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Abstract

We have developed a portable benchmark program which measures file system performance on
typical system loads. Our program accomplishes this by generating a string of file system requests
which is representative of measured system loads. Instead of isolating a particular aspect of file
system performance such as disk access speed, or channel bandwidth, our program measures
performance of the entire file system which includes components of disk performance, CPU
performance on file system tasks, and buffer cache performance. This single metric can act as a
valuable comprehensive measure of file syétem performance.

Measurements that we have made indicate that the balance between CPU performance and file
system performance varies greatly across different computer systems. If an optimal balance between
these two capabilities exists few system actually achieve this.
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1. Introduction

We desired to produce a single program which accurately simulates load conditions of typical file
system usage. Of course it would be more accurate to assess each component of a file system’s
performance on each of a large number of different tasks. However, a single metric can provide a
comprehensive measure of a system’s performance under typical load conditions. This comprehensive
measure can be used to rapidly compare the relative performance of different file systems.

Similar comprehensive metrics have been developed to measure system CPU performance. The
Whetstone benchmark was developed to measure CPU performance on scientific applications
[Curn76]. This program consisted of a collection of instructions which reflected the frequency of
instruction usage measured in a large number of programs. The Dhrystone benchmark did the same
for a collection of system programming codes [Weic84].

A number of programs exist which measure one or many components of file system performance.
However, none thus far have attempted to simulate system performance under typical load
conditions. Motivated by both the lack of a comprehensive file system benchmark, as well as the
spirit of both the Whetsone and Dhrystone benchmarks, we have developed the IOStone benchmark
which is a synthetic measure of file system performance under ¢ypical load conditions.

In Section 2 of this paper we describe the results of previous measurements of file system
workloads. These help us establish a “typical” file system workload as well as an understanding for
different benchmarking techniques. In Section 3 we describe the IOStone file system benchmark and
how it correlates to different components of file system performance. Finally, in Section 4 we discuss
limitations and applicability of our benchmark code. A version of our benchmark program written in
the “C” programming language is presented in Appendix A.

2. Previous Studies and Benchmarks

Several types of file system studies have been undertaken. Many have dealt with automatic file
migration [Lawr82] [Saty81] [Smit84]. A process where infrequently used files are automatically
moved from rotating storage to cheaper forms of archival storage such as magnetic tape libraries.
Although some of these studies are quite detailed, and they provide valuable insights into file size
distributions and long term file referencing behavior, the type of measurements they perform are
different from the ones we are interested in. They often measure static information on file lifetimes
collected infrequently (daily) over long periods of time. Since our goal is to characterize a typical file
system workloads. We are more concerned with dynamic information on file transfer and access
requests.

A number of good studies have focused on file system performance for data base applications
[Anon85] [Bora84] [Hawt79]. This is not surprising because database systems move large amounts of
data to and from mass storage. Although these studies are quite detailed, and databases are a large
subset of file system applications, again these studies are not quite suited to the workloads that we
desire to measure.

Finally a number of studies have examined optimizations of file system performance [Hout85]
[Hu86] [Krid83] [Maju86] [Oust85] [Park86] [Sher76] [Smith85]. Three of these studies ([Hu86]



[Oust85] [Smith85]) focused on dynamic measurements of file system workloads. The study by Smith
measured file system loads for IBM machinery at Crocker Bank, Hughes Aireraft, and Stanford
Linear Accelerator, while the study by Ousterhaut measured file system loads for the multi-user
UNIX systems in at Berkeley. The study by Hu focused on a 68000 based single user workstation
running the UNIX operating system.

Although these studies were performed across a range of installations and systems, several
characteristics of the workload are the same for all of them: (1)Write operations account for about one
third of all data transfer operations. (2) The majority of data transfer operations tend to be short. The
UNIX system tends to magnify this fact because all accesses to the directory structure involve single
block transfers. However, this tends to remain true even if accesses to the directory structure are
disregarded. (3) Modest sized buffer caches reduce the number of data transfers between main
memory and mass storage significantly [Oust85] [Smith85].

