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ABSTRACT

This paper presents an optimal selection algorithm on
nXn non-partitionable superposed parallel buses. For arbi-
trary k (1<k <n?), we can find the k-th smallest item in O(n)
time on nXn processors, where each processor has one data
item, and is connected to row and column buses. This perfor-
mance is shown to be optimal within a constant factor. This
algorithm is non-adaptive in the sense that the algorithm does
not depend on the data items to select. The algorithm can be
adapted to a mesh-connected computer with the same asymp-

totic time performance.
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1. Introduction

Since the discovery of linear-time sequential selection algorithms
(Blum, Floyd, Pratt, Rivest, and Tarjan[1973]), many investigators have
considered the selection problem in different contexts. A lower bound for a
sequential selection problem was given by Pratt and F. Yao[1973], and
Hyafil[1976]. The upper bound was successively improved by Schonhage,
Paterson, and Pippenger[1976], and Hyafil[1976]. Dobkin and Munro[1978]
and Munro and Paterson[1980] studied time and space bounds for the selec-
tion problem. Johnson and Mizoguchi[1978] analyzed the selection problem
on the multiset. Parallel and distributed algorithms for selection problems

have also been considered on various models.

Chang and Roberts[1979], Hirschberg and Sinclair[1980], Frank-
1in[1982], Dolev, Klawe, and Rodeh[1982], Peterson[1982], and Pachl,
Korach, and Rotem[1982] have considered distributed maximum-finding
algorithms on a ring of processors. Rodeh[1982], Santoro and Sidney[1982],
and Chin and Ting[1985] studied a distributed median finding problem and

its communication complexity. A more general framework for distributed
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selection problem has also been examined.

Shrira, Francez, and Rodeh[1983] studied transformation from a
sequential selection algorithm to a distributed algorithm in the context of
arbitrary interconnection schemes. Frederickson[1983] analyzed the selec-
tion problem with regard to ring, mesh, and tree networks. Korach, Rotem,
and Santoro[1984] were concerned with the distributed algorithms for
finding median in the general network of computers and Zaks[1985] studied
a distributed selection algorithm on a tree network. AklI[1984] and Gupta
and Bhattacharjee[1984] concentrated on the parallel selection problem on

the shared-memory SIMD model.

Levitan and Foster[1982] considered the maximum-finding problem
using memories that permit only a single successful write but multiple
reads. Stout[1983] studied the selection problem on a mesh with a shared
global bus. Bokhari[1984] presented a maximum-finding algorithm also on
a mesh with a shared global bus. Aggarwal[1986] extended his result to a
mesh with % global buses. Kumar and Raghavendra[1985] and Stout[1986]
also studied a selection problem on a mesh with multiple broadcast buses.
Marberg and Gafni[1985] considered the selection problem on Multi-channel

broadcast networks.

A. Yao[1980] and Wah and Chen[1984] viewed the problem in the con-
text of networks. Cole and Yap[1985] and Ajtai, Komolos, Steiger, and
Szemeredi[1986] were concerned with parallel selection algorithms and

proved O (loglogn ) bounds on Valiant’s[1975] parallel comparison model.

In this paper, we derive lower and upper bounds for a selection problem
on both a linear bus and a two dimensional grid of superposed parallel buses
(SPB). For arbitrary k (1<k =<n?), we can find the k-th smallest item in

O (N) and O(n) time on N processors connected by a shared bus and nXn
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processors connected by SPB, respectively. Both time bounds are asymptoti-

cally optimal within a constant factor.

The paper is organized as follows: In section 2, we summarize model of
computation to make the basic assumptions clear. In section 3, we obtain
lower and upper bounds for selection on a linear bus. In section 4, we
derive a lower bound for selection on SPB. In section 5, we present an

optimal algorithm for selection on SPB.

2. Model of Computation

The model of computation we assume is a SIMD (Single Instruction
Stream Multiple Data Stream) machine. That is, we assume a parallel com-
puter with N identical processors that execute the same instructions. Each
processor is essentially a comparator with a pair of registers and a counter.
The instructions can be either broadcast from the central control unit or dis-
tributed to each processor site beforehand. We assume that each processor

initially has one data item for selection.

