AN IMPROVED UPPER BOUND FOR SORTING ON
NON-PARTITIONABLE SUPERPOSED PARALLEL BUSES

Bruce W. Arden

Toshio Nakatani

CS-TR-071-87

January 1987

An Improved Upper Bound for Sorting on Non-
partitionable Superposed Parallel Buses

Bruce W. Arden

College of Engineering and Applied Science
University of Rochester
Rochester, N.Y. 14627

Toshio Nakatani

Department of Computer Science
Princeton University
Princeton, N.J. 08544

ABSTRACT

The paper presents O(nlogn) and O (nloglogn) sorting
methods on nXn non-partitionable superposed parallel buses.
For merging and sorting on n processors connected by a linear
bus, an optimal method based on enumeration is developed. It
takes 3n/2 and 2n steps, which are O(logn) and O (log?n)
improvements from bitonic merge and sort respectively. For
two dimensional sorting on superposed parallel buses, three
different methods are considered: bitonic, shear, and reverse
sort. Improvements in time complexity of O(logn) using the
first two methods and of O(log?n/loglogn) using the third
method are obtained. Also time complexity measures based on
the bus bandwidth are presented. A final discussion on VLSI

optimality for the three sorting schemes is included.

January, 1987

An Improved Upper Bound for Sorting on Non-
partitionable Superposed Parallel Buses

Bruce W. Arden

College of Engineering and Applied Science
University of Rochester
Rochester, N.Y. 14627

Toshio Nakatani

Department of Computer Science
Princeton University
Princeton, N.J. 08544

1. Introduction

We have shown that bitonic sort on a nXn grid of partitionable super-
posed parallel buses (SPB) is optimal in VLSI complexity measures assum-
ing the unit-delay model (Arden and Nakatani[1986d]). That is, its time
complexity is O(n). Optimality can be also argued from the fact that any
non-degenerate permutation, where every data item must move to a
different row and column from the original position, takes at least n cycles
(Arden and Nakatani[1986a and 1986c]). We further developed time com-
plexity measures for bitonic sort on a grid of non-partitionable SPB, which is
O (nlog2n) and therefore not optimal. It is interesting to determine whether
further improvements of the time performance of sorting on non-

partitionable SPB can be achieved.

In this paper, we improve this bound to O(rlogn) and O (nloglogn),
using optimal merging and sorting on a linear bus, and develop a new

method based on enumeration. That is, by ranking and permutation, we
can merge and sort n data items on a linear bus in 37n and 2n cycles respec-

tively. The lower bound for merging and sorting on a linear bus with n

-9 .

processors is O(n) since any non-degenerate permutation takes n cycles.

Therefore, merging and sorting by enumeration is optimal for a linear bus.

For two dimensional sorting on a nXn grid of SPB, we consider three
different sorting methods: bitonic sort leading to O (nlogn) sorting complex-
ity on SPB; shear sort (Scherson, Sen, and Shamir[1986]) also leading to
O (nlogn) sorting complexity; reverse sort (Schnorr and Shamir[1986]) lead-
ing to O(nloglogn) sorting complexity. We develop these time complexity
measures for the three different sorting methods with bus bandwidth, B as a
parameter. Finally, we discuss VLSI optimality for the three sorting

schemes.

This material is organized as follows: In section 2, we summarize the
model of computation we use for this analysis. In section 3 and 4, sorting
and merging by enumeration on a linear bus is presented. In section 5, 6,
and 7, we present three different sorting methods on SPB (bitonic, shear,
and reverse sort), and develop time complexity measures based on the bus
bandwidth for each case. In section 8, we discuss VLSI optimality for the

three sorting schemes.

2. Model of Computation

The model of computation we assume is a SIMD (Single Instruction
Stream Multiple Data Stream) machine. That is, we assume a parallel com-
puter with P identical processors that execute the same instructions. Each
processor is essentially a comparator with a pair of registers and a counter.
The instructions can be either broadcast from the central control unit or dis-
tributed to each processor site beforehand. For the former case, there is
complete synchrony. For the latter case, synchronization need occur only at

the network interface. With this interpretation, the algorithms described

can be used in both cases.