None of these studies accurately measured the contribution from paging activity, although some of
Ousterhaut’s measurements suggest that amount of this paging activity is rather small. Even
though in present architectures the paging system contends for mass storage bandwidth with the file
system, we are primarily interested in measuring file system performance, so we will restrict the
scope of our evaluation to file system performance.

3.10Stone File System Benchmark

We desired to construct a simple, concise code that simulates a typical file system workload as
closely as possible. Simplicity makes performance results easier to interpret as well as facilitating
portability of the code across many different machines and operating systems. We view a file systems
workload as a string of read and write requests. These read and write requests are of varying sizes
and relative frequencies. As soon as the file system is done processing a requests it can begin
processing the next one.

Of course, in reality the CPU may have to complete some processing before issuing another request
to the file system. This causes the file system to remain idle for short periods of time. However, since
we are not interested in assessing CPU performance on non-file system tasks, we assume that the file
system never waits between operations.

Our benchmark code consists of a string of interspersed read and write requests. Two read
operations occur for each write operation. This corresponds to the empirically verified write request
frequency of 33.3 percent. The read and write requests vary in size. A histogram of the frequencies of
different block sizes appears in Figure 1. This distribution was arrived at by approximating the
distributions measured in the studies by Hu and Ousterhaut [Hu86] [Oust85].

Our program first creates a very large file, and then performs a series of read and write operations
to random locations within the file. These random locations are calculated so that no operation will
try to read past the end of the file. Creating and manipulating a large number of files from within a
single program requires a great deal of overhead for some operating systems and is simply impossible
for others. By accessing random locations within a single very large file we simulate a random series
of accesses to a large number of smaller files.
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Figure 1: Histogram of 10Stone Data Transfers

Our metric captures more of a file systems typical performance than simple maximum bandwidth
or random access time measurements. This is because a typical file system’s bandwidth varies non-
linearly with the data transfer size.

Figure 2 presents results of file system performance measurements for read operations of different
lengths that we conducted on a VAX - 11/750 Running the UNIX 4.3 BSD operating system. (This
VAX-11/750 system has a DEC UDAS0 disk controller connected to DEC RA80 disk drives. Details of
this test are available in a previous paper [Park86].)

Maximum bandwidth measurements correspond to data points at the far right hand side of the
graph where the file system bandwidth asymptotes towards its maximum value for the larger block
sizes. Random access speed is represented by bandwidths on the left hand side of the graph. (The
random access speed can be arrived at by examining bandwidth for a transfer request size that equals
the block size of the file system. The random access speed is this block size divided by the transfer
bandwidth of this block.) As can be seen from Figure 2, random access speed and maximum
bandwidth do not tell the entire story. As the transfer size changes, so does the bandwidth. These
intermediate values of bandwidth do not correlate well with either random access speed, maximum
bandwidth, or a linear combination of these quantities. We capture the essence of this interplay
between transfer request sizes and typical workloads with our benchmark which distributes its load
across a representative distribution of transfer request sizes for both read and write operations.

We have run our the IOSt¢one benchmark across a range of machines. These are ranked by IOStone
performance in Table 1. Two of these machines are non-standard enough to mention here. The VAX -
11/785 that we tested was configured with an 8 megabyte buffer cache. This is about an order of
magnitude larger than usual. The large buffer cache improved the system’s IOStone performance
considerably as can be seen from the figures in Table 1. One of the SUN 2’s that we tested was
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Table 1: Machines Tested

diskless. All file I/O was channeled through a 10 megabit Ethernet to a remote file server. Note that




the diskless system still maintains about 26% of the performance of a comparable workstation with a
disk.

