in-
struction that computes the root of the computation from the subtrees is emitted. This final in-
struction will vary according to what kind of computation has been matched. It might be a (two-
address) move instruction, a (three-address) subtract instruction, or a (two-address) negate instruc-
tion (et cetera).

The instructions to evaluate the subtrees are emitted by the action codes of matches that are
leaves of the root node. (This is the default order in which Twig actions are evaluated.) The in-
struction at the root node — all but the last operand — is emitted by the procedure emitcomputa-

-17 -

tion. This procedure also frees the register that had been associated with the computation (to hold
the values of its operands).

Then a register (or register-pair) is allocated to hold the result of the computation (by the
call to getreg), and the destination operand is emitted.

The cost calculation is simple. Computations are marked with the amount of time they take,
and the number of bytes required by all but the last operand. On the VAX, a simple register-mode
operand takes only 1 byte, so cost.space is incremented by 1. The match is marked as one that
sets the condition codes. Finally, cost.hold is set to 1 (or 2 if the size attribute of the node indi-
cates that a register-pair will be required); this is done by the macro HOLDI1.

reg: MOVE(TEMP,computation)
{cost.space+=1; cost.setFlags=cost.sideEffect=cost.dontDestroy=1;}
/* hold 0 */

={emitcomputation (2) ;
$$->reg=5$15->u.temp->number;
getagain ($$);
emit ("r3d\n", $15->u.temp->number) ;
b:

To assign a value into a TEMP register, the MOVE operation is used. The result of the assign-
ment, as with the MOVE operation, is the value assigned.

The dontDestroy field of the cost is marked, indicating that this match can’t be used in any
context that requires overwriting of the register allocated to the MOVE node — since this would
also overwrite the TEMP register, which must be saved for possible further use.

The number of registers required to hold the result is zero; this is because the register-
allocator has already reserved the TEMP register, and no additional temporaries arc nceded. Be-
cause zero is the default, no HOLD specification is required.

The call to getagain indicates that there is one more use of the TEMP register, which needs
to be held until givereg is called with the MOVE node as an argument.

reg: TEMP
{cost.dontDestroy=1; /* hold 0 */;}
={$5->reg=5$5->u.temp->number;
getagain ($8);
}:

This pattern indicates that a TEMP can be used in an expression as well as assigned to. Many of
the remarks made in describing MOVE — about cost calculation and register allocation — apply
here.

reg: ALLOC(TEMP,reg)
{cost .setFlags=$%25->cost.setFlags;
cost .dontDestroy=$%2$->cost .dontDestroy;
HOLD1; cost.maxregs+=(1->x.size/4); TOPDOWN;
}
={getreg(513%); $1S$->u.temp->number=1->reg;
EVAL;
givereg(5$1%);
$$->reg=525->reqg; getagain($$); givereg($28);
}:
An ALLOC node provides a register to use as a TEMP node during the computation of a subtree.
‘When control leaves the subtree, the register will be de-allocated.

The action phrase of this rule must be evaluated before the action phrase of the reg subtree.
This is in contrast to most rules, in which the actions of the children emit assembly code, followed
by the action phrase of the root of the rule. To avoid the automatic execution of the child

18-

subtree’s action phrases, the rule is marked TOPDOWN, and the word EVAL is used at precisely
the point where it is desired the children’s actions be executed.

Afterwards, there are come calls to the register allocator to indicate that the result of the
ALLOC node is in the same register as the result of the second operand. The cost phrase indicates
that the cost attributes are those of the second operand.

stm: ALLOC(TEMP,stm)
{cost .maxregs+=($15->x.size/4); TOPDOWN;}
={getreg($1%); $15->u.temp->number=$1%$->reqg;
EVAL;
givereg($13);
i

This pattern is similar to the previous one, with some simplifications.
Certain other reg patterns will be described later.

4.3.4. Locations in memory

The addressing modes of the VAX can be classified into those corresponding to locations in
memory and those that are constant or registers. The nonterminal location will be used to
represent the former.

The twig rules for the different location modes are all similar. The space costs are comput-
ed straightforwardly as the number of bytes required to specify the operand. The time costs are
computed as the amount of time that each kind of operand adds to the cost of the instruction of
which it is a part.

The hold field of the cost must be the sum of the hold fields of all the children of the loca-
tion. This is because the location match does not in itself combine its children into a value in one
register; this is only done later when the instruction is executed. For example, in the instruction

addl3 4(r1)[r2],6(r3),r4

both r1 and r2 (of the first operand) must be held until the addl3 instruction is executed. (If the
Sethi-Ullman register-allocation scheme is not used, then the hold calculations are not necessary.)

Here are the patterns to match locations:

location: reg
{cost.space+=1; HOLDALL;}
={$$->kind=1;1};

location: OP(PLUS,name,reg)
{cost.space+=1; HOLDALL;}
={8S$->kind=2;};

location: OP(PLUS,reg,name)
{cost.space+=1; HOLDALL;}
={$5->kind=3;};

location: MEM(OP(PLUS,name,reg))
{cost.space+=1; cost.time+=4; HOLDALL;}
={$$->kind=4;1};

location: MEM(OP(PLUS,reg,name))
{cost.space+=1; cost.time+=4; HOLDALL;}
={$$->kind=5;1};

location: name
{cost.spacet+=1;}
={$$->kind=6;1};

There are two separate parts to the action of an operand or location. The first part must emit in-
structions that bring the appropriate values into registers. The second part must emit the assem-
bler specification of the operand. These two parts are not contiguous. Consider this program:

-19-

movl abc,rl
subl3 $4,ghi,r3
addi3 (r1),8(r3),r5

The first operand of the last instrution was generated from the tree MEM(MEM(NAME ;).
When the action phrase of the first operand was called, two things were done: the child of that
operand was emitted (i.e. movl abc,r1); and the kind of match was recorded (i.e. $$—kind=1).
Then the same was done for the second operand of the last instruction.

When the computation corresponding to the last instruction was emitted, the function em-
itlocation was called for each operand. This function examines the kind of its argument, and em-
its the appropriate assembly-language phrase:

emitlocation(t) Tree t;
{
switch (t->kind)
{case 1: /* reg */
emit (**(r%d)’'’,t->reqg); givereg(t); break;
case 4: /* MEM(OP(PLUS,name,reg)) */
emit (YY*’'7); t=t->u.child[0]; /* fall through */
case 2: /* OP(PLUS,name,reg) */
emitname (t->u.child([1]);
emit (Y (r%d)’’,t->u.child[2]->req);
givereg(t->u.child[2]->reqg); break;
case 5: /* MEM(OP(PLUS,reg,name)) */
emit (“Y*77); t=t->u.child[0]; /* fall through */
case 3: /* OP(PLUS,reg,name) */
emitname (t->u.child[2]);
emit (*Y(r%d) '’ ,t->u.child[1l]->reg):
givereg(t->u.child[1l]->reqg); break;
case 6: /* name */
emitname (t); break;

4.3.5. Index mode

Many of the VAX addressing modes can be augmented by an “‘index,”” which is a register
multiplied by a constant (1, 2, 4, or 8, depending on the operation code). This is somewhat tricky,
as the size of the multiplier is specified not in the address itself, but in the instruction of which the
address is a part. The solution is to match any constant, but to remember (in a field of the cost
variable) what the constant is. Then any other pattern that contains an indexed operand
(ioperand) must check that the constant is correct.

ioperand: OP(PLUS,location,OP(MUL,reg,CONST))
{cost.isize=$3.35->u.ivalue;
cost.space+=1; cost.time+=6; HOLDALL;}
={$5->kind=11;};
ioperand: OP(PLUS,location,reg)
{cost.isize=1;
cost.space+=1; cost.time+=6; HOLDALL; }
={$$->kind=12;};
ioperand: OP(PLUS,OP(MUL,reg,CONST),location)
{cost.isize=5%2.3%->u.ivalue;
cost.space+=1; cost.time+=6; HOLDALL;}
={$%$->kind=13;};

-20-

ioperand: OP(PLUS,reg,location)
{cost.isize=1;
cost.space+=1; cost.time+=6; HOLDALL; }
={8$$->kind=14;};

We assume that intermediate trees are always generated with CONST nodes on the right-hand-
side of commutative operators. However, we still need four versions of ioperands, because the
front end cannot know whether to put location or OP(MUL,reg,CONST) first. In addition, when
the CONST is 1, the pattern may be simpler.

