DISTRIBUTED COMPUTING RESEARCH AT PRINCETON - 1986
Robert Abbott, Rafael Alonso, Louis Cova,
Hector Garcia-Molina, Boris Kogan, Kriton Kyrimis,
Frank Pittelli, Patricia Simpson,
Annemarie Spauster, Kenneth Salem

CS-TR-073-87

January 1987



DISTRIBUTED COMPUTING RESEARCH AT
PRINCETON — 1986

Robert Abbott, Rafael Alonso, Luis Cova, Hector Garcia-Molina,
Boris Kogan, Kriton Kyrimis, Frank Pittelli, Patricia Simpson,
Annemarie Spauster, Kenneth Salem

Department of Computer Science
Princeton University
Princeton, N.J. 08544



DISTRIBUTED COMPUTING RESEARCH AT
PRINCETON — 1986

Robert Abbott, Rafael Alonso, Luis Cova, Hector Garcia-Molina
Boris Kogan, Kriton Kyrimis, Frank Pittelli, Patricia Simpson,
Annemarie Spauster, Kenneth Salem

2

Department of Computer Science
Princeton University
Princeton, N.J. 08544

1. Introduction

In this note we briefly summarize the distributed computing research we per-
formed in the year 1986. In general terms, our emphasis was on studying and
implementing mechanisms for efficient and reliable computing and data manage-
ment. Our work can be roughly divided into seven categories: the implementa-
tion of a highly reliable database system, the implementation of a high availa-
bility database system, dynamic vote reassignment, a mechanism for dealing
with long-lived transactions, real time database systems, caching in information
systems, and load balancing.

Due to space limitations, we concentrate on describing our own work and
we do not survey the work of other researchers in the field. For survey informa-
tion and references, we refer readers to some of our reports.

2. A Highly Reliable Database System

One of the goals of our research is to understand reliable data manage-
ment, so a natural question to ask is: how reliable can we ever hope to build a
data management system and at what cost? In an attempt to answer this ques-
tion we implemented an ultra high reliability database system.

The key to our system is a failure model that captures the worst possible
behavior by a computer. In this model we have a collection of 2n + 1 comput-
ers where at most n of them can fail. We make no assumption as to how a
computer fails, and in this sense the model is the most general possible. We call
a failed node fail-insane since it can send any message out, including misleading
ones, it can refuse to send required messages, and it can even collaborate with
other fail-insane nodes in an attempt to subvert the entire system. We assume
that an insane failure is eventually detected and repaired.

If we wish to reliably perform a task in this environment we must execute

This work has been supported by NSF Grants DMC-8351616 and DMC-8505194, New
Jersey Governor’s Commission on Science and Technology Contract 85-990660-6, and
grants from DEC, IBM, NCR, and Concurrent Computer corporations.



-9

the task on all 2n + 1 computers and look at all outputs. The output that
n + 1 or more nodes agree on must be the correct one. This approach is well
known and is called N-modular redundancy (NMR). It has been successfully
used at the hardware level for many years. In our system, however, we are
using NMR at a different level, the database level.

There are a number of advantages to operating at this level. The com-
munication overhead can be greatly reduced. Instead of exchanging and com-
paring the result of, say, every addition or memory reference, the system
operates at a much higher level, mainly comparing the outputs of user transac-
tions. Given the reduced communications, it is easier to physically isolate the
processing elements. Decoupling makes it less likely for a single environmental
problem like a power failure or a fire to affect more than n processors.

Since remote sites in essence have backup copies of the database, process-
ing at each site may be streamlined, eliminating local logging and dumping, for
example. Actually, the database processing at each site is quite simple. Note
that nodes execute each transaction independently from the rest of the system.
Locks do not have to be requested from other nodes and there can be no global
deadlocks. In addition, our system can be built with off-the-shelf equipment, as
opposed to the specialized hardware usually required by NMR.