The interconnections between the processors are shared buses. We do
not allow bus-partitionability. We assume unit delay for a wire of arbitrary
length. That is, one bus transfer takes a unit of time. Only one processor is
allowed to broadcast a data item to a shared bus and others may read it.
The data items in each processor are not allowed to be modified. The only
operations available are the comparison of two of the given data items, the
update of the counter value, or the transmission of a single, unmodified data
item from the collection. For the proof of a lower bound, infinite memory is
allowed. For the proof of an upper bound, no extra memory is assumed for
the linear case and no more than O (log?n) memory bits are assumed for the

two dimensional case.
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We consider two interconnection topologies: the linear bus and the two
dimensional grid of superposed parallel buses. For the linear bus (Figure
2.1), we assume that N processors are connected by a shared bus. For the
two dimensional grid interconnection (Figure 2.2), N =n Xn processors, and
each of the processors in every row and column are connected horizontally
and vertically to a shared bus. Thus, there are two sets of n parallel buses.
For deriving the lower bound on SPB, a processor is assumed to have double
ports: one for the row bus and the other for the column bus. For upper
bound on SPB, a processor is assumed to have only a single port and it can

only access one of the row and column buses in one processor cycle.

2.1. Selection Problem

The k-th selection problem is well represented by the problem of finding
a median. In the classical approach, the data items, or keys, are totally
ordered with less-than-or-equal relation and then the k-th in the ordered
sequence is selected. Here, k is called the rank of the selected item and
clearly identical keys will have different but contiguous ranks. A possible
alternative would be to arrange for all identical values to have the same
rank, but if rank is to produce an ordered sequence, as opposed to being
obtained from an ordered sequence, the distinct values of rank are prefer-
able. The enumeration sort, referenced in this paper, is based on obtaining

distinct values of rank.

3. Lower and Upper Bound for Selection on A Linear Bus

We prove that at least Q(V) broadcast cycles are required to find the k-

th smallest item from N processors connected by a shared bus.
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Theorem 3.1: A specific selection from N items takes at least N —1 broad-

cast cycles on N processors connected by a shared bus.

Proof: First, we look at finding the maximum of N items. We use a kind of
adversary argument. That is, whatever algorithm we may choose, there is
always the worst case when finding maximum takes N —1 broadcast cycles.

We use induction to prove the lower bound.

We note first that a processor becomes inactive if it compares a
received, broadcast datum with its own datum and the broadcast value is
larger. The resident datum is no longer a candidate for the maximum. An
initial broadcast of the maximum would result in N —1 simultaneous com-
parisons and, in a sense, the completion of the selection in one cycle.
Depending on broadcast order the number of concurrent comparisons can
vary, but the worst case analysis below shows that N —1 broadcast cycles

may be required.

Induction Hypothesis: For any m <N, finding maximum from m processors

connected by a shared bus requires at least m —1 broadcast cycles.

Basis (m =1): Finding maximum from a single processor requires no broad-

cast and N —1, the minimum number of broadcasts required, is zero.

Induction Step: Any algorithm must do a comparison eventually after &
broadcast cycles (1<k <N —1). Whichever processors are chosen for k
broadcast cycles, the worst case of broadcast items can be a collection of &
smallest items (the smallest, the 2nd smallest, ..., the k-th smallest). Now,
every processor does comparisons of any two data items it chooses among k
broadcast items and its own item. No matter how many individual com-
parisons N processors may do in parallel using k broadcast items, no more
than k items can be eliminated from the candidate list for maximum. That

is, at least N —k processors discard all the broadcast items as non-
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candidates and only hold their own item as a candidate for maximum.
Using induction hypothesis, it requires at least N —k& —1 more broadcast
cycles for the remaining N —k processors to decide maximum. Therefore,

finding maximum takes at least N —1 broadcast cycles.

For more general cases, such as finding the k-th smallest item, we can
also find similar, worst case situations, as in the case of maximum. For
example, we can pick up k/2 smallest and k/2 largest items for the worst

case of selecting a median.[ ]

For upper bound of selection on a linear bus, we present the following

simple algorithm:

Theorem 3.2: N broadcast cycles are sufficient for selection of N items on N

processors connected by a shared bus.

Proof: Each processor broadcasts its own data item starting with the left-
most processor. Every time a new item is broadcast, every processor com-
pares the broadcast item against its own item. If the broadcast item is
smaller than its own item, processors increment their counter by one. If the
broadcast item is equal to its own item and the broadcast item is from a pro-
cessor whose id is smaller than its own id, then processors increment their
counter by one. After all processors finish broadcasting their own data, each
processor knows its rank from the counter value. Therefore, the k-th smal-

lest item is known after N broadcast cycles.[]

Corollary 3.1: A selection problem from N items takes O(N) broadcast

cycles on N processors connected by a shared bus.