Comparisons with random access speed appear in Figure 3. The systems we tested are plotted here
with IOStone performance on the vertical axis and random accesses per second on the horizontal axis.
Note that the machines tested all fall within a diagonal band on the graph. This means the ratio of
I0Stone performance to random access speed does not vary a great deal across different systems. This
fact is not surprising because of the large number of small block transfers that were performed by the
IOStone code. These small block transfers approximate random accesses. ‘
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Figure 3: [OStone vs. Random Accesses per Second

A comparison with maximum bandwidth on read operations is presented in Figure 4. The systems
are plotted here with IOStone performance on the horizontal axis and maximum read bandwidth on
the vertical axis. Again the systems tend to lie within a diagonal band on the graph except for the
VAX - 11/785 system. This 785 system has the large buffer cache which greatly improves random
access performance but not maximum read bandwidth. The other systems seem to exhibit a fairly
constant ratio of maximum read bandwidth to random access speed.

A comparison with Dhrystone measurements appears in Figure 5. The systems are plotted against
I0Stone performance on the horizontal axis and Dhrystone performance on the vertical axis.
(Remember the Dhrystone code is a comprehensive measure of CPU performance on operating system
tasks [Weic84]). There seems to be little consistency here. This indicates that the balance between
CPU performance and file system performance varies greatly from system to system. If there does
exist an optimal ratio of file system performance to CPU performance most of these systems are off
the mark. The VAX 8600 seem particularly different from the other systems. It has an almost order
of magnitude larger CPU performance, but only a slightly larger file system performance.

4, Limitations
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There are several limitations of our IOStone code. Our program measures file system performance
on a typical system workload. The constitution of this typical workload was determined by a set of
performance measurements from business, research, and development sites. Database and large
scientific applications and can be expected to exhibit different workload characteristics, so
performance on these tasks may not be accurately assessed on the basis of this benchmarlk.



We also do not attempt to measure system paging performance. Although paging and file systems
contend for the same system resources, (disk drives, channels, ete.) we chose to concentrate
exclusively on file system performance. In the interests of portability we have restricted ourselves to
accessing a single very large file. One might argue that a system with an appropriately large buffer
cache may make realize unrealistic performance gains from this restricted locality. However,
QOusterhaut has noted [Oust85] that file system requests tend to exhibit a great amount of locality to
begin with. Even a modest sized buffer cache greatly reduces the number of mass storage to main
memory data transfers.

File creation and destruction operations are not performed in the benchmark. These do not occur
during read operations which constitute the majority of transfer operations, and only a fraction of the
write requests entail file creation or deletion operations anyway.

We only execute write operations to a existing file blocks. This differs from file extension write
operations since new file blocks do not have to be allocated. However, the allocation process does not
require great amounts of time anyway since the list of free blocks is frequently accessed and generally
resides in the system buffer cache. Allocating a new block typically entails only a simple main
memory lookup.

One might argue that the IOStone code does not generate a representative multiprogramming load
since all data transfer requests are issued form a single process. One must recognize however that
multiprogramming is a processor performance issue. The swapping overhead from processes that
block on disk requests does not interest us since we consider this this is a CPU activity which is
unrelated to file system functioning. We would like our benchmark to apply to both multi-user
systems and single user workstations.

Conclusions

We have developed a benchmark program which simulates a workload that closely corresponds to
measurements of real system workloads. Our code can act as a valuable tool to evaluate file system
performance.
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Appendix A: I0Stone Code (C language version)
/*
*  "[/O Stone" Benchmark Program

*

*  Writtenby: Arvin Park (park@princeton)
Department of Computer Science

* Princeton University
* Princeton, New Jersey 08544
* (609) 452-6304

*  Version: C/1
*  Date: 12/10/86

Defines:If your version of "C" does not include a time(2)

* function, define NOTIME. Use a stopwatch to measure
5 elapsed wall time. Divide 400000 by the elapsed time
% to get the correct number of iostones/second.

*  Tocompile: cc-Oio.c-oio

*  Note: [1]This program should be run without other processes

* competing for system resources. Run it in the dead of

* night if you have to.

*

* [2] This program uses 4 megabytes of disk space. Make

sure that at least this much space is available on
your file system before you run the progam.

*  Results:If you get results from a new (machine/operating
system/disk controller and drive) combination please

% send them to park@princeton. Please include complete
information on the machine type, operating system,
version, disk controller, and disk drives. Also make

a note of any system modifications that have been

* performed.