So in light of these advantages, and of the high reliability provided, the
cost of database NMR may not be as high as one may initially imagine. It will
never be cheap (because of the replicated hardware), but it may be a desirable
alternative for critical applications where lives or money are at stake, or where
users are simply tired of dealing with ‘“‘temperamental”’ computers that lose or
destroy their data.

As far as we know, ours is the first implementation of a database NMR
system. In building it we had to address a number of challenging problems.
One problem is the distribution of the input transactions. For the NMR scheme
to work, not only do all nodes have to execute exactly the same transactions,
but they have to execute them in the same order. A theoretical solution to this
problem was known (Byzantine Agreement). We selected the most appropriate
materialization of this solution, and built in several practical optimizations like
null transactions and message batching. In [Pitt86a] we describe our approach
to transaction scheduling and present experimental results that illustrate the
performance of the optimizations.

Unlike conventional NMR systems, our processors carry a significant
amount of “‘state’” information (i.e., the database). After a failure has been
repaired, the failed node(s) must recover this state from the operational ones.
Since we cannot allow the failed nodes to halt the entire system, this recovery
must take place without stopping the operational nodes. In [Pitt86b] we
present a strategy for such a recovery. The process starts when a repaired node
requests a snapshot of the database from the other nodes. Using probabilistic
signatures, the portions of the database that were corrupted are identified and
copied. While this is in progress, the repaired node saves all new transactions.
These are executed once a consistent database state has been recovered. After
this catch-up period, the node is fully recovered. The performance of the



w8 e

system during the snapshot installation and catch-up periods was experimen-
tally studied; the results are also given in [Pitt86b].

Our experimental system has also been used to study the inherent cost of
ultra-high reliability [Pitt86¢]. In particular, we compared a 3-node NMR sys-
tem against a two node system, a one node system with local crash recovery,
and a one node system with no protection. The structure of each system is
similar, but the reliability, hardware cost, and performance all differ. Each sys-
tem in the list provides a lower and lower degree of reliability, and a lower and
lower hardware cost. However, our experimental results indicate that the per-
formance is not always inversely proportional to the reliability. For example,
the 3 node system may perform better than the single node with local crash
recovery system. In summary, our results provide a very concrete performance
and cost comparison of various degrees of reliability.

3. A Highly Available Database System

There are two important aspects to reliability: correctness and availability.
The objective of the project described in the previous section is mainly correct-
ness of the database operations, even at a cost in availability. For instance, if
one computer (or even a group of n computers) is cut off from the rest of the
system, it will be unable to process transactions because this could compromise
the correctness of the results and the database. On the other hand, if availabil-
ity were the main objective, it may be desirable to continue processing at the
isolated node. After all, it does have a copy of the database and is capable of
processing transactions. Of course, if isolated nodes are allowed to modify the
database, then the copies will diverge. Hence, we need mechanisms for control-
ling these inconsistencies or for correcting them later.

We have continued our research effort in high availability database sys-
tems, trying to understand the choices and their implications. Since replicated
data is the key to availability, we assume that the database (or at least the
critical portion) is replicated at all nodes. We assume that nodes, when up,
compute correctly (i.e., no arbitrary failures). However, nodes can be arbi-
trarily slow in responding to requests from other nodes. Furthermore, the com-
munication network may lose messages and may even isolate some nodes totally
(network partition). Given the undependability of other nodes, our view is that
each node should be as autonomous as possible. A node should never get itself
in a position where it cannot process transactions due to a failure of another
node or of the communication network.

We believe that our autonomous node model is desirable in several applica-
tions. In some cases it is because communication failures occur at critical
times. For instance, in military applications a conflict can make communica-
tions unreliable and it is precisely at this time that one wishes to have access to
the data. In other cases, partitions are the normal mode of operation. For
example, in the Unix UUCP network computers are usually disconnected from
the network. Periodically, they dial other computers and exchange data. In
such an environment one would like to process transactions even when there is
no communication. In yet other cases, partitions are not as common, but



= il =

halting transaction processing causes a serious inconvenience or economic loss.
For example, an unavailable airline reservations system means lost customers.