Concerning the number of data items per processor, we assume that
each processor has exactly one data item to sort. Therefore, the total
number of data items, N, is equal to the number of processors, P. We shall
discuss the more general case, such as N =mP, where each processor has m

data items in a separate paper, and focus on the case of N =P here.

To represent time complexity, we use . as the time for a processor to
send one data item to one of the other processors on a bus. We use ¢, as the
time for a processor to compare the contents of two registers and to update

the counter value.

2.1. Bus Interconnections

The interconnections between the processors are buses. Bus speed is
represented by an integer, B, which can be interpreted as the number of bus
transmissions per processor cycle. Equivalently, B can be viewed as the
number of parallel buses, where each bus can make one transmission per
processor cycle. Clearly, B<P and B, P, and N are all integral powers of

two.

We consider two interconnection topologies: the linear bus and the two
dimensional grid of superposed parallel buses. For both cases, we assume
no bus-partitionability in this paper. For the linear bus (Figure 2.1), we
assume that P processors are connected by a bus with a bandwidth ratio B
(1=B <P). When B =1, a processor can access the bus either via an input
or output port, but only one such access within a processor cycle. For B=2,
a processor can access one of the buses (or alternately, one bus cycle) via an
input port and another bus via its output port within one processor cycle.

For the two dimensional grid interconnection (Figure 2.2), P =pXp

-4 -

processors, and every row and column of p processors are connected horizon-
tally and vertically by a bus. For the two dimensional case, we assume
1<B<p and B, p, and n (N =nXn) are all integral powers of two. Of

course, for the one data item per processor assumption, p =n.

In an actual implementation, the integral valued bandwidth B of the
bus would have to be managed. Either the B time slots in processor cycle
would have to be assigned to processors or, in the case of B processor-speed
buses the buses would have to be assigned to specific processor pairs. In
both cases, the assignment could be done @ priori and carried out by a
hardware bus manager, or arbitration unit. For the purposes of determin-
ing time, it is not necessary to know the order in which bus transmissions
are made, but only the length of time the bus (or buses) are occupied in
making the necessary transfers. Therefore, the algorithmic details of bus

arbitration are not included in the paper.

3. Sorting by Enumeration on a Linear Bus

The technique we use here is called enumeration sorting (Knuth[1972],
Muller and Preparata[lQ'?S], Preparata[1978], and Yasuura, Takagi, and
Yajima[1982]). This technique is well suited to a linear bus interconnec-
tion. Enumeration sorting is based on comparisons of one key against all
the others to find the rank and on the subsequent permutation of data items
by the determined ranks. On a linear bus, one-to-all broadcasting is natural

and permutation can be done simply by broadcasting every data item once.

The algorithm, Enumeration-Sort, for an arbitrary sequence, Xy ={x; |

i =0,1,..,N —1}, on P =N processors on a linear bus is:

.5 -

procedure Enumeration-Sort(X y, order);
begin
load processor-id based on order;
rank:=0;
for i=0 to N —1 do begin
if processor-id=i then
broadcast key.data to the bus;
load received-key.data from the bus to the input register;

if {received-key < key} or {received-key = key and i < processor-id}
then

rank:=rank +1
end;
for i=0 to N —1 do begin
if rank=1i then
broadcast key.data to the bus;
if processor-id=i then

load received-key.data from the bus to the input register;
end

end;

3.1. Time Complexity of Enumeration Sort

Time complexity, Tgs(N), of Enumeration-Sort for an arbitrary
sequence of length N on P (P =N) processors on a linear bus of bandwidth B

is:

-6 -
N
TES(N) = [N+E]'tr+[N]'tc

The rank calculation requires N broadcasts and N comparisons regard-

less of the bus bandwidth. Permutation requires % broadcasts.

4, Merging by Enumeration on a Linear Bus
Merging can also be done using enumeration. Suppose there are two

sorted sequences, a and b, of length % on K processors on a linear bus.