*

#define FILESIZE (4L*1024L*1024L) /*size of file in bytes*/

#define MAXBUFFERSIZE (64L.*¥1024L) /*maximum buffer size*/

#define NBLOCKSIZES 9 Fnumber of different block sizes*/
#define SEED 34710373L /*random number generator seed*/
#define CONST 100000L /*iostone normalization constant®/
#define ITER 4 /#*number of iterations of the code*/
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/*Define only one of the following two.*/

/*#define NOTIME /*define if no time funetion in library*/
#define TIME /*Use time(2) funection*/
char bufferf MAXBUFFERSIZE]; /* a temporary data buffer*/
char *filename = "/tmp/iostone__temp__ file"; /*name of temporary file*/
unsigned int nbytes; MFnumber of bytes transfered*/
int fd; /*file deseriptor*/
long offset; [*file offset*/
intijk; [*eounter variables*/
long bsize[ NBLOCKSIZES]; [*array for different block sizes™/
int bfreq[NBLOCKSIZES]; Fnumber of accesses for each block*/
#ifdef TIME

long time();

long starttime;

long totaltime;
#endif
main() {

init();

[*start timing*/

#ifdef NOTIME

printf("start timing\n");
#endif
#ifdef TIME

starttime = time(0);
#endif

for(k=0;k<ITER;k+ +) /*perform string of file operations*/

readswrites();
[*stop timer™®/

#ifdef NOTIME

printf("stop timing'n");
#endif
#ifdef TIME

totaltime = time(0) - starttime;
printf("total time = %ld\n", totaltime);
if(totaltime! =0)
printf("This machine benchmarks at %ld iostones/second\n",
(long) (CONST*ITER)/totaltime);
#endif
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init() {
[*create a temporary file*/
if(fd = creat(filename,0640)) < 0) {
printf("init: Cannot create temporary file\n");
exit(1);

/*To both read and write the file*/
/* it must be closed then opened*/
close(fd);
if(fd = open(filename,2)) < 0) {
printf("init: Cannot open temporary file\n");
exit(1);

/#Unlink the file so that it will*/

/* disappear when the program*/

/*terminates.*/
unlink(filename);

Iseek(fd,0L,0); [*write initial portion of file*/
for(i=0;i <(FILESIZE)/4096;i + +){
if((nbytes = write(fd,buffer,4096)) < 0) {
printf("init:error writing block\n");
exit(1);

[*set file block sizes and access*/

[*frequencies.*/
bsize[0] = 2586; bfreq[0] = 128;
bsize[1] = 512; bfreq[1] = 64;
bsize[2] = 1024; bfreq[2] = 64;
bsize[3] = 2048; bfreq[3] = 64;
bsize[4] = 4096; bfreq[4] = 32;
bsize[5] = 8192; bfreq[5] = 16;
bsize[6] = 16384; bfreq[6] = &;
bsize[7] = 32768, bfreq[7] = 4;
bsize[8] = 65536; bfreq[8] = 4;

random(SEED); [*initialize random number generator*/
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readswrites() {
for(j=0;j < NBLOCKSIZES;j + +) {
for(i=0;i <bfreq[jl;i+ +){

offset =(long) ((random()%(FILESIZE/bsize[j])) *bsizelj]);

Iseek(fd,offset,0);

if((nbytes = read(fd,buffer,bsize(j])) < 0) {
printf("readswrites: read error\n");

exit(1);

}

offset=(long) ((random()%(FILESIZE/bsize[j]))*bsize[j]);

Iseek(fd,offset,0);

if((nbytes = read(fd,buffer,bsize[j])) < 0) {
printf("readswrites: read error\n");
exit(1);

} .

offset = (long) ((random()%(FILESIZE/bsize[j]))*bsize[j]);

Iseek(fd,offset,0);

if((nbytes = write(fd,buffer,bsize[j])) < 0) {
printf("readswrites: write error\n");
exit(1);
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