The isize field of the cost is set to the size of the multiplier; all rules that use ioperand
check that field.

4.3.6. Destinations

The nonterminal destination represents VAX addressing modes that denote storable loca-
tions. These are of the form MEM(x), where x is an address.

destination: MEM(location)
{cost .time+=4; HOLDALL;}
={$$->kind=24;};

destination: MEM(ioperand)
{if ($$->x.size != $%1$->cost.isize) ABORT;
cost.time+=4; HOLDALL;}
={$5->kind=25;};

The fact that all nodes include a specification of their representation size makes it possible
to handle the checking of isize in index-mode operands very simply.

4.3.7. R-value operands

The nonterminal operand represents r-expressions: those that may be used as subexpres-
sions, but that do not necessarily represent memory locations. Operands may be registers (reg),
constants (name or CONSTF), or destinations.

operand: reg
{cost.space+=1; HOLDALL;
cost.setFlags = $%1$->cost.setFlags;}
={$%->kind=21;};
operand: name
{cost.spacet+=1;}
={$$->kind=22;1};
operand: CONST
{if (! ($%->u.ivalue >= 0 && $$->u.ivalue < 64)) ABORT;
cost.space=1;}
={$$->kind=22;1};
operand: CONSTF
{cost .space = 1+$$->x.size; }
={8$%->kind=23;};
operand: destination
{HOLDALL; }

The nonterminal name stands for integer constants, labels, and sums of constants and labels. Any
such constant recognized as a name will have an appropriate space cost calculated. The rule for
using a name as an operand requires one extra byte to specify the addressing mode, in addition to
the space taken by the name.

The VAX has a “‘short constant’’ addressing mode that fits in just one byte. Such short

< o

constants will be recognized by both the name and the CONST rules, above; but the latter will
have the lower cost. This is a simple example of the utility of ambiguous grammars.

As with locations, the evaluation pass emits subtrees and records the kind of the match; the
operand specifier is emitted (later) by a call to the procedure emitoperand:

emitoperand(t) Tree t;
{switch(t->kind)
{case 21: /* reg */
emit ("r%d",t->reqg); givereg(t); break;
case 22: /* name */
emit ("$"); emitname (t); break;
case 23: /* CONSTF */
emit ("$%f", t->u.fvalue); break:;
case 24: /* MEM(ocation) */
emitlocation(t->u.child[0]); break;
case 25: /* MEM(operand) */
emitioperand(t->u.child[0]); break:
}

4.3.8. Computations

There are a variety of instructions that do some calculation (involving one or two operands)
and move the result into a register or other destination. These will be called computations. The
VAX assembler instruction for a computation looks like an arithmetic instruction (three-address),
a unary arithmetic instruction (two address), or a move instruction; but with the last (destination)
operand not specified. As with operands, computations must be emitted in two phases; the first
phase emits the instructions that calculated values needed by the various operands of the instru-
tion; the second phase (invoked by a call to emitcomputation) emits the appropritate assembler
instruction (without the last operand).

computation: operand
{if ($$->x.size>8 || sizecode[S->x.size]==".") ABORT;
cost.setFlags = $%1$->cost.setFlags;
cost.time += 4; cost.space+=1; HOLDALL;};
computation: OP(binop,operand,operand)
{cost.space+=1; HOLDALL;}
={$5%->kind=31;};
computation: UNOP(unop,operand)
{cost.space+=1; HOLDALL;}
={$$->kind=32;1};
computation: UNOP(cvtop,operand)
{cost.space+=1; HOLDALL; }
={5->kind=33; };
computation: location
{cost.time+=4; cost.space+=1; HOLDALL; };
computation: ioperand

{if ($%1$->cost.isize > 8 || sizecode[$%1l$->cost.isize]=="'

cost.time+=4; cost.space+=1; HOLDALL;};

There are several kinds of computations here. A computation can be simply an operand, in which
case a move instruction is generated. In this case the kind field of the node will have been set by
an operand tree-pattern, and it is left unchanged by the computation pattern.

A computation can be an arithmetic operator applied to two operands, in which case an ar-
ithmetic instruction (like add or div is generated. In this case, the binop itself contains the time
component of the cost, since different operators take different amounts of time. A computation

.") ABORT;

3.

can be the application of a conversion operator to an operand, in which case a conversion instruc-

tion is emitted. Finally, a computation may correspond to the VAX move address instruction, for
which the source operand is any location (possibly indexed).

As with locations and operands, computations can’t be emitted until an entire instruction is
built, so a separate procedure traverses the tree looking at the kind fields of the nodes:

emitcomputation(t) Tree t;
{switch (t->kind)
{case 31: /* OP(binop, operand, operand) */

{emit ("%$s%c3\t", vaxop[t->u.child[0]->op],

t->u.child[0]->u.op.sizecode[t->x.size]);
emitoperand(t->u.child[2]); emit (",");
emitoperand(t->u.child[1]); emit(","™);

} break;

case 32: /* UNOP(unop,operand) */

{emit ("%s%c\t",vaxop[t->u.child[0]->op],sizecode[t->x.size]);

emitoperand(t->u.child[1]); emit(","):

} break;

case 33: /* UNOP(cvtop,operand) */

{emit ("cvt%c3c\t",
t=>u.child[0]->u.cvt.sizecodefrom[t->u.child[l]->x.size],
t=->u.child[0]->u.cvt.sizecodeto[t->x.size]) ;

emitoperand(t->u.child[1]); emit (™, ")

} break;

case 34: /* UNOP(cvtopu,computation) */

emitcomputation (t->u.child[1]);
break;

case 35: /* OP(LSHIFT,operand,operand) */

emit ("ashl\t"™);

emitoperand(t->u.child[2]); emit(",™);

emitoperand(t->u.child[1]); emit (",");

break;
case 36: /* OP(RSHIFT,reg,reg) */

{struct tree qg;

getreg(&q) ;

emit ("subl3\tr%d, $32, r%d\nextzv\tr¥d, r%d, r%d, " ,
t->u.child[2]->reqg,q.reqg,t->u.child[2]->reg, g.reqg,

t->u.child[1l]->regq);

givereg(&q); givereg(t->u.child[1]); givereg(t->u.child[2]);

} break;

case 37: /* OP(RSHIFT,reg,CONST) */

emit ("extzv\t$sd, $%d, r3d, ",
t->u.child[2]->u.ivalue,
32-t->u.child[2]->u.ivalue,
t->u.child[1]->reqg) ;

givereg(t->u.child[1]);

break;

case 1l: case 2: case 3: case 4: case 5: case 6: case 7: case 8:
/* location */
emit ("movab\t"™); emitlocation(t); emit("™,™):
break;
case 11: case 12: case 13: case 14: case 15:
/* ioperand */

emit ("mova%c\t",sizecode[sizeioperand(t)]):;

emitioperand(t); emit(",");

-23-

break;
case 21: case 22: case 23: case 24: case 25: case 26: case 27:
/* operand */
{emit ("mov%c\t™, sizecode[t->x.s5ize]);
emitoperand(t); emit(",");
} break;
default: emit ("# Strange kind of computation into ");
}

4.3.9. Boolean conditions

Many computers, including the VAX, evaluate boolean tests in two phases. The first phase,
carried out by a compare (or arithmetic) instruction, sets the condition flags depending on the
result is zero/nonzero, negative/nonnegative, et cetera. The second phase performs a conditional
jump depending on the values of the condition flags.

That breakdown into phases turns out to be convenient to recognize in the design of a code
generator. The nonterminal flag will match a comparison or arithmetic instruction, and will emit
an instruction that sets the condition flags of the machine. The nonterminal tes: will match a
boolean expression built from one or more flags using the operators NOT (boolean negation) and
CAND (conditional-and, in which the second argument is evaluated only if the first argument is
true). The conditional-or can be built from NOT and CAND using DeMorgan’s law.

