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ABSTRACT

Two of the most important parameters of a computer are its
processor speed and physical memory size. We study the relation-
ship between these two parameters by experimentally evaluating
the intrinsic memory and processor requirements of various appli-
cations. We also explore how hardware prices are changing the
cost effectiveness of these two resources. Our results indicate that
several important applications are ‘‘memory-bound,” i.e., can

benefit more from increased memory than from a faster processor.
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1. INTRODUCTION

A computer has two main resources: processor cycles and memory. One of
the fundamental questions in computer design is: How much of each resource
should a given computer have? One useful way to visualize the tradeofls
between memory size and processor speed is to plot the values of these parame-
ters for commercial computers. Figure 1 shows such a graph, with CPU speed
in MIPS (million instructions per second) on the horizontal axis and memory
size in megabytes on the vertical one. It turns out that most computers, past
and present, lie within a order of magnitude of a straight line with a slope of 1
MIPS per megabyte. This ratio is known as Amdahl’s constant[16]. Hence,
today’s computer designer or user must decide where to be in this two-
dimensional space. In particular, he must decide if a new computer should fol-
low past trends and be close to Amdahl’s line, or whether it should be in unex-

plored but potentially beneficial areas of the spectrum.

One of the reasons why this choice is difficult is that we do not fully under-
stand Why computers have followed Amdahl’s trend. A second reason is that
memory prices are changing rapidly, possibly upsetting the balance between
CPU cycles and memory [l1]. For example, (from our own experience) in
October 1983 a VAX 11/750 cost 47,000 dollars, or approximately 78,000 dollars
per MIPS. In January 1986, a VAX 8600 CPU cost 300,000 dollars , or approxi-
mately 75,000 dollars per MIPS [2]. The drop in price was relatively small.
During the same period, memory prices fell by almost a factor of 4, as 64K
RAMs gave way to 256K RAMs as the volume selling memory chip [8]. The end

result is that a megabyte is now selling for between 1000 and 5000 dollars (at



the board level). Hence, it is now tempting to configure a computer with many

more megabytes than MIPS, substantially to the left of Amdahl’s line.

Of course, microprocessor prices are dropping faster than mainframe prices,
so it is also tempting to configure a machine with many microprocessors, achiev-
ing a high number of combined MIPS. Such a machine could very well be sub-

stantially to the right of Amdahl’s line.

The key to understanding the memory-CPU tradeoffs is understanding the
applications. For a highly parallel machine to the right of Amdahl’s line, it is
important to have applications that can be decomposed into parallel tasks and
can effectively utilize the available MIPS [4]. Similarly, for a machine with a
large memory it is important to identify applications that are memory-bound,
i.e., that can effectively utilize the memory. (We use the term memory-bound in

an informal fashion here. In Section 3 we propose a more formal definition.)

In this paper we focus on this last issue. In particular, we will try to
understand what applications would benefit more from a larger memory than
from a faster processor. We will also address the problem of measuring the
“memory intensity” of programs, and how to factor in the changing hardware

prices into a decision.

Two factors play a key role in determining whether a program is memory-
bound: locality of memory references and the ratio of memory references to
other CPU operations. A program has good locality if it often reads memory
locations referenced in the immediate past, or locations physically close together
(e.g., on a single page). A program with good locality does not have large phy-
sical memory requirements, for it will infrequently have to access secondary
storage under demand paging. Similarly, if a program executes many internal
CPU instructions (e.g., register to register move) between each memory refer-
ence, the need for a large memory is reduced. Our goal here is to identify and
characterize applications that have poor locality and a relatively high ratio of

memory to internal CPU operations.

When we study the memory references of a program, our main interest will
be on the data references. Our view is that large memories are not required for

holding programs since instruction references have excellent locality. In other
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words, a few megabytes (which cost a few thousand dollars at today’s board
level prices) can probably hold the active parts of the code. So, if an applica-
tion is going to require a large memory, it will be because it references a large
data structure, e.g., a database, the representation of a VLSI chip, or a set of
inference rules. These large structures are becoming more common as people

attempt to solve “‘large” problems.