Proof: Immediate from Theorem 3.1 and 3.2.[]
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4. Lower Bound for Selection on SPB

We prove that at least Q(n) broadcast cycles are required to find the kth

smallest item from n Xn grid of processors connected by SPB.

Theorem 4.1: A specific selection from N =n? (n=2) items takes at least

[n/2] broadcast cycles on N =n Xn processors connected by SPB.

Proof: We can use a similar argument to the one in Theorem 3.1 for a
linear bus. First, we look at finding the maximum of N items. We use

induction to prove the lower bound.

Induction Hypothesis: For any m <N, finding the maximum from m proces-
sors connected by a nXn grid of SPB requires at least [m/2n] broadcast

cycles.

Basis (m =2): Finding the maximum from two processors connected by a
nXn grid of SPB requires one broadcast cycle and [m/2n], the minimum

number of broadcasts required, is one.

Induction Step: Any algorithm must do a comparison eventually after k
broadcast cycles (1<k <n —1). Whichever processors are chosen for % broad-
cast cycles, the worst case when searching for a maximum is to broadcast
the 2kn smallest items. Every processor receives at most 2k broadcast items.
This is because, for every broadcast cycle, at most 2n items can be broadcast
on the total of 2n parallel buses and every processor receives at most two
broadcast items. Now, every processor does comparisons of any two data
items it chooses among 2k broadcast items and its own item. No matter
how many individual comparisons N =n? processors may do in parallel,
using 2k broadcast items, no more than 2kn items can be eliminated from
the candidate list for maximum. That is, at least n?—2kn processors dis-
card all the broadcast items as non-candidates and remain active to hold

their own item as a candidate for maximum. Using induction hypothesis, it
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requires at least n/2—k more broadcast cycles for the remaining n?—2kn
processors to determine the maximum. Therefore, finding maximum takes

at least [n/2] cycles.

For more general cases, such as finding the k-th smallest item, we can
also find the worst case situations as in the case of maximum. For example,
we can pick up kn smallest and kn largest items for the worst case of

median finding using a similar argument.[ ]

5. Upper Bound for Selection on SPB

We use row sort and column sort as basic operations for selection. For
this purpose, enumeration sort (Arden and Nakatani[1987]) is used for
optimal sorting on a linear bus. After an iteration of row and column sort,
a grid of nXn items forms a lattice (Abbott[1969]). That is, it forms a par-
tially ordered set and there always exist least upper bound (join or union)
and greatest lower bound (meet or intersection) for any two items. The
basic strategy to find the k-th smallest item is based on the fact that large a
fraction of items can be eliminated as non-candidates for the k-th smallest

item after row and column sorts.

First of all, we can find the maximum and minimum at the upper-left
corner and the lower-right corner, respectively. In other words, we can com-
pletely eliminate non-candidates for maximum and minimum by one itera-
tion of row and column sorts. In contrast, to find the median, the largest
fraction must remain as candidates. However, even for this worst case, we
can eliminate at least one quarter of all the items after one iteration of row
and column sorts. In Figures 5.1a and 5.1b, we show a 8 X8 grid of proces-
sors after row and column sort. The squares in grey color represent non-

candidates for k-th smallest item (1<k<12) and therefore they can be



discarded.

More precisely, after row and column sorts, we can eliminate the sub-
set, S(n2,k)={(x,y): xy>k or (n —x)(n —y)>n2—k+1} as non-candidates
for the k-th smallest item from n? items, {(x,y): 1<x,y <n}. In general, the

cardinality of S(n2,k) has following property:

n?

2
IS (n2,k)|=|S (n2,n7)|>n2'(1—10ge2)>0.3n2> -

For example (n =5),
IS (n2,1)]=|S (n%,n?)|=n2-1
IS (n2,2)=|IS (n%,n2—1)|=n2-2
IS (n2,3)|=IS (n%,n2—2)|=n2—4
1IS(n2,4)|=IS (n%,n?-3)|=n2-17
IS (n2,5)]=|S (n%,n2—4)|=n%-9

First, we describe the algorithm informally using the example (Figure
5.2): We consider the problem of finding median on the 8X8 grid of proces-
sors connected by SPB. After all rows are sorted and then all columns are
sorted, 26 items can be discarded as non-candidates for median and total of
64—26=38 items remain active for a candidate. The active items are per-
muted to form a smaller grid of size 7X6. After a row and column sort on
the new grid, 13 items can be discarded as non-candidates and total of
38 —13=25 items remain active. The active items are permuted to form a
smaller grid of size 5X5. After row and column sort on the new grid, 12
items can be discarded and total of 25—12=13 items remain active. The
active items are permuted to form a grid of size 4X4. After row and column
sort, 6 items can be discarded and total of 7 items remain active. After the
number of active items is fewer than n (8 for this example), the active items

are permuted to a single row and row sort is performed. Then, we can pick
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the median at the center of the row.