A test corresponds to a block of instructions that will branch to a given address if a given
condition (built from CAND, NOT, and flags) is true; otherwise control will fall through to the
next block of instructions. The nonterminal ntest (for negated test) stands for a block of instruc-
tions that will branch if a given condition is false.

The action phrases of tests and ntests must be evaluted TOPDOWN to set the truebranch
attribute of the children of the test (or ntest) before the children’s instructions — which will con-
tain jumps to the truebranch label — are emitted.

test: CAND(ntest,test)
{TOPDOWN; }
={Label l=newlLabel();
1->x.truebranch=1;
$28%->x.truebranch=$$->x.truebranch;
EVAL;
emit ("%s:\n",1->s);
Y
ntest: CAND(ntest,ntest)
{TOPDOWN; }
={1->x.truebranch=$$->x.truebranch;
$2%$->x.truebranch=8%$->x.truebranch;
EVAL;
}i
test: NOT (ntest)
{TOPDOWN; }
={$1%->x.truebranch=$%$->x.truebranch;
EVAL;
}:
ntest: NOT(test)
{TOPDOWN; }
={1->x.truebranch=3$$->x.truebranch;
EVAL;
}i

ntest: flag

{cost.space += 4; cost.time += 8;}

={emit ("j%s\t%s\n", vaxop [negate ($$->kind)], $$->x.truebranch->s);};
test: flag

{cost.space += 4; cost.time += 8;}

={emit ("Jj%s\t%s\n", vaxop[$5->kind], $$->x.truebranch->s);};

The productions above show how to build tests subtrees from flag primitives, which represent the
condition code settings of the VAX. There are three ways to set the condition codes: by a cmp
(compare) instruction, which subtracts one operand from the other and sets the condition codes ac-
cording to the result; by a zs¢ (test) instruction, which is like a compare against zero; or by using
the condition code generated from the previous instruction. The latter is only appropriate if the
previous instruction generates a useful condition code; the setFlags field of the cost is maintained
to provide this information.

The kind field node carries the information about which condition is to be tested in the jump
instruction. The rules for flag set this field, and the rules for fest and ntest read the field.

flag: OP(relop,operand,operand)
{cost.space += 1; cost.time += 4;}
={emit ("cmp%c\t",$15->u.op.sizecode[$25->x.s5ize]);
emitoperand (2); emit(",™); emitoperand(3); emit ("\n");
5->kind=$1%$->op;
bi
flag: OP(relop,operand,zero)
{cost.space += 1; cost.time += 4;}
={emit ("tst%c\t",1->u.op.sizecode[$25->x.size]) ;
emitoperand($2%); emit ("\n");
$$->kind=1->op;
i
flag: OP(relop,stm,zero)
{if (!'$%2$->cost.setFlags) ABORT;}
={$$->kind=1->0p; };

Finally, a test may be turned back into a number (0 or 1) by the BOOL operator. One could
imagine a machine with a convenient ‘‘move condition code to register’’ instruction; but the VAX
does not have one, so a conditional jump is used:

reg: BOOL(test)
{cost .space+=9; cost.time+=12; cost.setFlags=1; HOLD1l; TOPDOWN; }
={Label merge=newLabel () ;
1->x.truebranch=newLabel () ;
EVAL;
getreg($$);
emit ("movb\t$0, r3d\njbr\t%s\n%s: \nmovb\t$1l, r¥d\n%s:\n",
$$->reqg,merge->s, 1->x.truebranch->s, $$->reg, merge—->s) ;
bz

4.3.10. Expressions too large to fit in registers

In languages where entire records or arrays may be assigned or passed by value, it is neces-
sary to match patterns like

MOVE(MEM(location), MEM(location))

where the size attribute of the MEM nodes (equivalently, of the MOVE node) are arbitrarily
large. The patterns previously shown all assume that fetched values will fit in registers (or

o

register-pairs). However, when the data-value is too large, we may match the entire pattern as a
block-move.

Some languages allow multiple assignments:
a:=b:i=ci=qg;

where a, b, ¢, and d are all record variables. Thus the patterns to be matched are slightly more
general than the one shown above:

bigval: MEM(reg)
={$5->reg=51%$->reqg; getagain($$); givereg(1);};
bigval: MOVE(MEM(location),bigval)
{if ($$->x.size>65535) ABORT;
cost.space+=2; cost.time+= 56+ 37*$$->x.size/10; cost.sideEffect=1;
}
={int i;
for(i=0;i<=5;i++) makeAvail (i,07700);
emit ("movce3\t$%d, (r%d), ", $$~->x.size, $28->reqg) ;
emitlocation($1.1%); emit ("\n");
$$->reg=525%->reg; getagain($$); givereg(2);
}:

A register is associated with each bigval; this register holds the address (not the value) of the ap-
propriate record value.

4.3.11. Operators

The operator classes, which match tokens like PLUS and NEG, are recognized as the non-
terminals binop (binary operator), unop (unary operator), cviop (conversion operator), and cvio-
pu (unsigned conversion operator) by a set of trivial rules. For each operator, the cost of execu-
tion time is recorded, as well as the size code vector (to indicate operand sizes in integer format —
b,w,] — or floating point format — f,d — as appropriate).

unop: FNEG {cost.time = 8;} ={$5->u.op.sizecode=sizecodef;};
unop: NEG {cost.time = 4;}={$$->u.op.sizecode=sizecodei;};
unop: COMP {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};
binop: FPLUS {cost.time = 8;} ={$$->u.op.sizecode=sizecodef;};

binop: FMINUS {cost.time

8:;1 ={$$->u.op.sizecode=sizecodef;};

binop: FMUL {cost.time = 12;} ={$$->u.op.sizecode=sizecodef;};
binop: FDIV {cost.time = 40;} ={$$->u.op.sizecode=sizecodef;};
binop: PLUS {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};

binop: MINUS {cost.time

4;1 ={$$->u.op.sizecode=sizecodei;};

binop: MUL {cost.time = 16;} ={$$->u.op.sizecode=sizecodei;};
binop: DIV {cost.time = 100;} ={S->u.op.sizecode=sizecodei;};
binop: OR {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};
binop: XOR {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};

binop: ANDNOT {cost.time = 4;} ={$$->u.op.sizecode=sizecodei;};

relop: EQ ={$$->u.op.sizecode=sizecodei;};
relop: NEQ ={$$->u.op.sizecode=sizecodei; };
relop: LT ={$%->u.op.sizecode=sizecodei;};
relop: LEQ ={$$->u.op.sizecode=sizecodei; };
relop: ULT ={$$->u.op.sizecode=sizecodei;};
relop: ULEQ ={8S%->u.op.sizecode=sizecodei;};

relop: GT ={$$->u.op.sizecode=sizecodei;};

relop: GEQ
relop: UGT
relop: UGEQ

relop: FEQ
relop: FNEQ
relop: FLT
relop: FLEQ
relop: FGT
relop: FGEQ

cvtop: CVTSS

bi
cvtop: CVTSF

i
cvtop: CVTFS

i
cvtop: CVTFF

bi
cvtopu: CVTSU;

cvtopu: CVTUU;
cviopu: CVTUS;

={$5->u.
={$5->u.
={$5->u.

={$5->u.
={$5->u.
={$5->u.
={$5->u.
={$5->u.
={$5->u.

226 -

op.-
op.
.sizecode=sizecodei; };

op

op.
op.
op.
.sizecode=sizecodef; };
op.
.sizecode=sizecodef; };

op

op

sizecode=sizecodei; };
sizecode=sizecodei; };

sizecode=sizecodef; };
sizecode=sizecodef; };
sizecode=sizecodef;};

sizecode=sizecodef; };

{cost.time=4;}
={$%->u.cvt.sizecodefrom=sizecodei;
$$->u.cvt.sizecodeto=sizecodei;

{cost.time=8;}
={$8->u.cvt.sizecodefrom=sizecodei;
$$=>u.cvt.sizecodeto=sizecodef;

{cost.time=8;}
={$%->u.cvt.sizecodefrom=sizecodef;
$$=>u.cvt.sizecodeto=sizecodei;

{cost.time=8;}
={$%->u.cvt.sizecodefrom=sizecodef;
$$->u.cvt.sizecodeto=sizecodef;

4.3.12. Constants and labels

Literal constants and labels are interchangeable in some contexts and not in others. When
either will do, the symbol name is used:

name: CONST

{int i=$$->u.ivalue;
cost.space= 1i>=0 ? i>32767 2 4 : i>127 2 2 : 1

}:

name: NAME

{cost .space=4;};
name: OP(PLUS,NAME,CONST)
{cost.space=4;};

i<-327687 4 : i<-1282? 2 : 1 ;

Note that the amount of space occupied by a constant depends on the size (byte, word, or long-
word) of the constant. The same is true for labels, but it’s harder to determine the actual space re-
quirements before assembly, so a conservative estimate is used.