It is interesting to note that although instruction references are well under-
stood [9,10,11,12], not as much is known as to how programs reference their
data structures. We were only able to find two references in the literature
[13,15] that analyzed instruction and data references separately. (We will com-
ment on [13] later.) Data and program refernces tend to be different. Instruc-
tion sequence references with their structured sequentiality and standard loop-
ing and subroutine constructs tend to be similar over many programs. Data
references: on-the other hand tend to reflect individual algorithms and data
structures. For this reason, one can study instruction references in the general
case, but data references are best examined in the specific case. This explains
why data references are harder to study, and consequently little research has
focused on them. In this paper we intend to examine data references across a
range of algorithms and data structures. Combined instruction and data
analysis were important at a time when memory was expensive and paging
mechanisms were being developed. Today, we feel it is more important to study

data references exclusively.

In this paper we will not consider multi-programming. First of all, we wish
to study the processor-memory tradeoffs in the simpler context of a single pro-
gram. Only when we understand this, will we want to move on to a multi-
programming machine. A second reason is that in today’s world of personal
workstations and network servers, it is becoming more common to run a single
program at a time. Hence, our results will be directly applicable in this con-

text.

Finally, we are going to focus on “standard” programs that have not been
tuned to improve their locality or their CPU efficiency. Clearly, if one knows

his program is going to run on a machine with insufficient memory or
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insufficient CPU cyeles, one may try to rewrite the code. ‘For example, to cope
with insufficient memory one may pre-fetch blocks from disk before they are
needed. However, most users (if not all) want to stay away from such tricky
optimizations. If they are buying a new machine, it would be desirable to
configure it properly, as opposed to programming around deficiencies. Hence, in
our measurements, we will use programs taken directly from standard sources.

We will return to this point later.

In the following section we start by presenting a simple model that is help-
ful in understanding the memory-processor tradeofls. In Section 3 we study how
memory impacts real applications, while in Section 4 we focus on the impact of
processor and prices on these same codes. Finally, in Section 5 we discuss the

results and their implications.

2. A MODEL

In order to better understand the notion of a memory-bound program, in
this section we present a simple model of program behavior. This model will

also help us interpret the experimental results of the following section.

Consider a program P that accesses a data structure containing V words.
Of this virtual space, only M words fit in main memory. Accessing a word in
memory takes T)s seconds; servicing a page fault takes Tp seconds. Every time
P references memory, there is a probability o that a page fault occurs.
Between memory references, P runs on average S seconds of CPU-internal
operations. Hence, the expected time P will take from the start of a memory

reference to the next one is:
R =S8+ (1—a) Ty + a(Ty + Tp)
or
R=S+4+Ty+alp

If Pexecutes a total of n references, then P's expected running time is nR. (As
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discussed in the introduction, we have ignored instructions fetches.)

If we add sufficient memory to hold P's data structure, then « becomes

zero, and the time between references is simply
Ro=84+ Ty

The improvement in total running time due to the added memory is
(nR) / (nRo), or

To get an idea of the range of R /Ro values, let us look at two programs
which exhibit “extreme’ types of data reference patterns. One is a program

that probes memory locations at random. In this case,
a, =1—

The second program is one that scans its V words sequentially. If each block

read in from disk contains B words, then

WL
¢ B

Figure 2 shows R /Ro as a function of M /V (the fraction of P's data struc-
ture resident in memory) for the random and sequential programs and for vari-

ous values of S. We have taken Tj to be one microsecond, T to be 10 mil-

liseconds, and B as 1000 words.

The figure shows that there is a wide range of R /R, values, i.e., that
different programs benefit from memory in different ways. If « is large and S'is
small, it pays to invest in memory. Of course, the next question is: Where do

“real” programs fit in this spectrum? The next section addresses this question.