In the past we have studied strategies where nodes can indeed process any
type of transaction any time they wish [Alon85, Abbo86a]. Inconsistencies
among the copies were corrected using semantic knowledge when communica-
tions were restored. This approach works when the application is simple, but is
harder to use as the applications semantics get more complicated.

We are currently exploring a slightly different approach: restrict the types
of transactions that a node can execute in order to simplify the inconsistencies
that can arise. A node can continue to process the transactions of its allowed
types any time it wishes. To define the types of transactions that a node can
run, we divide the database into fragments and introduce a controlling agent for
each [Garc87]. A node can only run transaction that update a fragment if the
agent resides at the node. By varying the way in which agents move, we can
vary the availability provided. At the same time we can control the types of
inconsistencies that arise, making it possible to have meaningful data in the
database.

We have discovered that in some cases it is possible to have serializable
schedules even with autonomous nodes. (If the execution schedule is serializ-
able, then there are no anomalies or inconsistencies in the data.) To achieve
this, transactions must have certain properties and updates must be propagated
to the copies in a controlled fashion [Barb87]. Not all applications fall in this
category; however, it may be possible to force the application to satisfy the pro-
perties in order to achieve serializability.

In summary, our new approaches give ‘“controlled availability.”” They pro-
vide substantially more availability than conventional mechanisms, but they do
restrict the types of operations that a node or a user may perform. However,
through proper database design, a node or a user may be assigned precisely the
transactions that he wishes to run. (It is rare that a user or nodes needs to run
all possible transactions.) Thus, users (or at least many of them) will be able to
perform the operations they want to whenever they want to.

4. Dynamic Vote Reassignment

A number of distributed algorithms require that at most one connected
group of nodes be active at a time. This restriction can be enforced through a
voting mechanism. Each node is assigned a number of votes; the group that
has a majority of the votes knows that no other group can have a majority and
thus can be active. (It is also possible that no group has a majority.) Such a
mechanism can be used to elect a distinguished node, say to be a file server.
Voting ensures that at most one node is elected, i.e., only the group with a
majority of votes is allowed to have or to elect a file server.

To illustrate, consider a system with four nodes a, b, ¢, and d. Say we
have initially assigned the votes v, = v, = v, = 1 and v, = 2, where v,
represents the votes assigned to node i. If a partition forms two isolated
groups, {a, b, ¢} and {d}, then only the first group will be active (e.g., have a



-5-

file server). (Nodes a, b and ¢ have 3 out of 5 possible votes.) However, if a
second partition occurs, separating node ¢ from e and b, the system will be
halted, i.e., no group will have a majority and no group will be active.

Since halted states are undesirable, we propose to reassign the votes after
failures or repair occur. That is, after any failure or repair, the majority group
(if any) dynamically reassigns the votes in order to increase its voting power
and increase the system’s chances of surviving subsequent failures. In our
example, we can reduce the likelihood of halting if we increase the votes of
group {a, b, ¢} before the second partition occurs. For instance, a new vote
assignment could be v, = v, = v, = 5. Node d is unaware of the change and
remains with v, = 2 votes. (As a matter of fact, since d is not in the majority
group it cannot change its votes.) In this way, the second partition described
above will find nodes ¢ and b with 10 votes out of a total of 17, forming a
majority group that can continue to be active.

After the second partition, the new majority group {a, b} could reassign
itself new votes of v, = 15 and v, = 5 in order to tolerate even a third parti-
tion. When the partitions are repaired, the nodes that have proportionately
less votes (e.g., d) can attempt to increase their votes. Equivalently, nodes that
have increased their votes may decrease them to recapture the original assign-
ment.