First, we broadcast every data item of the sequence b. Then, every data
item of the sequence a now knows its rank in the whole sequence of length
K. Second, we broadcast every data item of the sequence a. Then, every
data item of the sequence b now knows its rank in the whole sequence of
length K. At the same time, every data item of the sequence a is permuted
to its destination by its rank. Third, we broadcast every data item of the
sequence b. Then, every data item of the sequence b is permuted to its des-

tination by its rank.
The algorithm, Enumeration-Merge, for two sorted sequences of length

%—, Xg={x; | i=0,1,..,N—1 and x; is sorted for i=0,1,...,%—1 and
K K

=92

+1,..,K —1}, on K contiguous processors (which are assumed to be
on the integral boundary of K for program simplicity) on a linear bus fol-
lows. Here, we note that processor-id-low represents the least significant

logK bits of processor-id.

-7 -

procedure Enumeration-Merge(X g, order);
begin
load processor-id based on order;
rank:=rank-in-sub-sequence;

processor-id-low: = processor-id[logN —logK ;logN —1];

for i=0 to %—1 do begin

if processor-id-low= %-I—i then

broadcast key.data to the bus;
load received-key.data from the bus to the input register;

if processor-id-low=1i and [{received-key < key} or {received-key =

key and i < processor-id}] then

rank =rank +1

end;
for i=0 to K —1 do begin
if processor-id-low=1 then
broadcast rank.key.data to the bus;
load received-key.data from the bus to the input register;
if processor-id-low=received-rank then
load the final register from the input register;
if processor-id-low= —Ig and [{received-key < key} or {received-key =
key and i < processor-id}] then

rank =rank +1

end

end;

4.1. Time Complexity of Enumeration Merge
Time complexity, Tgyu(K), of Enumeration-Merge for two sorted
sequences of length —Izg on K contiguous processors on a linear bus of

2B .

The rank calculation requires K broadcasts and K comparisons regard-

less of the bus bandwidth. Permutation requires % broadcasts. However,

second half of the broadcast and comparison cycles are overlapped with first

half of broadcast cycles for permutation. Therefore, K + -QI% broadcasts and

K comparisons are necessary and sufficient.

5. Bitonic Sort on SPB

An optimal adaptation of bitonic sort on SPB requires partitioning
buses to progressively sort larger sub-grids independently (Arden and
Nakatani[1986d]). With non-partitionable buses, the bitonic approach does
not lead to an optimal sort. In this paper, we use Vertical-Merge (Arden
and Nakatani[1986d]) for two dimensional sorting technique, combined with
Enumeration-Merge and Enumeration-Sort we developed in the previous sec-
tions. Vertical-Merge algorithm we use here is based on the previously

described k-way bitonic sort (Arden and Nakatani[1986b]).

The Vertical-Merge algorithm to merge a kXn rectangular array of

data items (k is an integral power of two and 2<k =<n) in row-major order

is:
procedure Vertical-Merge(X}, ,, order);
begin
for each column ¢ (¢ =0,1,...,n —1) in parallel do
Enumeration-Merge(X , order);
for each row r (r =0,1,...,n —1) in parallel do
Enumeration-Sort(X ,,, order);
end;

As in the study of the k-way bitonic sort, the column merge is regular-
bitonic merge and the row merge is also bitonic merge. Enumeration-Merge
can simulate regular-bitonic merge (Arden and Nakatani[1986b]) but not
bitonic merge. Therefore, we use Enumeration-Sort to simulate bitonic-
merge.

In the following algorithm, some special notations are used. First,
rllogn —1] represents the (logn —1)-th bit of r in binary representation. For
example, if r =100 and n=2, then r[logn —1]=1. Second, (0.r) represents
the concatenation of 0 and r in binary representation. For example, if

r =100, then (0.r)=0100.

Accordingly, the Bitonic-Sort algorithm to sort a nXn square array of

data items, X, ,, in row-major order is:

-10 -

procedure Bitonic-Sort(X ,, ,);
begin
for each row r (r =0,1,...,n —1) in parallel do
order:=r{logn —1];
Enumeration-Sort(X ,, order);
for i=1 to logn do begin
order:=(0.r)[logn —i]
for each 2¢Xn rectangular subsection in parallel do
Vertical-Merge(X 9i ,, order);

end

end,

5.1. Time Complexity of Bitonic Sort

The time complexity, Tgg(n,n), of Bitonic-Sort for an arbitrary
sequence of length N=n? on P =pXp (P =N) processors on a grid of SPB
with the bus bandwidth B is:

logn 5 ;
TBS(n,n) = TEs(n)-l- é g'TEM(ZL)-i-logn'TES(n)

i=1

logn .
= (logn +1):Tgg(n)+ _il‘;"TEM(T)
L:

n

= (logn +1)(In+ 5B

i]-tr-l—[n I'¢,)+logn -([n +

B]tr+[n]tc)