3. MEMORY BENCHMARKS

We evaluated a set of “‘representative’ applications codes to see how they
would utilize memory. (We did not study any programs that were obviously
CPU-bound.) The tests were run on a VAX 11/785 with 128 megabytes of
memory. (Note that the 128 megabyte VAX 11/785 is not a standard product.
We purchased a custom made large memory configuration from DEC.) A
modified version of ULTRIX 1.1 i allows us to reconfigure the system to utilize
only a portion of the memory (between 1 and 128 megabytes). When the usable
memory is reconfigured, all system buffers and paging thresholds are scaled pro-
portionately. All I/O was to RAG60 disks. Our experiments were run stand

alone, with no other processes competing for CPU cycles or memory.

Seven benchmark codes have been run. Quicksort is a well known program
that sorts a set of four byte integers [7]. The code we used was written by Ken
Thompson of Bell Laboratories. The program is run on a random permutation
of N integers. (The time to produce the permutation is not counted in the run
time. The same is true about setup times for the other benchmarks.) VLSI Lay-
out produces a circuit layout for a VLSI chip from a file of cell definitions and
constraints [3]. For our experiments, we generated the layout for a control path
of a bit-sliced micro-processor. Floyd-Warshall is an O(NS) dynamic program-
ming algorithm to find the shortest paths between all pairs of nodes of a graph
[6]. The graph we used was simply a chain, with the first node connected to the
second, the second to the third, and so on. All distances were equal. However,
note that the data access pattern of our program does not significantly depend
on the interconnection. Matriz Multiply takes the product of two N by N arrays
(C = AB) using the O(N®) method of multiplying one row of A by a column of
B to produce a single element of C. Note that the VAX-11/785 has floating
point hardware which greatly improves multiplication performance. Binary
Tree performs a sequence of random word lookups on an English language dic-
tionary which is stored as a balanced binary tree. (The time to generate the

balanced binary tree and the random sequence of words is not included in the

1 ULTRIX 1.1 is similar to Berkeley Unix 4.2



run time.)

The last two programs are included mainly for reference. Sequential Scan
sequentially reads a fixed size array ten times. The array is initially set to con-
tain zeros (not counted in execution time). This program performs almost no
computations between accesses to the array. Random Probe accesses words in
an array in random order. Instead of computing a random number between
probes, we pre-compute an array of random numbers. At execution time these
numbers are read sequentially and drive the probing. (Hence, this implementa-
tion of the random probe is actually a combination of sequential scan and ran-
dom probe.) Although both of these programs are interesting as reference
points, we believe they also approximate behavior of real codes. For example, a
program following a long pointer chain may have very random memory accesses.
Similarly, a program that collects statistics or prepares reports may examine

large structures sequentially.

To measure performance dependence on memory, one could fix a problem
instance and vary the memory size of the computer. ‘In our case this proved to
be too time consuming because each memory size change entailed performing a

system reboot.

Instead, we varied the size of the problem instance. First, we fixed the
main memory size of our computer to the full 128 megabytes and ran a
sequence of program with varying data needs. For example, for Quicksort the
array to sort was of size 16, 24, 32, . . . megabytes. Since the physical memory

was larger than the program needs, there was no paging.

Then we fixed the physical memory to a smaller size (e.g., 16 megabytes for
Quicksort) and ran the same programs again. In this case, only a fraction of
the address space fit in memory, so there was paging. For each problem
instance, we divided the running time with the small memory by the running
time with all data memory resident to obtain a factor equivalent to R/Ro of
Section 2. Our results are presented in Figure 3, again as a function of M/,
the fraction of the address space (program and data) that was memory resident.
As an example, an R /Ry factor of, say, 10 for M /V = 0.5 means that the pro-

gram ran 10 times faster when its data was memory resident than when it only
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had one half of the memory it required.