Notice that in our approach nodes operate quite autonomously, without
requiring group consensus. Group consensus could select a better assignment
but requires tighter coordination among the nodes. On the other hand, auto-
nomous vote changes are much simpler and more flexible. Each node decides
independently what its new vote value should be. The node does not need com-
plete or accurate information about the state of the system. In a sense, the
node makes an educated guess about the best number of votes to have, with its
primary goal being to claim for itself all or part of the voting power of a node
(or nodes) that have been separated from it.

There are two problems to solve in implementing the ideas we have
sketched. The first involves the selection of a new vote value by a node that
has detected the disconnection of another node. We refer to the mechanism for
such a selection as the policy. The policy takes into account the current state
of the system (who is up, who is down, who has how many votes), as determined
(perhaps not accurately) by the node making the change and outputs the
desired votes for this node. There are a number of different policy rules and
these are surveyed in [Barb86a).

Once a node chooses a new value, it cannot vote with it right away. The
second problem is to ensure that the node is part of a majority and authorized
to make the change. The mechanism to do this is called the protocol. In
[Barb86b] we describe a simple one-phase protocol that works as long as nodes
only increase their votes. The basic idea is to collect acknowledgments from
nodes with a majority of votes and in the process inform them of the change.
In doing so, we must make sure the protocol does not get confused between the
“old” and the “new” votes. Since nodes only increase their votes, the largest
known vote value for a node represents the latest one. This makes it easy for



the protocol to identify ‘“‘new’ votes.

This protocol can be extended to handle decreasing as well as increasing
vote changes [Barb86¢c]. Each vote value exchanged among the nodes must now
be accompanied by a sequence number that represents the relative order of the
votes a node has had. Although the protocol is not as simple, it still remains
one-phase.

5. Sagas

As its name indicates, a long lived transaction is a transaction whose execu-
tion, even without interference from other transactions, takes a substantial
amount of time, possibly on the order of hours or days. A long lived transac-
tion, or LLT, has a long duration compared to the majority of other transac-
tions either because it accesses many database objects, it has lengthy computa-
tions, it pauses for inputs from the users, or a combination of these factors.
Examples of LLTs are transactions to produce monthly account statements at a
bank, transactions to process claims at an insurance company, and transactions
to collect statistics over an entire database.

In most cases, LLTs present serious performance problems. Since they are
transactions, the system must execute them as atomic actions, thus preserving
the consistency of the database. To make a transaction atomie, the system
usually locks the objects accessed by the transaction until it commits, and this
typically occurs at the end of the transaction. As a consequence, other transac-
tions wishing to access the LLT’s objects are delayed for a substantial amount
of time. Furthermore, LLT have a high probability of encountering a deadlock
or a system failure.

In general there is no solution that eliminates the problems of LLTs. How-
ever, for specific applications it may be possible to alleviate the problems by
relaxing the requirement that an LLT be executed as an atomic action. In
other words, without sacrificing the consistency of the database, it may be pos-
sible for certain LLTs to release their resources before they complete, thus per-
mitting other waiting transactions to proceed.

To illustrate this idea, consider an airline reservation application. The
database (or actually a collection of databases from different airlines) contains
reservations for flights, and a transaction T wishes to make a number of reser-
vations. For this discussion, let us assume that 7 is a LLT (say it pauses for
customer input after each reservation). In this application it may not be neces-
sary for T to hold on to all of its resources until it completes. For instance,
after T reserves a seat on flight F,, it could immediately allow other transac-
tions to reserve seats on the same flight. In other words, we can view T as a
collection of “sub-transactions” T, T,, ..., T, that reserve the individual seats.

However, we do not wish to submit T to the database management system
(DBMS) simply as a collection of independent transactions because we still want
T to be a unit that is either successfully completed or not done at all. We
would not be satisfied with a DBMS that would allow T to reserve three out of
five seats and then (due to a crash) do nothing more. On the other hand, we



-7

would be satisfied with a DBMS that guaranteed that 7 would make all of its
reservations, or would cancel any reservations made if 7" had to be suspended.