4.3.13. Storing into memory

There are two different ways to store values into memory. If a value is in a register, then it
may be moved into memory; the value remains in the register and may be re-used directly. Thus,

-97.

a MOVE of a register value may be matched as a register.

If, on the other hand, a value is computed and stored in the same instruction, so that it is
never explicitly put into a register, then the resulting computation may not be matched as a regis-
ter; it must be matched as a statement.

reg: MOVE(destination,reg)
{cost .time+= 12; cost.space+=2; cost.setFlags=1l; cost.sideEffect=1;
HOLD1;}
={$5->reg=525->reqg;
getagain($$); givereg(2);
emit ("movic\tr¥d,",sizecode[$$->x.size],$25->reqg);
emitoperand ($15);
emit ("\n") ;
}i

The MOVE operator stores its right operand into memory at the address specified by its left
operand; it also yields the right operand as its result. Thus, a register may match a MOVE node if
the right operand matches as a register; the register will be moved into memory and will remain
unchanged as the result of the MOVE.

The left operand may be any destination. The time required is 1.2 microseconds over and
above the time required to compute the destination and the reg. The space required is the space
for the destination plus 2 bytes: one for the ‘‘mov’’ opcode and one for the register-mode
operand. This instruction sets the condition codes appropriately, has a side effect, and requires 1
register (or register-pair) to hold its “‘result.”” These facts are indicated in the cost phrase
(HOLD1 looks at the size of the node to determine how many registers are required).

Instead of allocating a new register for the MOVE node, the result will be kept in the same
register as was used for the right operand. The register-number must be copied from the reg attri-
bute field of the right child into the reg field of the root. The calls to getagain and givereg tell
the register-allocator that this has been done. Then a move instruction is generated; emitoperand
emits the destination l-operand.

The VAX actually has several different move instructions:

movb to move a byte
movw to move a word (two bytes)
movl to move a longword (four bytes)
movq to move a quadword (eight bytes)
The array sizecode is indexed by the size of the MOVE node (1, 2, 4, or 8) and has as its elements
the appropriate ASCII characters for the different sizes:

char sizecode[] = ““.bw.lL..q"’
Thus, this MOVE pattern takes care of storing all sizes for which the VAX has a move instruc-
tion.

If the value to be stored is never in a register, then the result of the computation is not avail-
able for computations in the parent node of the tree. That is, such a MOVE can be matched as a
statement, but not as a register:

stm: MOVE(destination,computation)
{cost.time += 8; cost.setFlags=1l; cost.sideEffect=1;}
={emitcomputation ($23%) ;
emitoperand ($13);
emit ("\n");

¥:

There are some cases where an operand in memory is to be destructively changed by a

-28 -

two-address instruction. When one of the source operands is the same as the destination, this kind
of pattern can be matched:

stm: MOVE(destination,OP(binop,operand,operand))

{if (cost.sideEffect || 'equal(1,%$2.2%)) ABORT;

cost.time -= $%35->cost.time; cost.space -= $%3%5->cost.space;
cost.space += 1; cost.time += 8; cost.setFlags=1l; cost.sideEffect=1
TOPDOWN ;

}

={$%35->cost.dontEval=1; EVAL;
emit ("$s%c2\t",vaxop[$2.1$->0p], $2.15->u.0p.sizecode [$5->x.size]);
emitoperand ($2.3%); emit(","); emitoperand($1%); emit ("\n");
}:

stm: MOVE(destination,OP(binop,operand,operand))
{if (! (nodeops[$2.1%->0p] .attributes&PROPcommute)) ABORT;

if (cost.sideEffect || !equal(1,%$2.33)) ABORT;

cost.time -= $%4$->cost.time; cost.space —-= $%4S$->cost.space;
cost.space += 1; cost.time += 8; cost.setFlags=1l; cost.sideEffect=1
TOPDOWN ;

}

={$%4%->cost.dontEval=1; EVAL;
emit ("%s%c2\t",vaxop[$2.18->0p],$2.1%->u.0p.sizecode[$5->x.51ze]);
emitoperand($2.2%); emit(","); emitoperand($1S$); emit ("\n"):;
Y

If the destination is the same as the second operand (such a test is made by the equal function),
and if the operand does not cause any side effects, then the two-address form of the instruction
can be used. The operand will not be emitted. In this case, its cost must be subtracted from the
node’s cost, as it has been prematurely added in the DEFAULT COST. Furthermore, not be emit-
ted; this fact is communicated by setting dontEval for that leaf of the pattern.

The second version of this pattern works only for commutative operators, and does the same
optimization for the first operand.

Finally, there are patterns corresponding to the VAX increment, decrement, and clear in-
structions.

stm: MOVE(destination,OP(PLUS,operand,CONST))
{if (! (equal($1S5,52.235) &&

($2.3%->u.ivalue == ||l $2.3%->u.ivalue == -1))) ABORT;
cost.time -= $%2$->cost.time; cost.space -= $%2$->cost.space;
cost.time += 8; cost.spacet= 1;
cost.setFlags=1l; cost.sideEffect=1;

TOPDOWN;
}
={$%2$->cost .dontEval=1; EVAL;
emit ("%$s%c\t", $2.3%->u.ivalue>0 ? "inc":"dec"™,
sizecode[1->x.sizel);
emitoperand(1) ;
emit ("\n") ;

};

stm: MOVE(destination,zero)
{cost.time += 4; cost.space += 1; cost.setFlags=cost.sideEffect=1;}
={emit ("clr%c\t",sizecode[$15->x.s1ize]);
emitoperand (1);

-29.

emit (rr\n") :

&

4.3.14. Destructive register operations

The two-address arithmetic instructions put newly computed values into the register con-
taining the second operand. These can be matched as registers only if the dontDestroy field of the
given register is not set. (It would be set if the register’s value was used in several places; in this
case it would have been specified as a TEMP.)

The patterns below produce VAX instructions that destroy one of their operands:

reg: OP(binop,reg,operand)

{cost.space += 2; cost.setFlags=1; HOLD1;

if ($%2%->cost.dontDestroy) ABORT;

}

={emit ("%s5%c2\t", vaxop[$1%->op]l, $1S->u.op.sizecode[$S->x.size]);
emitoperand(3);
emit (", r¥d\n", $25->reqg) ;
$$->reg=3$25->reg;
getagain($$); givereg($28);
}:

reg: OP(binop,operand,reg)
{cost.space += 2; cost.setFlags=1; HOLD1;
if ($%3$->cost.dontDestroy) ABORT;
if (! (nodeops[1->op].attributes&PROPcommute)) ABORT;
}
={emit ("%s%c2\t",vaxop[1->op]l,$15->u.op.sizecode [$5->x.size]);
emitoperand(2%) ; ‘
emit (", r%d\n", 3->reqg) ;
$$->reg=3$33$->reg;
getagain(53%); givereg(3);
};
reg: OP(PLUS,reg,CONST)
{if (!'($3%$->u.ivalue == 1 || 3->u.ivalue == -1)) ABORT;
if ($%1$->cost.dontDestroy) ABORT;
cost.time += 4; cost.space += 2; cost.setFlags=1l; HOLD1l;
}
={$5->reg=3%2%->reg; getagain($$); givereg($23);
emit ("%$s%c\tr3d\n", 3->u.ivalue>0 ? "inc":"dec",
sizecode[$$->x.size], $$->reqg);
}:

4.3.15. Exceptional instructions

Some VAX instructions do not fit conveniently into any pattern. These include the shift,
modulo, and unsigned conversion operations. Individual patterns are provided for these instruc-
tions.

computation: OP(RSHIFT,reg,reg)

{if ($$->x.size != 4 || $25->x.size != 4 || $3%->x.size != 1) REWRIT
cost.time += 24; cost.space+=8; HOLDALL;}
={if ($$->x.size '= 4 || $2%$->x.size != 4 || $385->x.size != 1)

{SUBSTITUTE (tCONVERT ($$->x.size, OPcvtuu,
tOP (4,0Prshift,

-30 -

tCONVERT (4, 0OPcvtuu, $28),
tCONVERT (1, 0Pcvtuu, $338))));}
else $$->kind=36;
};

computation: OP(RSHIFT,reg,CONST)
{if ($$->x.size != 4 || 2->x.size != 4) ABORT;
cost.time += 20; cost.space += 4; HOLDALL;}
={$$->kind=37;:};

computation: OP(LSHIFT,operand,operand)

{if ($8%->x.size != 4 || 2%$->x.size !'= 4 || $3%->x.size != 1) REWRIT
cost.time+=20; cost.space+=1; HOLDALL;}
={if ($S->x.size != 4 || $28->x.size != 4 || $3%$->x.size != 1)

{SUBSTITUTE (tCONVERT ($$->x.size,OPcvtuu,
tOP (4,0P1lshift,
tCONVERT (4, 0OPcvtuu, $28),
tCONVERT (1,0Pcvtuu, $38)))):}
else $$->kind=35;
}i

reg: OP(MOD,computation,reg) /* true modulo, not remainder */
{cost.space+=17; cost.time+=142; cost.setFlags=1; HOLD1;}
={Tree t=tCONST(8,0); Label lab=newLabel() ;
emitcomputation(28);
getreg(t);
emit ("r%d\n",t->reg+l) ;
if ($2%->x.size!=4)
emit ("cvt%cl\trid, r3d\n",
sizecode[2->x.size],t->reg+l,t->reg+l);
emit ("ashg\t$-32, r%d, r3d\n",t->reg, t->req) ;
emit ("ediv\tr3d, r3d, r%d, r3d\n", 3->reqg, t->reqg, t->reg+l, t->reqg) ;
emit ("tstl\tr3d\njgeqg\t%s\naddl2\tr%d, r¥d\n%s:\n",
t->reg, lab->s, 3->reg, t->reg, lab->s) ;
$8->reg=t->reg;
getagain($$); givereg(t); givereg(3); TreeFree(t);
}:

reg: UNOP(cvtopu,reg)
{if (S$$->x.size > 2->x.size) ABORT;}
={$$->reg=5$235->reg;

getagain(3); givereg($23);

}:

reg: UNOP(CVTSU,reg)
{if ($3->x.size > 2->x.size) REWRITE; else ABORT;}
={mtSetNodes ($5,2,tUNOP ($$->x.size,OPcvtss, $25)) ;7 };

reg: UNOP(CVTUS,reg)
{if ($$->x.size > 2->x.size) REWRITE; else ABORT;}
={mtSetNodes ($$, 2, tUNOP ($$->x.size,OPcvtuu, $28));};

reg: UNOP(CVTUU,computation)
{cost.time+=4; cost.space+=3;}

-31-

={getreg($$):
emit ("clrl r$d0,5$S$->reqg);
emitcomputation ($23) ;
emit ("r%d0, 5->req) ;
bi
reg: OP(AND,reg,reg)
{REWRITE; }
={mtSetNodes (5, 3, tUNOP ($5->x.size, OPcomp, $35)) ;
1->op=0Pandnot;
bi

4.3.16. Procedure calls and parameters

A CALL node has two children: an argument list, and a procedure address. Each argument
in the list is pushed onto the stack by the evaluation of an ARG node, and then a calls instruction
is emitted.

The forms of ARG nodes are similar to the forms of MOVE nodes. That is, the argument
may be a computation, an operand, or a bigval. In any case, the proper instruction is emitted to
copy the argument onto the stack. The NOARGS node is used to terminate an argument list.

4.3.17. Constants with value zero

zero: CONST {if ($$->u.ivalue != 0) ABORT;};
zero: CONSTF {if (§8->u.fvalue != 0.0) ABORT;};

4.3.18. Miscellany

The ESEQ operator has a statement as its left child, and an expression as its right. The
statement is to be evaluated, and the resulting value is that of the expression.

reg: ESEQ(stm,reg)
{cost.setFlags=5$%2$->cost.setFlags; HOLDL;
cost .dontDestroy=5$%25->cost .dontDestroy; }
={$$->reg=52%->reg; getagain($$); givereg($2$5):};

This is not as general as it could be; one could imagine that these patterns would also be valid:

location: ESEQ(stm,location)
operand: ESEQ(stm,operand)
computation: ESEQ(stm,computation)
bigval: ESEQ(stm,bigval)

As an example of a suboptimal instruction sequence that results from the absence of these four
rules, consider how this tree

MEM(ESEQMOVE(TEMP,;), CONST,),NAME,))

may be matched as a register. Without the rule location: ESEQ(stm,location) the node
NAME, must be matched as a register, resulting in the instructions:

clrxl r0
moval A,rl
movl (xrl),rl

But with the extra rule, NAME, may be matched as a location, which does not generate an extra
instruction:

clxl r0

<R

movl Bl

5. The MC68020 instruction set

The Motorola MC68020 has a large, complex, and somewhat unorthogonal instruction
set[21]. There are many addressing modes, each instruction takes only a particular subset of these
modes, and there are several different forms of many instructions. (In particular, the MC68020
has several new addressing modes not found on its predecessor, the MC68010.)

5.1. Nonterminal symbols for the MC68020

The Twig specification of the MC68020 has 35 nonterminal symbols (and 141 grammar rules, not
including floating point operations), while the specification for the VAX has only 20 symbols (and
112 rules). This is for several reasons: The addressing modes are more difficult to specify; there
are two kinds of registers; and temporary values must be treated more generally.

The full specification will not be given here, as it is in many respects similar to the
specification of the VAX. However, some of the differences will be summarized.

5.1.1. Registers

The MC68020 has eight ‘‘address registers’” a0-a7 and eight ‘‘data registers’ d0-d7. At least
one of the operands of an arithmetic instruction must be a data register, and the addressing modes
rely more heavily on address registers (though these rules are often broken). This means that
there must be two nonterminals representing registers, not just one. We will call them areg and
dreg here.

Furthermore, it is necessary to distinguish between registers holding temporary values that
are used just once, and registers holding local variables used many times. The former may be the
destinations of two-address arithmetic instructions, and the latter may not. That is, if the value
d4+5 is to be computed, and there is an instruction that computes d;<—d3+5, then this instruction
may be used only if there is no need to use the original value d5 in other places. We will let
dregx stand for a data register whose value is needed only once, and aregx for an address register
whose value is needed only once. These nonterminals represent registers whose contents may be
overwritten as new values are computed from them.

Of course, any register that is overwritable may be used in an instruction that doesn’t hap-
pen to overwrite it. This is expressed by the rules:

dreg: dregx
areg: aregx

which have no cost and which emit no instructions.

In the specification for the VAX, non-overwritability was expressed using an element of the
cost vector: dontDestroy. This is less accurate than having two nonterminal symbols. When there
are two nonterminals (like dreg and dregx) then the dynamic programming will compute the
cheapest way of evaluating a given tree node into a use-once register, and the cheapest way of
evaluating into a must-save register. When one nonterminal is used, only the single cheapest way
to compute the node is found; then the dontDestroy field is looked at as an afterthought. This
could lead to a more expensive match overall. On the VAX, whenever a two-address instruction
pattern rejects a match because dontDestroy is set, there is always a corresponding three-address
pattern available at only a slightly higher cost. But the MC68020 has only two-address instruc-
tions, so the one-nonterminal approximation would not work nearly as well.

Finally, there are contexts where either an address register or a data register is permitted, so
the nonterminal reg stands for either kind of register. Thus, where the VAX specification has one
nonterminal to stand for a register, the MC68020 specification requires five.