We should point out that in Unix (i.e., Ultrix) it is very difficult to control
precisely how much physical memory a process can utilize. However, from the
paging and swapping thresholds that were set, as well as from operating system
statistics, we were able to get a rough idea (within 109) of how much physical
memory our program had access to in the small memory machine. Therefore,
even though our measure of R /Rp was precise, the value of M /V where it is

plotted is approximate.

The results for Random Probe and Sequential Scan follow the trends we
predicted in Section 2. However, notice that for Sequential Scan R /Ro does
not drop abruptly to 1 when the percent of resident data reaches 100. This is
because our computer does not use an exact Least Recently Used strategy for
selecting pages to flush out to disk. (In our analysis we assumed that every
time a new block was referenced, there was a page fault. Here, it is possible

that the next block was not flushed out.)

Like Sequential Scan, Quicksort in many cases scans its data sequentially.
However, Quicksort performs more computations between memory references, so
the extra memory does not buy as much. The VLSI Layout tool was very CPU
intensive, but the probes it did make to memory were very random. Conse-
quently, its performance degraded significantly when main memory size was

reduced.

The Floyd- Warshall Code accesses both rows and diagonals of a two dimen-
sional array. As the memory size is decreased, each diagonal access caused a
page fault, making Floyd-Warshall run hundreds of times slower. (A note on
our evaluation of Floyd-Warshall: The O(N?) Floyd-Warshall Code takes several
days to many months run on a large problem instance. To speed up the bench-
marking procedure, we modified the Floyd-Warshall Code so that the outer loop
is executed only a constant number of times. This allowed us to perform many
tests without altering the fundamental access patterns and paging performance

of the program.)

The inner loop of the Matriz Multiply program scans one input matrix in

row major order and the other in column major order. As memory size is
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decreased, the column major order reference pattern will begin to produce page
faults. Because the matrix referenced in column order only occupies one third
of the total memory used by the three arrays, this page faulting only becomes
significant as the available physical memory approaches one third of the data
set size. The Matrix Multiply program is also relatively CPU bound, in spite of
the floating point hardware. Multiplication operations take more time than

simple addition and comparison operations used in the other benchmarks.

The Binary Tree program accesses data in a random fashion approximating
the behavior of Random Probe. However, interior nodes of the search tree
(which are the most frequently referenced) are likely to remain core resident.

This improves paging performance as can be seen in Figure 3.

Figure 3 illustrates how ‘“memory-bound” a program is, i.e., programs with
higher values of R /Ro require memory more badly. However, is some cases it
may be more convenient to have a single number that describes the behavior of
a program. To this end, we propose the value of R /Rp at M /V.=0.50. That
is, we define the memory-bound factor (MBF) to be

Py
P

MBF =

where P is the execution time when half of a program’s address space fits in
memory and P, is the execution time when all of the address space fits in

memory.

Using the results of Figure 3, we can now linearly order programs by their
MBF. This is shown in Figure 4. (Since our measurements of M /V are rough,
our MBF are also approximate.) Although this figure does not have all the
information we may want, it does illustrate in a simple fashion that programs

like Floyd-Warshall and Random Probe are much more memory-bound than ones

like Quicksort.
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4. PROCESSOR AND
MEMORY COMPARISONS

Having studied the effect of memory on performance, the following ques-
tions immediately arise. How would the performance of the benchmarks
improve if the processor become faster? Which would be a cheaper way to
improve performance: buy memory or buy a faster processor? In this section we

address these questions.

Suppose we increase the speed of our processor by AP MIPS. This
effectively reduces parameter C of our model from say C, to Cy. If nR; is the
execution time with the slower processor and nk, is the time for the faster pro-

cessor, then the gain in performance per added MIPS is:

(Ry/Rs)—1
Gupips = AP

As we have seen, memory can also improve performance. Let us define the

improvement per megabyte to be:

, (R/Rp)—1
GumeEM = TAM

where AM is the number of megabytes of address space that did not fit in

memory when the program was run with limited memory.