This example shows that a control mechanism that is less rigid than the
conventional atomic-transaction ones but still offers some guarantees regarding
the execution of the components of an LLT would be useful. We call a LLT
that can be processed in this way a sage and in [Garc86b] we discuss how they
can be executed by a database management system.

The basic idea is that a saga can be broken up into a collection of sub-
transactions that can be interleaved in any way with other transactions. To
amend partial executions, each saga transaction T, should be provided with a
compensating transaction C;. The compensating transaction undoes, from a
semantic point of view, any of the actions performed by T;, but does not neces-
sarily return the database to the state that existed when the execution of T;
began. In our airline example, if T, reserves a seat on a flight, then C; can
cancel the reservation (say by subtracting one from the number of reservations
and performing some other checks). But C; cannot simply store in the database
the number of seats that existed when T, ran because other transactions could
have run between the time T reserved the seat and C; canceled the reserva-
tion, and could have changed the number of reservations for this flight.

In [Gare86b| we also study various implementation issues related to sagas,
including how compensating transactions can be defined, how sagas can be
aborted, and how they can be run on a system that does not support them
directly. In addition we discuss some strategies that an application programmer
may follow in order to write LLTs that are indeed sagas and can take advan-
tage of our proposed mechanism.

6. Real Time Database Processing

Existing database management systems do not provide real time services.
They process transactions as quickly as they can, but they never make any
guarantees as to when a request will complete. Furthermore, most users cannot
even tell the system what priority their request has. Hence, all transactions are
treated as equal.

Many applications do have at the same time real time constraints and
large data needs (e.g., aircraft tracking, hospital monitoring, reservations sys-
tems). Since database systems do not provide the required real time response,
users have had to code their own special purpose data management systems.
Although such systems seem to work, they are difficult to debug and to expand.
Thus we believe it is time to investigate a general purpose real-time database
system.

Such a system may very well be distributed, but we have decided to focus
initially on a centralized one. The first problem we have addressed in this area
is that of transaction scheduling [Abbo86b]. In the future we plan to study
additional issues like the general architecture, how to trigger events efficiently,
and the appropriate user interface.

Real time transaction scheduling differs from conventional scheduling in



wha

that the transactions (or tasks) make unpredictable resource requests, mainly
requests to read or write the database. In our case, the scheduling algorithm
must be combined with the concurrency control algorithm (which guarantees
that executions are serializable). To illustrate the interaction, consider a tran-
saction T, that is being executed because its deadline is the nearest. Now
assume that T, requests a lock that is held by transaction T,. What should
the system do? Abort T, so that the lock is released and T, can proceed? Or
maybe suspend T’ so that T, can complete and release its lock? Or maybe it is
best to let T, proceed without aborting T,, hoping that the schedule will still
be serializable (optimistic control)?

To understand the choices we have classified the possible scheduling and
concurrency control strategies [Abbo86b]. We have also studied the deadline or
priority models that make most sense for a database system. Our next step is a
detailed simulation. With it we expect to answer some of the following ques-
tions:

(a) What is the best scheduling/concurrency control mechanism for real-time
database processing?

(b) Many real-time systems hold their data entirely in main memory. How are
the scheduling decisions affected by this? In particular, transactions never
wait for IO so scheduling decisions are made less often. Also, the cost of
aborting a transaction may be less in this case.

(¢) Many scheduling algorithms utilize a run-time estimate provided by the
user. How do errors in this estimate affect scheduling? At what point is it
better to ignore the estimates all together?

(d) There are various ways in which a user can specify the priority or deadline
of a transaction. Are there scheduling strategies that are better suited to
handling particular user constraints?

7. Data Caching in Information Retrieval Systems

Existing computer communication networks give users access to an ever
growing number of information retrieval systems (IRS). Some of these services
are provided by commercial enterprises (examples are Dow Jones and The
Source), while others are research efforts (such as the Boston Community Infor-
mation System). In many cases these systems are accessed from personal or
medium size computers which usually have available sizable amounts of local
storage. Thus, to improve the response time of user queries it becomes desirable
to cache data at the user’s site.