5.1.2, Addressing modes

-33-

The addressing modes of the MC68020 are not much more complicated than those of the VAX,
but it is more complicated to represent them in a context-free grammar. This is because a typical
addressing mode has several components, any of which are optional, which are added together to
form the address. Because addition is commutative and associative, the grammar must represent
any permutation of any subset of these components.

By factoring the grammar for addressing modes heavily, the number of rules is brought
down substantially from » factorial — at the cost of introducing several nonterminal symbols. In
fact, 15 symbols are used to express the MC68020 addressing modes, where 4 symbols are used
for the VAX addressing modes.

5.2. Duplication of rules

Because there are several symbols that represent registers, some of the instructions (and pseudo-
instructions like ALLOC) that can operate on any kind of register must be replicated for each
class. For example, the VAX specification has a rule:

reg: MOVE(destination,reg)

This means that a register may be stored into memory, and then re-used as a value. Since the
M68020 has four nonterminals for registers, there must be four copies of this rule:

dreg: MOVE(destination,dreg)
dregx: MOVE(destination,dregx)
areg: MOVE(destination,areg)
aregx: MOVE(destination,aregx)

That is, a many-use data register may be stored into memory, but remains a many-use data regis-
ter, etc. This replication of rules occurs in many places throughout the specification.

5.3. Cost computations

In a highly pipelined computer like the MC68020, it is difficult to calculate the time required to
execute a particular instruction, as the instructions overlap each other in time. Similarly, it is
difficult to impute costs to the various components of an addressing mode. On the other hand, the
dynamic programming algorithm requires that the costs of subtrees must be independent of each
other.

In this situation, an approximation must be made. The cost of each instruction and each
addressing-mode component must be estimated independently of context. Motorola has published
detailed timing charts which give the timings of the different classes of instructions in the various
addressing modes, and by comparing different entries in these tables, costs can be approximated
for each rule in the specification.

(This problem is less noticeable with the VAX, but only because detailed instruction timing
data is not available from the manufacturer!)

6. Performance

Three are three aspects to consider when evaluating a code-generator generator: the conciseness
of the specification, the efficiency of code generation, and the efficiency of the generated code.

6.1. Conciseness

The specification described in this paper for the VAX architecture takes 112 rules. (About 40 of
these are trivial — for example, the rule that names XOR as a binary operator.) These rules cover
about 121 different instructions and about 12 different addressing modes. (The bit-field, loop-
control, and character string instructions are not specified.)

Each rule requires a few lines to write down. It is quite possible that a special-purpose
language for the action (instead of the C programming language) would reduce the size of each

-34-

rule’s specification.

The specification described here may be compared with other work in the literature (sec
Table 1). The number of rules in a specification — quoted in the table — is interesting; but
perhaps more important is the flexibility of the specification language, and the interactions
between rules. The dynamic-programming algorithm is very forgiving, in that special-case rules
don’t prevent general-case rules from working; and in general each rule may be specified without
considering how it will impinge on other rules.

No claim is made that this is the ‘‘optimally concise’’ specification of a machine architec-
ture. Indeed, section 7 summarizes the redundancies, along with some possible improvements,

Authors Rules Remarks
Appel 112 | Present work. Dynamic programming, attribute grammar. 63
terminals, 20 nonterminals, 112 productions.
Graham, Henry, 458 LR(1) Grammar. Before type replication: 115 terminals, 96
Schulman| 14] nonterminals, 458 productions. After type replication: 219
terminals, 148 nonterminals, 1073 productions.
Fraser, Davidson[22] 222 | Peephole-optimization based code generator. 38 instruction-

descriptions, 15 address-mode descriptions each replicated up
to 4 times, 29 miscellancous, 100 translation rules. Does not
include floating point or 16-bit word datatypes.

Aigrain, Graham, Hen- 146 Improvement of Graham, Henry, Schulman. 146 ‘‘meta-

1y, McKusick, pacs’ are automatically transformed into 662 LR(1) produc-
Pelegri-Llopart[15] tions on 246 grammar symbols.
Kessler[23] 238 | Architecture analysis to find ‘‘idioms.”” 238 instruction

descriptions are automatically reduced to 111 instruction fami-
lies; from these, 1273 idioms are generated. These idioms can
be used by code generators.

Table 1. Specifications of the VAX.

6.2. Generated code

The object code produced by the dynamic-programming algorithm is quite good. A backtracking
program that solves the 8-queens problem is used here as an example. (Actually, 18 queens are
used on an 18 by 18 board.) The program is shown in Appendix 1, along with its compilations
into assembly code for both the VAX and the MC68020. The generated code appears quite good;
the only way of improving it seems to be to keep local variables in registers, which is beyond the
scope of an instruction-selection algorithm.

The compiler is organized in three phases: the front end translates the input language into
machine-independent intermediate representation trees; then there is some machine-independent
constant-folding in the trees; then the Twig code generator translates the trees into assembly
language. The constant-folding improves the trees considerably.

6.3. Time and space for code generator

The code generators produced by Twig can be expected to run in O (¢,dN) time and O (c2kN)
space, where d is the number of nonterminals in the grammar, N is the size of the input tree, and ¢;
are constants depending on the implementation. The value of k is an (approximately linear) func-
tion of the number of rules in the description (and their sizes). Because (for any given Twig
specification) d and k are constant, this means that the code generators will run in linear time and
linear space. In practice, because d is as much as 20 or 40, the efficiency is not as great as that of
some of the other linecar-time and linear-space algorithms in the literature.

<

The following benchmarks were performed on a VAX 8700. Generating assembly code for the
MC68020, from a 283-node tree (for the 18-queens backtracking procedure shown in appendix 1),
used about 256000 bytes and 1.23 seconds. For the VAX, the same intermediate tree used 196000
bytes and 0.48 seconds. The better performance for the VAX is undoubtedly attributable to the
fact that the VAX’s description has fewer nonterminal symbols, especially for its addressing
modes.

These values for space and time include all overhead: the time required to format the assembly-
language output, and the costly overhead (several bytes and many microseconds per record) of the
malloc memory-allocator. The Twig program, and the author’s cost and evaluation fragments,
could undoubtedly be tuned to improve the performance significantly.

The space requirements can easily be reduced. Though the dynamic programming algorithm re-
quires space linear in the size of the tree, there is no reason to make a tree as large as an entire
procedure. Instead, only one statement at a time should be generated. This will work as long as
there is no nontrivial tree-pattern in the specification that crosses a statement boundary. In both
descriptions, there is only a rule of the form

stm: SEQ(stm, stm)

which is a ““trivial’’ rule. By doing a top-down tree traversal of SEQ nodes, the ‘‘top-level’”
statements could be easily found, and the code generator could be called on each one. This would
save no time, but now the space required would be proportional to the size of the largest statement
generated, rather than to the size of the largest procedure.

7. Problems and Improvements

The goal of this research has been to find concise specifications for the instruction sets of compli-
cated machines. One way of making a specification concise is to use a macro preprocessor or oth-
er data compression algorithm, so that a short but semantically opaque specification can be ex-
panded automatically into a long but usable specification. This method is unattractive because
there is no guarantee that the structure of the specification will match the structure of the architec-
ture, and it is difficult to provide axioms for the manipulation of macros.

Instead, we seek to find a specification that simultaneously is concise and has a structure matching
that of the architecture it specifies. The Twig specifications given in this paper are reasonably
concise, but they do contain patterns of repetition, where certain features of the instruction set
must be specified several times in different contexts.

This problem could be solved if Twig were somewhat less general. The Twig system is not so
much a code-generator-generator as it is a general tree-pattern matcher. By making the Twig sys-
tem aware of certain identities, the size of specifications could be reduced.

The next section will describe some of the redundancies in current specifications, and some ideas
that could eliminate them.