If each processor MIPS costs Cjgps and each megabyte Cypas, then the
improvement per dollar invested is Gagps/ Carps and Guen | Cuen respectively.
Dividing these two quantities, we obtain the relative cost effectiveness of adding

more memory versus adding a faster processor:

Guen/Cuey (G / Guarrs)

= "
Gaps/ Cyips  (Cumar/ Crurps)

We can rewrite this as
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G
E=-—
g

where G is the ratio of gains Gypy/Gugps and C is the cost ratio
Cuen / Cuips-

Of course, in reality things are not as simple as this. The cost of MIPS is
not linear as we have implied; faster processors usually come with bigger caches
and faster disks, so one cannot simply add MIPS; and so on. In spite of this, we
feel we can get some useful insights out of this simple model. In particular, we
can experimentally evaluate an approximation to G. Then we can plot EF as a

function of C, and observe how cost effectiveness varies for ‘‘reasonable’ cost

value.

To estimate G, we ran a new series of experiments. For each of our seven
applications, we defined a problem instance that required approximately 2
megabytes of user memory. We ran. the programs on a VAX 11/750 that had
about 1 megabyte available for the program. Then we ran the same program
with enough memory to avoid all paging. Since the increase in memory AM

was 1 megabyte, the ratio of the execution times gives us Gypgas.

Next, we ran the same programs on a VAX 11 /785 with only 1 megabyte of
memory available to the program. Both machines paged off an RAG0 disk, so
paging times were comparable. (As a matter of fact, the RAG0 has a removable
pack. We physically moved the pack, containing the operating system and our
programs, from one computer to the other.) The memories of both machines
have the same access times, and the CPU have similar instruction sets. Hence,
moving to the VAX 11/785 is a reasonable approximation to increasing the pro-
cessor speed only. The 785 is rated at 1.5 MIPS, while the 750 is a 0.6 MIPS
machine. (Some of the improved performance of the 785 is due to a bigger
cache and a faster bus. However, for our purpose, we feel it is still fair to treat
the 785 simply as a faster processor.) Hence, AP is 0.9 MIPS. Dividing the

ratio of performances by AP we obtain our estimate for Gjgpg.

Table 1 presents the results of our experiments. The ratios Gy, Gagps,

and G are shown in Table 2. Note, the wide range of G, indicating that some



programs are more sensitive to CPU ecycles, while others are more sensitive to

memory.

To view the effect of costs, we have plotted E versus C in Figure 5. We
chose as the central C value 0.1 because this represents our costs: We paid
95,000 dollars for the 1.5 MIPS VAX 11/785 processor, and 50,000 dollars for
the 0.6 MIPS VAX 11/750 processor. (Since both processors are discontinued,
they now cost substantially less.) DEC (Digital Equipment Corporation)
currently charges 5,000 dollars for a 1 megabyte board.

Of course, this value of C is just a ‘“‘starting point.” Costs vary widely
among manufactures. As we mentioned earlier, costs do not remain constant
across all computational speeds. Upgrading a 0.5 MIPS computer to a 1 MIPS
model might only require replacement of an inexpensive microprocessor. How-
ever, moving from a 3.5 MIPS to a 4 MIPS machine may require expensive new
circuit and packaging techniques. Memory prices, on the other hand, are more
constant. Yet, there are also non-linearities. For instance, increasing the phy-
sical memory of a VAX from 512 to 513 megabytes is extremely expensive, for it
requires architectural changes. (Under the VAX architecture, there are only 29
bits available for physical addresses.) Therefore, Figure 5 is only useful for

studying trends, not particular values.