It is important to note that the positions of discarded items, permuta-
tions, and the number of iterations do not depend on the specific data items.
In other words, the algorithm is non-adaptive. Therefore, this information
can be precalculated and stored in the memory of each processor. That is, at
the beginning of each iteration, the i-th processor reads its new
identification, id;, the mask, mask;, and the permutation, p; from the
memory. After row and column sort, it inactivates itself depending on its
mask;, sends its own item to the destination processor based on the permu-
tation, p;, and updates the iteration count by one and checks it against the

total iteration number, upto.

The O(n) non-adaptive selection algorithm, Selection(n, k), for N =nf

data items on N =n Xn processors connected by SPB appears below.
procedure Selection(n, k);
begin

read the total iteration value, upto, from the memory.

for i=1 to upto do begin

read the size of grid, n;, identification, id;, the mask, mask;, and

permutation, p;.

for each row r (r=0,1, - - - ,n;—1) in parallel do
Enumeration-Sort(n ;);

for each column ¢ (¢ =0,1, + - - ,n;—1) in parallel do
Enumeration-Sori(n ;);

if mask;=1 then
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active <off;
Permutation(p ;);
end
end;
Theorem 5.1: The algorithm Selection(n, k) takes O (n) time.

Proof: One iteration of Selection(n;, k) takes O(n;). This is because row or
column sort takes 2n; (Arden and Nakatani[1987]) and permutation takes

at most 2n; (Arden and Nakatani[1986c]). The number of iterations is at

V3

most O (logn) because n;y; <T-ni. That is, we have the following

recurrence equation for the time complexity, Tg(n):
Ts(ni)<TS(n,- +1)+6ni
By solving this recurrence equation, we obtain Ts(n)<12-(2+\/§)-n.|:|

Corollary 5.1: A selection problem from N =n? items takes ©(n) time on

N =n? processors connected by SPB.

Proof: Immediate from Theorem 4.1 and Theorem 5.1.[]

6. Concluding Remarks

We obtained lower and upper bounds for the selection problem on both
a linear bus and a two dimensional grid of superposed parallel buses. The
optimal selection algorithm for SPB in this paper can be adapted to a mesh-
connected computer with the same asymptotic time performance. Enumera-
tion sorting for row and column sort can be replaced by even-odd transposi-
tion sort on a mesh with the same time performance (in the restricted SIMD
model) (Thompson and Kung{1977]). Permutation can be performed on a
mesh with the same asymptotic time performance but with slightly larger

constant factor.
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As a closely related subject, we studied the sorting problem on SPB.
There is a mismatch between the O(n) lower bound and the O(nloglogn)
upper bound for non-partitionable SPB (Arden and Nakatani[1987]). But, if
we allow bus-partitionability, bitonic sorting on SPB with optimal O(n)
time performance can be implemented (Arden and Nakatani[1986d]). This
is based on k-way bitonic sort (Arden and Nakatani[1986b]). However, bus-
partitionability does not always improve the performance of algorithms on
SPB. For example, the time for some permutations can not be reduced with

partitionable buses (Arden and Nakatani[1986a and 1986c]).

An interesting question is how much the performance of a selection on
SPB with partitionable buses can be improved. For example, if we allow
bus-partitionability, a maximum-finding problem can be solved in O (logN)
and O(logn) on N processors connected by a single shared bus and a nXn
grid of processors connected by SPB, respectively. For the more general
selection problem, finding the k-th smallest item can be performed in
0 (log3N) and O (log®n) on N processors connected by a single shared bus
and a nXn grid of processors connected by SPB, respectively. This is based
on the similar approach to Munro and Paterson[1980] and Frederick-
son[1983]. However, lower bounds for the general selection problem with

partitionable buses are still unknown.

It is also interesting to alter the model of computation. For example, if
we allow multiple writes but only one successful write to a bus, then a selec-
tion problem can be solved in average O (logN) time on N processors con-
nected by a non-partitionable, shared bus (Levitan and Foster[1982]).
Furthermore, if the range of keys is known, then selection can be done in
O (logN) time on N processors connected by a non-partitionable, shared bus

(Levitan and Foster[1982]).
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Figure 5.1a: The candidates for the k-th Smallest item (1=k<6)
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Figure 5.2: Median-Finding Algorithm (N = 8x8)