7.1. Commutative operators

One general class of problems appears in the specification of the MC68020 addressing modes.
Some parts of these addressing modes take the form:

d+A,+X,.-S

where each of the three terms is optional. (The meaning of each term is not important in this dis-
cussion.) Because the plus operator is commutative and associative, any of the following patterns
describes this addressing mode:

d+A,+X,S A, + XS d
d+X,S+A, XS +A, A,
A, +d+X, S d+X,S -S
A, +X,S+d X,.S+d
XnS+d+A, d+A,
X, S+A,+d A,+d

oix

-36-

These 16 patterns can be reduced to 10 (in “‘standard’’ Twig) by the introduction of an additional
nonterminal symbol, and perhaps to 9 if we omit the last one (if perhaps d itself matches 0). This
is still a large number of patterns, however, especially considering that they represent only one
component of one addressing mode.

Perhaps a good solution would be to introduce a permutation operator, so that OP(PLUS,[a,b]) —
using square brackets to denote the permutable children — would behave like either of the two
patterns OP(PLUS,a,b) or OP(PLUS,b,a). Unfortunately, the patterns for the addition of three
terms would still be repetitive:

OP(PLUS,[OP(PLUS,[a,b]),c])
OP(PLUS,[OP(PLUS,[c,a]),b])

because the first of these rules by itself could not match OP(PLUS,OP(PLUS,a,c),b).

7.2. Different treatments of the same registers

Another case of duplication occurs when instructions that move values into registers must be
represented in two different ways: once to produce intermediate values for tree nodes, and once to
explicitly move values into temporary registers. For example, a (hypothetical) add instruction:

reg: OP(PLUS,reg,reg)
reg: MOVE(TEMP,OP(PLUS,reg,reg))

Since these two rules describe the same instruction, the costs will be the same, as will the emitted
code.

There’s no obvious solution here. This problem may just be a symptom of the inconsistent treat-
ment of temporary variables in a tree-based intermediate form: those that are used just once are
internal nodes of the tree, while those used more than once must be handled differently.

7.3. Pseudo-operations

The third kind of duplication occurs when there are classes of rules that work on any of several
nonterminal symbols, but that require the same nonterminal throughout. Consider the ALLOC
pseudo-operation. The tree ALLOC(TEMP,exp) means that a new temporary register TEMP
should be allocated, then the subtree exp should be generated, then the temporary should be
released. This is a way of providing local scope for compiler-introduced temporaries. The sym-
bol exp in this pattern is just a label of convenience, however; it appears in the abstract description
of the intermediate language, but it is not a nonterminal of any particular machine-description.
One way of introducing ALLOC into a machine description is to replace exp by reg as follows:

reg: ALLOC(TEMP,reg)

But this artificially forces the subexpression to be computed into a register, when it may not be na-
tural to do so. For optimal results, it is necessary to have all these rules (for the VAX; even more
are necessary for the MC68020!):

reg: ALLOC(TEMP,reg)

stm: ALLOC(TEMP,stm)

reg: ALLOC(TEMP,reg)

bigval: ALLOC(TEMP,bigval)

operand: ALLOC(TEMP,operand)
location: ALLOC(TEMP,location)
ioperand: ALLOC(TEMP,ioperand)

name: ALLOC(TEMP,name)

computation: ALLOC(TEMP,computation)
flags: ALLOC(TEMP,flags)

37 -

zero: ALLOC(TEMP,zero)

There is one rule here for each nonterminal that can represent exp. In the specification given in
section 4, only a small subset of these are used, for the sake of sanity and readability. The ESEQ
pseudo-operation (similar to the “‘comma’’ operator in C) behaves analogously.

This problem could be handled by making the left-hand-side nonterminal decidable by the cost
function, rather than having it be fixed (as in the current system). Then, a new nonterminal exp
could be made, with rules of the form

exp:reg {cost.nonterminal = REG;}
exp: operand {cost.nonterminal = QOPERAND;}

R

for each nonterminal that represents an expression. These rules would store in their cost field the
particular nonterminal that was matched. Finally a rule of the form

?: ALLOC(TEMP,exp) {leftHandSide := $%15->cost.nonterminal;}
would describe all “‘versions’’ of ALLOC.

7.4. Parametrized nonterminals

Some nonterminals can match in more than one mode. For example, the Twig specification for
the MC68020 has two different nonterminals representing a D-register; dregx stands for a register
whose value is used only once, by the immediate parent of that node in the tree, while dreg stands
for a register that may have more than one use. The distinction has implications for the permissi-
bility of two-address instructions that overwrite the register as they calculate new values.

In the specification given here for the VAX, only one nonterminal for register is used, and
the information about overwriteability is kept in the cost vector. In general, this scheme will not
perform as well as the more general two-nonterminal scheme, because the decision about whether
to compute the value with or without overwriteability is made before it is known whether overwri-
teability is needed. However, the VAX instruction set is rich enoungh in three-address instructions
that the approximation produces adequate results.

A similar approximation is made (in both specifications) to designate instructions that do or
do not set the condition code flags of the machine. (This is the setFlags field of the cost vector.)
The more general scheme would be to have two nonterminals: one for calculations that set the
condition codes, and one for all calculations (that may or may not set the condition codes). Actu-
ally, each nonterminal that can stand for an expression would have to be replicated.

To cope with this large but consistent set of nonterminal symbols, perhaps a way of specify-
ing vectors of nonterminals would be appropriate. The Aho-Johnson register-allocation algo-
rithm[5] operates on such vectors, but without the generality of context-free grammars.

This would produce specifications just as concise as the ones in this paper, but they would
more accurately select optimal instruction sequences. On the other hand, the number of true non-
terminals used in the dynamic programming algorithm would grow enormously, with its concomi-
tant space and time cOSts.

7.5. Multi-phase actions

In the specifications presented here, the rules for operands (addressing modes) could not emit as-
sembly code immediately, but only when the parent instruction was ready. On the other hand, it is
necessary for the descendants of the addressing modes to emit assembly code, since they
correspond to entire instructions. This problem was solved by having actions that just record the
kind of match, and then traversing the tree later with procedures like emitoperand.

It might be nice to have more than one phase of action-code execution in Twig to handle si-
tuations like this. In particular, it should not be necessary to explicitly store the kind of the match,
because Twig has already computed and stored the kind — it is just the number of the matching

~38 -
grammar rule.

8. Conclusion

Dynamic programming is a robust and efficient technique for generating machine code from ex-
pression trees. Code generator specifications written for the Twig system correspond closely and
elegantly to the instruction sets and addressing modes of complex-instruction-set computers. The
use of many nonterminal symbols to describe the different classes of instructions and operands el-
iminates redundancy from the specification without causing the blocking problems commonly
found in LR(1) specifications.

Appendix 1. Generated code for a sample program

This appendix contains the benchmark program mentioned in section 6. It is an implementation of
a backtracking solution to the 18-queens problem (as the 8-queens program runs too quickly to ac-
curately benchmark). The program is expressed in a Pascal-like language that was chosen to pro-
duce a larger variety of intermediate trees than Pascal or C would.

var diagl : array[2..36] of boolean;
diag2 : array[-17..17] of boolean;
row : array[l..18] of integer;
col : array[l..18] of boolean;

procedure try(n : integer);
var i : integer;
begin if n>18
then _exit (0)
else for i := 1 to 18
do if not (col[i]<>0
or else diagl[i+n]
or else diag2[i-n])
then begin col[i]:=1;
diagl[i+n]:=1;
diag2[i-n]:=1;
row[n] :=1i;
tzy(ntl) ;
col[i]:=0;
diagl[i+n]:=0;
diag2[i-n]:=0;
end
end;

Al.1 Code generated for the MC68020

The code generator built from the MC68020 specification produced the translation below. The
left-hand column is the exact code generator output; the right-hand column is the source program,
as a form of annotation. The assembly-language uses the Motorola notation, rather than the
Berkeley Unix notation, for the addressing modes.

g procedure try(n : integer);
1link a6, -#L6 var i : integer;
moveml #L5,-(sp)
cmpil 18, (a6,8) begin if n>18
jle L3

movel #0,-(sp) then _exit (0)