It is interesting to note that for all values of Cin Figure 5 (actually, for all
values of C less than 0.67), all curves except for Matriz Mulliply are above the
FE =1 value. This means that for almost all reasonable cost values, it is more
cost effective to improve performance via memory. For some of the programs,
memory is orders of magnitude more effective for improving performance. (It
should be noted that Matriz Multiply can benefit more from added memory than
our figures indicate. Matriz Multiply begins to page significantly when less than
one third of its data set is core resident. This is not indicated by our value for

G is based on measurements with half the application’s data set core resident.)

In the introduction we argued that memory prices are falling faster than
processor prices, at least for high performance machines. This represents a lelt-
ward shift in the C values of Figure 5. So if this trend continues, memory will

dramatically increase in effectiveness over the next few years.
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5. DISCUSSION AND CONCLUSIONS

Although our results are limited in several ways, we believe it is safe to

reach the following conclusions:

(1) Paging is not as efficient for data as for instruction fetching. Since disks
are so much slower than memory, references to virtual memory must be
quite localized for paging to work properly. References to code appear to
have good enough locality, but in most of the programs we tested, data
references did not exhibit good locality. We believe that this is the case
for a substantial number of programs. This thrashing caused by data

references only becomes apparent when the data structures involved are

relatively large.

(2) For a spectrum of applications, memory appears to be substantially more
cost effective than processing power. Thusz if one is configuring a com-
puter with a limited amount of funds, it may make more sense to first pur-
chase enough memory to hold all of the data programs required, and only
then to buy the fastest processor one can afford with the remaining
money. This is not the way most customers operate today. Customers
typically select the processor first, then skimp on the memory. Then they
complain that their processor is not fast enough, while in reality their
applications are simply thrashing. Of course if funds are not limited, then

one may buy additional memory as the need arises.

(3) Computers substantially to the left of Amdahl’s line (i.e., with consider-
ably more megabytes than MIPS) may be (or should be) more common in
the near future. These machines will be useful for solving large memory-
bound problems, e.g., the design of a large VLSI chip. This is not to say
that all computers will move in this direction. There are always CPU- _
bound problems that have small data requirements, and customers who

can afford both a large memory and a very fast processor.

In the rest of this section we make some additional observations about the

memory-processor tradeofls.

We mentioned in the Introduction that most studies of memory reference

patterns have focused on combined instruction and data accesses. When the
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data is much larger than the code, data accesses become the dominant factor.
The one paper we found that did analyze data references separately [13], sup-
ports our contention that many programs are memory-bound. In this paper, D.
W. Clark analyzes in detail the data references of three “real” LISP programs:
a chemical structure generator, a parser for a speech understanding system, and
a program that builds and executes partially ordered plans of action. In sum-
mary, Clark discovered that the programs do have substantial data locality of
reference. For example, between 85 and 95 percent of the references fall within
the most recently accessed page (512 bytes). So even if we only had a single
data page at a time in memory, the miss ratio, i.e., the probability of having to

fetch the referenced data from secondary storage, would be 0.15 to 0.05.

However, if we assume, as Clark does, that a reference to secondary
memory takes about 5000 longer than a reference to primary memory, we
clearly see that this “low” miss ratio gives very poor performance. The solution
is, of course, to keep more pages in main memory. Unfortunately, the miss ratio
decreases slowly as more pages are kept in memory (with a LRU replacement
strategy). To obtain a miss ratio of 0.001, 40 percent of the total data space
for one program, and 80 percent for another program, must be resident in
memory. (The miss ratios of the third program are not reported in the paper.)
And because these programs are memory intensive, even this miss ratio of 0.001
slows down the programs by roughly a factor of 6, as compared to a program
that had all of its data in memory. This clearly illustrates that for these pro-
grams it is more effective to purchase memory to hold a substantial fraction of

the data space, than it is to purchase a faster processor.