_ 2 L f e : !
= [(2+ 2B)nlogn-}-(1+ B)n] t,+[2n-logn +nlt,

=11 &

6. Shear Sort on SPB

Shear Sort (Scherson, Sen, and Shamir[1986]) is based on the simple
idea that an iteration of both row sort in alternate order and column sort in
increasing order decreases the number of “dirty” rows into half, and logn +1
iterations completely sorts an nXn square array of data items in snake-like,
row-major order. Here, a row is called “dirty” when the row contains Zero’s
and one’s in the process of sorting zero’s and one’s. Conversely, a row is

called “clean” when the row contains only zero’s or one’s.

THe Shear-Sort algorithm to sort a nXn square array of data items,

X, n, in snake-like, row-major order is:
procedure Shear-Sort(X,, n);
begin
for i=1 to logn +1 do begin
for each row r (r =0,1,...,n —1) in parallel do
order:=rllogn —1];
Enumeration-Sort(X ,, order);
for each column ¢ (¢ =0,1,...,n —1) in parallel do
order.=0;
Enumeration-Sort(X ,, order);

end

end;

6.1. Time Complexity of Shear Sort

The time complexity, T'sg(n,n), of Shear-Sort for an arbitrary sequence
of length N =n2 on P =pXp (P =N) processors on a grid of SPB, with the
bus bandwidth B, is:

-12 -
Tgs(n,n) = (logn +1)-2:Tgg(n)

= [241+ %)-n-(logn +1)]-¢t, +[2n -(logn +1)]-¢,

7. Reverse Sort on SPB

Reverse Sort (Schnorr and Shamir[1986]) is based on the clever idea
that iteration of three steps (column sort in increasing order, row sort in
increasing order, and row rotation of each row by the amount of the bit-
reversal of each row address) decreases the number of dirty rows to the
order of square root of the initial size. As a result, [loglogn] iterations sort
nXn square array of data items with exception of at most eight dirty rows,
and this number of exceptional rows is independent of n. To complete sort-

ing in snake-like row-major order, we can use shear sort for three iterations.

The Reverse-Sort algorithm to sort a nXn square array of data items,

X, n, in row-major order is:

=13 -

procedure Reverse-Sort(X, ,);
begin
for i=1 to [loglogn| do begin
for each column ¢ (¢ =0,1,...,n —1) in parallel do
order:=0;
Enumeration-Sort(X ,, order);
for each row r (r =0,1,...,n —1) in parallel do
order: =processor-id-low + bit-reversal(r) (mod n);
Enumeration-Sort(X ,, order);
end;
for i=1 to 3 do begin
for each row r (r =0,1,...,n —1) in parallel do
order:=r{logn —1];
Enumeration-Sort(X ,, order);
for each column ¢ (¢ =0,1,...,n —1) in parallel do
order:=0;

Enumeration-Sort(X ,,, order);
end _

end;

7.1. Time Complexity of Reverse Sort

The time complexity, Tgrs(n,n), of Reverse-Sort for an arbitrary
sequence of length N =n? on P =p Xp (P =N) processors on a grid of SPB,
with the bus bandwidth B, is:

- 14 -
Tss(n,n) = (loglogn])-2-Tgs(n)+3-2-Tgg(n)

= [2:(1+ %)-n-([loglogn] +3)]-t, +[2n-(Jloglogn | +3)1¢,

8. VLSI Complexity of Sorting

It is ultimately important to relate sorting networks to VLSI implemen-
tation and, accordingly, two appropriate complexity measures are con-
sidered. We consider conventional AT? measures (Thompson[1979]) for
point-to-point networks, and also AT2M? measures, which have a special

relevance for multi-point networks (Ullman[1984b]).