-39

jsr __exit

throw away do0

Jjmp L4

L3:

movel #1, (a6, -4) else for i := 1 to 18

L2:

tstb ([a6,-4],_col-1) do if not (col[i]<>0

jne Ll

movel (a6, -4),47 or else diagl[i+4n]

moveal ab6,ab
addgl #8,a5

tstb ([a5]1,d7,_diagl-2)

jne Ll

movel (a6,-4),4d7 or else diag2[i-n])
subl (ab,8),d7

lea _diag2,a5

tstb (d7,a5,17)

jne Ll

moveb #1, ([a6,-4],_col-1) then begin col[i]:=1;
movel (a6,-4),47 diagl[i+n] :=1;

moveal a6,ab
addql #8,a5
moveb #1, ([a5]1,d7,_diagl-2)

movel (a6,=-4),47 diag2[i-n]:=1;
subl (a6,8),d47

lea _diag2,a5

moveb #1, (d7,a5,17)

movel (a6,8),47 row[n] :=i;

lea _row,ab

movel (a6,-4), (d7:1*4,a5,-4)

moveal (a6,8),a5 try(n+l);

addqgl #1,a5
movel a5,-(sp)

jsr _try

throw away do0

clrb ([a6,-4],_col-1) col([i]l:=0;
movel (a6, -4),d7 diagl[i+n]:=0;

moveal ab6,ab
addgl #8,a5

clrb ([a5]1,d7,_diagl-2)

movel (a6,-4),d47 diag2[i-n] :=0;
subl (a6,8),47

lea _diag2,a5

clrb (d7,a5,17)

Ll: end

movel (a6,-4),4d7
addgl #1,47
movel d7, (a6, -4)
cmpil 18,d0

jle L2

L4: end;
moveml (a6,-16),#L5

unlk ab

rks

L5=0x6080

Al1.2 Code generated for the VAX
Here is the output of the Twig code generator built from the VAX specification described in this paper,

when applied the the 18-queens program.

_try:
subl2
cmpl
jleqg
pushl
calls
throw
jmp
T3
movl
L2:
movab
tstb
jneq
addil3
tstb
jneq
subl3
tstb
jneq
movab
movb
addl3
movb
subl3
movb
movab
movab
addl3
calls
throw
movab
clrb
addl3
clxrb
subl3
clrb
1A
addl3
movl
cmpl
jleg
L4:
ret

54, sp
4(rl2),%18
L3

$0

81, exit
away r0

L4
$1,-4(rl3)

*-4(rl3),rll
_col+-1(rll)

Ll
4(rl2),-4(rl3),rll
_diagl+-2(rll)

Ll
4(rl12),-4(rl3),rll
_diag2+17(rll)

Ll

*-4(rl3),rll

51, col+-1(rll)
4(rl2),-4(rl3),rll
$1, diagl+-2(rll)
4(rl2),-4(rl3),rll
$1,_diag2+l?(rll)
*4 (rl2),rll

*-4(rl3),_ rowt+-4[rll]

$1,4(rl2),-(sp)
$1,_try

away r0
*-4(rl3),rll
_col+-1(rll)
4(rl2),-4(rl3),rll
_diagl+-2(rll)
4(rl2),-4(rl3),rll
_diag2+17(rll)

$1,-4(rl13),rll
rll,-4(rl3)
rll,$18

L2

procedure try(n :

-l -

integer) ;

var i integer;

begin if n>18

then exit (0)

else for i := 1 to 18

do if not (col[i]l<>0

or else diagl[i+n]

or else diag2[i-n])

then begin col([i]:=1;

diagl[i+n]:=1;
diag2[i-n]:=1;
row[n] :=i;
Exyintl) ;
col[i]:=0;
diagl[i+n] :=0;

diag2[i-n]:=0;
end

end;

The code generator has discovered that the two instructions

o

movab *—4 (rl13),rll
movl -4(rl3),rll

are of equal cost. Since the code generator doesn’t know that the latter instruction is the one convention-
ally used by humans, it blithely uses the first one that comes to hand. This non-problem could be ““solved’’
by adding an “‘ugliness”” field to the cost structure.

This example demonstrates that the dynamic-programming code generator makes good use of com-
plex addressing modes. The program above could be significantly improved by holding the variables i and

n in register rather than in stack-frame locations, but this is beyond the scope of the instruction-selection
algorithm.

-42.-

References

References

1. R. Sethi, ““Complete register allocation problems,’” SIAM J. Computing, vol. 4, no. 3, pp. 226-248, SIAM, 1975.

2. J. Bruno and R. Sethi, ““Code generation for a one-register machine,”” J. ACM, vol. 23, no. 3, pp. 502-510,
ACM, 1976.

3. A. P. Ershov, ““On programming of arithmetic operations,’” Comm. ACM, vol. 1, no. 8, pp. 3-6, ACM, 1958.

4, R. Sethi and J. D. Ullman, ““The generation of optimal code for arithmetic expressions,’” J. Assoc. Computing
Machinery, pp. 715-728, ACM, 1970.

5: A. V. Aho and S. C. Johnson, ‘‘Optimal code generation for expression trees,”” J. ACM, vol. 23, no. 3, pp. 488-
501, ACM, 1976.
D. E. Knuth, “*A generalization of Dijkstra’s algorithm,”” Information Processing Letters, vol. 6, pp. 1-5, 1977.
T. Kasami, ‘‘An efficient recognition and syntax algorithm for context-free languages,”” Scientific Report
AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, Mass., 1965.

8. D. H. Younger, ‘‘Recognition and parsing of context-free languages in time rn3,” Information and Control, vol.
10, no. 2, pp. 189-208, 1967.

9. C. Gordon Bell and Allen Newell, Computer Structures: Readings and Examples, McGraw-Hill, New York,
1971.

10. R.G.G. Cattell, ‘‘Formalization and automatic derivation of code generators,”” Ph.D. Thesis, Carnegie-Mellon
University, Pittsburgh, PA, April 1978.

11. Christopher W. Fraser, ‘A compact, machine-independent peephole optimizer,”” Sixth ACM Symp. on Princi-
ples of Programming Languages, pp. 1-6, ACM, 1979.

12. J. W. Davidson, ‘‘Simplifying Code Generation Through Peephole Optimization,”” TR 81-19, Department of
Computer Science, University of Arizona, Tucson, Arizona, 1981.

13. R. Steven Glanville and Susan L. Graham, **A New Method for Compiler Code Generation,”” Fifth ACM Sym-
posium on Principles of Programming Languages, pp. 231-240, ACM, 1978.

14. Susan L. Graham, Robert R. Henry, and Robert A. Schulman, ‘‘An Experiment in Table Driven Code Genera-
tion,”” Tenth ACM Symposium on Principles of Programming Languages, pp. 32-43, ACM, 1983.

15. Philippe Aigrain, Susan L. Graham, Robert R. Henry, Marshall K. McKusick, and Eduardo Pelegri-Llopart,
“‘Experience with a Graham-Glanville style code generator,”” Proc. Sigplan '84 Symp. on Compiler Constric-
tion (Sigplan Notices), vol. 19, no. 6, pp. 13-24, ACM, 1984,

16. M. Ganapathi, ““Retargetable Code Generation and Optimization using Attribute Grammars,”” PhD. Thesis,
Univ. of Wisconsin, Madison, Wis., 1980.

17. A.V. Aho, M. Ganapathi, and S. W. K. Tjiang, Code generation using tree matching and dynamic program-
ming, 1986.

18. Steven W. K. Tjiang, ‘‘Twig Reference Manual,”” CSTR-120, ATT Bell Laboratories, Murray Hill, NJ, 1986.

19. VAX Architecture Handbook, Digital Equipment Corp., Maynard, Mass., 1979.

20. Andrew W. Appel and Kenneth J. Supowit, “‘Generalizations of the Sethi-Ullman algorithm for register alloca-
tion,”” Software — Practice/Experience, vol. (to appear), 1987.

21. MC68020 32-Bit Microprocessor User's Manual, Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

22. I. W. Davidson and Christopher W. Fraser, ‘‘Automatic Generation of Peephole Optimizations,”” Sigplan *84
Symposium on Compiler Construction, pp. 111-116, ACM, 1984.

23. Peter B. Kessler, ‘‘Discovering machine-specific code improvements,”’ Proc. Sigplan '86 Symp. on Compiler

Construction (Sigplan Notices), vol. 21, no. 7, pp. 249-254, ACM, 1986.