Caching can improve system performance in two ways. First, it can elim-
inate multiple requests for the same data. For example, consider an automobile
manufacturing plant where a number of people are interested in news wire
stories on trade and protectionism. In this case, it makes sense to cache the
relevant articles at the company’s local computer, eliminating redundant
requests to the central IRS site. A second way in which caching can improve
performance is by off loading work to the remote sites. For instance, if a user is
interested in chemical companies he may store the latest stock prices of those



-9-

companies at his own computer. There he can run his own analysis programs
on the data, without using any more central cycles.

Our work in this area has proceeded along two lines of inquiry. In one
study, we are investigating the design of caches for IRS’s in which updates are
done only at the central machine and the frequency of changes is not too great.
Secondly, we are also considering the possible performance benefits of relaxing
cache coherency constraints in systems whose update pattern makes normal
caching impractical. We explain further these two approaches in the sub-
sections below.

7.1. Cache Design

Although well understood in the context of hardware memory caches, cach-
ing in an IRS environment has not been fully studied. We believe that there
are several significant differences between standard memory caching and the
kind of caching we are exploring. For example, since users do not perform
updates, there is no need to keep track of changes and write modified data
items back to the central site; when a cached item is to be replaced by another,
it can simply be discarded (overwritten). On the other hand, in our case keep-
ing a cache up to date is much more difficult because updates originate at the
central site, not at the site holding the cache.

There are many issues to be studied in this context. For example, there
are data conversion problems when moving data between the IRS mainframe
and the user workstations. Software at the user site must understand the for-
mat of cached data and be capable of accessing and manipulating it. There are
also choices to be made in the type of storage areas available for caching (i.e.,
should the cached data be placed in main memory or a disk, or perhaps on
both). Finally, caching in IRS’s is not constrained by the tight timing con-
straints of hardware caching (because of the latency of the communication
lines); this (coupled with the fact that the items being cached may consist of
many kilobytes of data) means that sophisticated caching strategies may be
employed. (For a more detailed description of the problems in this area see
[Simp86].)

Initially, we are focusing on the performance of caching schemes. We have
developed simulation models to explore the effect of different parameters (such
as workstation architecture, size of available caches, and communication
bandwidth available) on the mean response time obtained under a variety of
caching strategies. Our initial results indicate that, for users accessing data via
relatively slow modems (300-1200 baud), caching will carry with it substantial
overhead (mostly because it is expensive to fill the cache from the mainframe);
a high hit ratio must be achieved if caching is to prove worthwhile. We are
currently studying policies that restrict caching in some way (for example, by
caching an item only after it has been accessed twice, thus taking better advan-
tage of reference locality). We are also experimenting with strategies that
cache only long-lived items (i.e., those that are accessed frequently enough that
they should always be in the cache), such as the top levels of tree-structured
menus, or reference works such as dictionaries or telephone directories.



-10 -

7.2. Quasi-Copies

In principle, caching can off load work from the central site and reduce the
communication traffic. However, caching has its price. Every time a cached
value is updated at the central IRS, the new value must be propagated to the
copies. Furthermore, the propagation must be done immediately if cache con-
sistency or coherency is to be preserved. (A cached value for an object is con-
sistent if it equals the value of the object at the central site.)

To reduce the overhead of maintaining multiple copies it may be appropri-
ate to allow copies to diverge in a controlled fashion. This makes it possible to
propagate updates to the copies efficiently, e.g., when the system is lightly
loaded, when communication tariffs are lower, or by batching together updates.
It also makes it possible to access the copies even when the communication lines
or the central IRS are down. To illustrate, consider a user that is interested in
the stock prices of chemical companies. The user may be satisfied if the prices
at his computer are within five percent of the true prices. This makes it
unnecessary to update the cached copy every single time a change occurs.
When the deviation exceeds five percent, then a single update can bring the
cached copy up-to-date. At the manufacturing company discussed earlier, users
may tolerate a delay of one day in receiving the articles of interest. If the sys-
tem takes advantage of this, it can transmit all the articles during the night
when communication tariffs are lower. If a communication or central node
failure occurs and its duration is less than 24 hours, then users can continue to
access information that is correct by their standards.