One of the “limitations” of our study is that we focused exclusively on a
uni-processing environment. Another way of stating this is that we studied pro-
gram response time and ignored throughput (which is only interesting in a
multi-processing environment). Clearly, in many situations response time is the
dominant factor: a user wishes to sort numbers or design a chip as fast as possi-
ble. However, in other cases, a computer multi-processes a large number of
short requests, and the response time of each request may not be as significant.
For example, in an airline reservation system, reducing the time to make a

reservation from 2 seconds to 0.01 seconds may not be important. Throughput,
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i.e., how many requests can be processed per second, is more important. (If
requests are chained together then, of course, response time is still important.
For instance, the difference between 2 seconds and 0.01 seconds for an inference
will be important to an expert system that must perform millions of inferences

to reach a conclusion.)

If throughput is the main measure of performance, then a small memory
may not be as bad. That is, when one request needs data from disk, it can be
suspended, and the CPU can work on another request in the meantime. Hence,

a faster processor may be more useful than a larger memory.

Nevertheless, the decision may not be as clear cut as it seems. Each page
fault or request for data on disk causes CPU overhead: a buffer has to be found
for the data, the request must be initiated, and interrupts (with context
switches) must be handled. In some systems (e.g., Unix file I/O or any database
system) the data must be copied one or more times within memory before the
user can access it in his space. Hence, the disk activity will have an impact on
CPU utilization and on throughput. Furthermore, running more than one user
request concurrently makes them compete for memory, possibly creating many

more page faults, and reducing the throughput further.

For example, suppose we purchase a computer to run the chemical struc-
ture generator referenced by Clark, and that our performance measure is
throughput. Say, we buy a 10 MIPS processor with 10 megabytes. However,
assume that each program accesses 100 megabytes of data. To keep the CPU
busy, we run say 5 programs concurrently, leaving each program less than 2
megabytes. In all likelihood, the programs will have a very high miss ratio,
making the fast processor spend most of its time managing the disk and waiting
for data from the disk. In this case, it may have been better to purchase 100

megabytes of memory for a slower processor.

A second limitation of our study is that, as mentioned in the introduction,
we did not consider programs that were tuned to cope with small memory. In
other words, there are two ways to cope with memory-bound programs. One is
to add memory (what we advocated here); the other is to rewrite the program

and restructure the data. For example, for our sorting application, we could
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have selected another algorithm with better locality (e.g., merge sort). Simi-
larly, we could have written a program that managed the disk itself, as do
external sort algorithms. With these approaches it is possible to improve per-

formance without adding more memory.

However, we believe that this is not a desirable alternative in most cases.
We feel that forcing programmers to analyze the reference patterns of their pro-
grams and to structure their data accordingly is a step in the wrong direction. .
The cost in terms of programming effort can easily be much higher than the
cost of the memory or processor that one is trying to save on. (Sorting may be
an exception to this since external sorting is well understood. In this case, we
are benefiting from a lot of good work done when programming was ‘“‘cheap”

and computer hardware was not.)

A good analogy can be drawn with virtual memory: it is clear that virtual
memory is not necessary if we ask programmers to overlay their programs and
data (i.e., have the programs explicitly state what resides in memory when).
Furthermore, using overlays can be more efficient than using virtual memory (at
least from the point of view of the computer). Yet, since overlays are so painful

and difficult to use, we do not see many people who advocate their return.

Furthermore, in some cases it may be difficult to improve performance
through programming, even if one were willing to expend the effort. To illus-
trate, consider a database that contains data on departments and the employ-
ees who work in them. If we place the employee records close to (i.e., on the
same disk page) as the record for their department, we get good locality when
we access a department and its employees. However, if we need a list of all
departments, then we have to visit many pages. On the other hand, if we place
all department records close together, we can find all departments quickly, but
now finding a department and its employees takes longer. In other words,
unless we expect a single type of query, it is not possible to improve locality

significantly.