8.1. AT? Measures
Specifically, we are concerned about the chip area, A, and the computa-
tion time, T for sorting networks. The basic assumptions we make for a
VLSI model of sorting are based on Thompson[1979] and also Bilardi and
Preparata[1984]. Their main features are as follows:
1) The synchronous model: we assume unit-delay for a wire.
2) The semellective model: we assume one-time-and-place availability of
inputs.
3) The when-and-where-determinate model: we assume the predetermined

time and places for inputs and outputs.

4) The word-local model: we assume the same input port for all the bits of

a word.

Under these assumptions, a lower bound of AT?2=0(P?%log?P) can be

obtained for sorting P words of (14 ¢)logP bits each (¢>0).

« 1B «

For both linear and two dimensional bus interconnections with P pro-
cessors, the area is A=0(Plog?P). We assume that bus bandwidth, B, is
constant and independent of P. Accordingly, B does not affect the complex-
ity measures. We also assume B<P. For a linear bus, the time for
enumeration sort is T=0(P) and thus AT2=0 (P?log?P). On the other
hand, for a two dimensional grid of SPB, T=0(VPlogP) and
AT?=0 (P%log*P) for bitonic and shear sort and T'=0 (VPloglogP) and
AT?2=0(P2log?Ploglog?P) for reverse sort. Therefore, all three sorting
schemes on SPB are close to optimal. If we allow bus-partitionability,
bitonic sort can be performed with optimal performance (Arden and
Nakatani[1986d]). However, considering the control structures of both
optimal bitonic sort and partitionable buses, the sorting algorithms

described here are more practical for real implementations.

8.2. AT2M? Measures

As a next step, we consider VLSI complexity for the multi-point and
high “flux” networks proposed by Ullman[1984b]. That is, we assume a
high-bandwidth bus where each processor on the bus can transmit one data
item to its destination processor on the same bus within a processor cycle.
Under this assumption, AT2M2=0(P?%) lower bound can be obtained
(Ullman[1984b]), where M is the maximum number of processors support-
able on a bus within a unit of time. For our model, we can assume
M=B=P for a linear bus and M=B=VP for a two dimensional grid of
SPB. For this analysis, B should be interpreted as bus speed.

For a linear bus, the time for enumeration sort is T=O0(P) and
AT2M2%2=0 (P%log?P). On the other hand, for a two dimensional grid of
SPB, T=0 (PlogP) and AT?M?=0 (P 4log*P) for bitonic and shear sort, and

=18 -

T=0 (PloglogP) and AT?M?2=0 (P*log?Ploglog?P) for reverse sort. That
is, sorting schemes we presented in this paper are not optimal for AT2M?
measures because of linear comparisons required for enumeration sort. In
order to get better performance with high-bandwidth buses, we should use
bitonic merge and sort for a linear bus and also as subroutines for sorting

on SPB. The reasoning is as follows:
Time complexity, Tguy(K), of Bitonic-Merge for two sorted sequences of

length % on K contiguous processors on a linear bus of bandwidth B can be

described by (Arden and Nakatani[1986d]):
K
TeguK) = [2—B'log2K 1t,+[logK 1-t,

That is, for given B, if K <48 then bitonic merge is faster than
enumeration merge. Conversely, if K >48 then enumeration merge is faster
than bitonic merge. That is, for Optimal-Merge, two different merge

schemes should be used according to the bus bandwidth B and the size K.

With respect to the given bus bandwidth B, time complexity, Topu(K), of
Optimal-Merge for two sorted sequences of length % on K contiguous pro-
cessors on a linear bus is given by:

[%-10g2K}-t,+[logK It, ifK <4B

TouK) = K
[K+E§]-tr+[1<]-tc if K>48

Similarly, the time complexity, Tgg(IN), of Bitonic-Sort for an arbitrary
sequence of length N on P =N processors on a linear bus of bandwidth B

(Arden and Nakatani[1986d]) is:

o BT =

N 1

Tgs(N) = [2B 9

log?N + %logN 1)1, +[-é—1og2N + %logN ¢,

That is, for given B, if N=N * (where N” is the ceiling of the positive
root of the equation log?N +logN —2(2B +1)=0. The discriminant is posi-
tive so there will be a positive real root but non-integral in general.) then
bitonic sort is faster than enumeration sort. On the other hand, if N>N",

then enumeration sort is faster than bitonic sort.