We call a cached value that is allowed to deviate in a controlled fashion a
quasi-copy. In [Garc86a| we study this notion in detail, suggesting various ways
in which users can specify the allowed deviations. (The five percent numeric

deviation and the one day delay in our examples are two ways in which this can
be done.)

In the report we also study the available implementation strategies. For
example, when the central database site wishes to inform remote sites of an
update, it has several choices. It can send the new value. It can send an
invalidation message that forces the old value out of the caches (but does not
provide the new value). Or it can use implicit invalidation or aging. In this last
case the original value is sent out with an expiration time. When that time
arrives, the value is automatically purged from the cache.

There are also several choices regarding the time to send the update or
invalidation. The update can be propagated as soon as it is installed, or at the
last minute when the quasi-copy is about to exceed its divergence limit, or at
some intermediate time. The tradeoffs related to these and other implementa-
tion strategies are discussed in the report.

8. Load Balancing

In many of today’s computing environments, it is not uncommon to see a
mix of idle and overloaded machines on the same network. This is specially
true in local area networks of workstations, where users may use their machines



= T =

only sporadically. It is also the situation in systems where the workload
requirements have a large variance throughout the day. This situation of load
imbalance leads to a needless degradation in system throughput and to a large
increase in mean response time. Although users may realize that there are
cycles available elsewhere and individually execute their jobs remotely, we feel
that there is a need for mechanisms that automatically perform this task.

Our work has consisted of implementing a load balancing mechanism
[Alon86a] that runs on a local area network of SUN workstations. The software
consists of a set of cooperating daemons that periodically transmit load infor-
mation, and local shell programs that use that information to decide on the
appropriate execution site for user jobs. Although we have used only very sim-
ple load balancing schemes, our measurements show that, even under conditions
of relatively small load imbalance, sizable performance gains can be achieved,
and that the overhead involved in running our system is very small (for both
users and non-users of our mechanism). (See [Alon86b] for an analysis of the
desirable properties of more complex load balancing strategies.)

Currently we are addressing two problems in this area. The first is that,
since load balancing decisions are being made on the basis of broadcast load
data, that data may be stale by the time the decisions have to be made. For
example, if a machine is completely idle, all the other processors may decide to
send their jobs to the idle processor. Very soon, that “victim’ machine is over-
loaded, but if the broadcast interval is large, other machines will not find out
about the change in load. (It should be noted that the frequency of broadcasts
cannot be increased arbitrarily since there is a cost involved in obtaining, send-
ing and receiving data.) We have explored a variety of techniques to minimize
problems with stale data [Alon86¢c]. For example, to eliminate the ‘“victim”
problem described above, a machine can set up a high-load mark; if its load
ever exceeds that level, it will refuse to execute any remote jobs.

A second area of research is motivated by the following observation. It
seems to us that there are really two environments in which load balancing may
be of use. One, a network where there are a number of machines owned by a
single entity; there, it is desirable that load should be evenly balanced across all
the machines. Two, a network of workstations, where individual users own
their machines; while those owners may not mind that someone else is ‘“borrow-
ing” a few cycles while they are not fully utilizing their processors, they cer-
tainly are not willing to see their own response suffer in order to help the
overall system response time. We are currently developing policies for both of
these environments, and identifying techniques that can be used in systems that
consist of a mix of the two environments [Alon86d].

9. Completed Thesis

Over the past year, one PhD thesis was completed as part of our project.
Frank Pittelli’s thesis [Pitt86¢| deals with the highly reliable database system
summarized in Section 2.