Finally, it can be argued that what we really need are tools for automalti-
cally restructuring data to improve locality. This is certainly a good direction

to pursue, but we do not expect such tools, if they ever become available, to be
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useful for solving general problems. Incidentally, the paper by Clark describes
one effort to automatically improve locality. The idea is to periodically com-
pact the used data space, moving all the free space to a single area. Intuitively,
it seems that this may help because it increases the density of data and
increases the probability that a pointer leads to a nearby page. Unfortunately,
as Clark reports, the effort to restructure the data is substantial (it involves
traversing the entire data structure, writing it out to disk, and reading it all
back in), and the improvements in locality are significant, but not great. (For
example, the program that required 80 percent of its data to be resident to
achieve a 0.001 miss ratio, now only needs 50 percent of its data resident; the
program that required 40 percent, now only requires 35 percent.)

Our results indicate that memory is a very useful resource. Still, there are
a number of problems that must be solved before memory can be used in really
large quantities. One problem is that today’s paging mechanisms are sometimes
not designed to handle large physical memories. For instance, we had to per-
form a few modifications to Unix so that a single process could access the 128
megabytes on our computer. The page replacement algorithm had to be
changed because the old one spent too much time scanning our larger than

usual page table.

There are also potential problems on the hardware side. The paging
hardware on many of today’s computers is not designed to manage large
memories. For example, on our VAX 11/785, the Translation Lookaside Buffer
(TLB) can only map 256 kilobytes [5]. If a data structure is larger than this,
memory accesses may cause TLB faults and degrade performance. Thus, our
Random Probe program ran fwice as slow when it was accessing a 100 megabyte

array (all resident in memory) than when it was accessing a 100 kilobyte array.

Another potential problem is bus delays. As we attach more and more
memory to a processor, the bus delays for accessing the memory may grow,
decreasing the advantage of having the large memory. Today, there appears to
be substantial growth capacity before we hit bus limitations. With 1 megabit
chips it is not difficult to configure computers with one or more gigabytes.

Furthermore, as densities increase, the amount of memory accessible with a
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conventional bus will grow proportionately. Nevertheless, if one wishes to grow
memory at a faster rate, or access it very quickly, there may be a need for

“unconventional” buses or interconnection schemes [14].

Of course, to go beyond a 4 gigabyte physical memory one must first solve
a different problem: address bits. Although processors may use more than 32
bits internally, we know of no processor that outputs more than 32 bits for phy-
sical addresses (4 gigabytes). New processors or segmentation registers will be

required to go beyond this limit.

Finally, reliability may also be a critical issue. As the memory grows, the
probability of an error increases. Furthermore, in some applications (eg. data-

bases), if we do away with disks, we must then make memory non-volatile.

In summary, just like building faster processors or highly parallel machines,
building very large memories presents some interesting challenges. Given the
current hardware prices and. the important memory-bound applications that
exist, we believe that these challenges will have to be addressed soon. As a
matter of fact, we have recently started a project at Princeton to study solu-

tions for the issues we have outlined here.
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More Memory Faster CPU

Application | Time (sec) | Time(sec) TDgain Time(sec) %egain
Quicksort 458.4 82.60 455 116.74 292.67
Random Probe 26.7 .02 133400 19.96 33.77
Sequential Scan 65.9 3.01 2089 19.65 235.4
Floyd Warshall 24200.0 223.00 10752 |19610.00 23.41
VLSICAD Tool 408.0 251.20 62.42 299.03 36.44
Matrix Multiply 2199.0 2146.0 2.470 886.0 148.2
Binary Tree 1743.0 320.0 4447 1277.0 36.49

Table 1




Application gagﬁggg Cacees Greond Crares
Quicksort 4.550 3.252 1.399
Random Probe 1334 3752 35655
Sequential Scan 20.89 2.616 7.985
Floyd Warshall 107.5 .2601 413.4
VLSI CAD Tool 6242 4049 1.542
Matrix Multiply .02470 1.647 .01500
Binary Tree 4.447 .4054 10.97

Table 2