12 -

10. References

[Abbo86a]

[Abbo86b]

[Alon85]

[Alon86a)

[Alon86b]
[Alon86c¢|

[Alon86d|

[Barb86a)

[Barb86b)]

[Barb86¢]

[Barb87]

[Garc86a]

[Garc86b]

R. Abbott et al, “Distributed Computing Research at Princeton —
1985,” Technical Report CS-29, Department of Computer Science,
Princeton University, 1985.

R. Abbott, H. Garcia-Molina, “Real-Time Database Scheduling,” in
preparation, 1986.

R. Alonso et al, “Distributed Computing Research at Princeton
(1984),” IEEE Bulletin on Database Engineering, Vol. 8, Num. 2, June
1985, pp. 68-75.

R. Alonso, P. Goldman, P. Potrebic, “A Load Balancing Implementa-
tion for a Local Area Network of Workstations,” Proceedings of the
IEEE Workstation Technology and Systems Conference, March 18-20,
1986, Atlantic City, N.J., pp. 118-124.

R. Alonso, L. Cova, “Load Balancing in Two Types of Computa-
tional Environments,” to be submitted for publication.

R. Alonso, P. Goldman, P. Potrebic, “An Experimental Study of
Load Balancing Strategies,” to be submitted for publication.

R. Alonso, “The Design of Load Balancing Strategies for Distributed
Systems,” Proceedings of the Army Research Office Future Directions
i Computer Architecture and Software Workshop, Seabrook Island,
North Carolina, May 5-7, 1986.

D. Barbara, H. Garcia-Molina, A. Spauster, ‘“Policies for Dynamic
Vote Reassignment,” Proc. 1986 International Conference on Distri-
buted Computing Systems, Cambridge, Massachusetts, May 1986, pp.
37-44.

D. Barbara, H. Garcia-Molina, A. Spauster, ‘“Protocols for Dynamic
Vote Reassignment,” Proc. Fifth ACM Symposium on Principles of
Distributed Computing, Calgary, Canada, May 1986, pp. 195-205.

D. Barbara, H. Garcia-Molina, A. Spauster, “Increasing Availability
Under Mutual Exclusion Constraints with Dynamic Vote Reassign-
ment,” Technical Report CS-TR-056-86, Department of Computer
Science, Princeton University, November 1986.

D. Barbara, H. Garcia-Molina, B. Kogan, ‘“Maintaining Availability
of Replicated Data in a Dynamic Failure Environment,” Proc. Sizth
Symposium on Reliability in Distributed Software and Database Sys-
tems, 1987, to appear.

H. Garcia-Molina, R. Alonso, D. Barbara, S. Abad, “Data Caching in
an Information Retrieval System,” Technical Report CS-TR-065-86,
Department of Computer Science, Princeton University, December
1986.

H. Garcia-Molina, K. Salem, ‘‘Sagas,” Technical Report CS-TR-070-
86, Department of Computer Science, Princeton University,
December 1986.



[Gare87]

[Pitt86a]

[Pitt86b]

[Pitt86¢]

[Simp86]

- 1.

H. Garcia-Molina, B. Kogan, “Achieving High Availability in Distri-
buted Databases,” Proc. Third International Conference on Data
Engineering, February 1987, to appear.

F. Pittelli, H. Garcia-Molina, ‘“Reliable Scheduling in a TMR Data-
base System,” Technical Report CS-TR-028-86, Department of Com-
puter Science, Princeton University, March 1986.

F. Pittelli, H. Garcia-Molina, “Recovery in a Triple Modular Redun-
dancy Database System,” submitted for publication.

F. Pittelli, “Experimental Analysis of a Triple Modular Redundant
Database System,” PhD Thesis, Department of Computer Science,
Princeton University, October 1986.

Patricia Simpson, Rafael Alonso, “Data Caching in Information
Retrieval Systems,” submitted for publication.