With respect to the given bus bandwidth B, time complexity, Tos(V), of
Optimal-Sort for an arbitrary sequence of length N on P =N processors on a

linear bus of bandwidth B is:

[2B(zlog N+2logN+1)]t,+[2log N+2logN]tc if N=N
Tos®) ={ ~ n *
[N +—§]-tr+[N]-tc if N>N".

Therefore, with a high-bandwidth bus (pérticularly in the linear case of
M =B =P and M =B =VP for the two dimensional SPB), we use bitonic
merge and sort instead of the enumeration method. For a linear bus, the
time for bitonic sort is T=0 (log2P) and AT?M?=0 (P®log®P). On the
other hand, for a two dimensional grid of SPB, T=0(log®P) and
AT2M? =0 (P?log®P) using bitonic and shear sort, and T =0 (log%PloglogP)
and AT2M? =0 (P2log®Ploglog®P) with the reverse sort. That is, the sort-
ing schemes for SPB presented in this paper, with bitonic merge and sort as

subroutines, are close to optimal for AT?M? measures.

9. Concluding Remarks

Three different sorting methods on a grid of non-partitionable SPB have
been described. We developed an optimal merging and sorting scheme for a

linear bus based on enumeration. And then, using this algorithm as a

nw

subroutine, time complexity measures for three different sorting schemes
with bus bandwidth as a parameter were obtained. These schemes are
within logarithmic factors of optimality by AT? measures. However, they
are not optimal in AT2M? measures because of sequential comparisons in
the enumeration algorithm. Therefore, for a high-bandwidth bus, we sug-
gested the use of bitonic merge and sort as subroutines for sorting on SPB.
With this strategy, the three sorting schemes are nearly optimal, that is,

within logarithmic factors in AT2M 2 measures.

Two dimensional sorting was first studied by Gale and Karp[1972].
Many investigators have studied it in terms of sorting on mesh-connected
computers (Orcutt[1976], Thompson and Kung[1977], Nassimi and
Sahni[1979], Kumar and Hirschberg[1983], Lang, Schimmler, Schmeck, and
Schroder[1985], Scherson, Sen, and Shamir[1986], and Schnorr and
Shamir[1986]). They achieved optimal performance within constant and _

logarithmic factors.

Earlier, we have shown that a two dimensional grid of SPB has better
time performance for bitonic sorting with partitionable buses (Arden and
Nakatani[1986d]). This paper shows an improvement in the performance of
sorting on SPB with non-partitionable buses by factors of O(logn) and
O (log2n/loglogn). Although it might be possible to implement the O (logV)
sorting scheme (Ajtai, Komlos, and Szemeredi[1983], Bilardi and
Preparata[1985], and Leighton[1985]) on SPB, it is not likely to be practical
due to huge constant factors involved. The sorting algorithms we presented
here are practical because of simple control structures and simple bus inter-
connections. And the constant factors in time performance are relatively

small.

-19 -

An interesting open problem is to find the lower bound of sorting on a
two dimensional grid of non-partitionable SPB. It is easy to show sorting
takes at least O(n) on a nXn grid of SPB, but it is not known whether
O (nloglogn) is the lower bound or not. As a related problem, we have
shown that selection problem takes O(n) on a nXn grid of non-partitionable

SPB and further more this is optimal (Arden and Nakatani[1987]).

References
Ajtai, M., J. Komlos and E. Szemeredi [1983]. “An O (NlogN) sorting net-
work,” Proc. of 15th ACM Symposium on Theory of Computing, pp. 1-9.

Arden, B. and T. Nakatani [1986a]. “Permutations on superposed parallel
buses,” Technical Report CS-TR-024-86, Department of Computer Science,
Princeton University.

Arden, B. and T. Nakatani [1986b]. “K-way bitonic sort,” Technical Report
CS-TR-040-86, Department of Computer Science, Princeton University.
Arden, B. and T. Nakatani [1986c]. “Optimal permutations on superposed
parallel buses,” Technical Report CS-TR-060-86, Department of Computer
Science, Princeton University.

Arden, B. and T. Nakatani [1986d]. “Bitonic sorting on superposed parallel
buses,” Technical Report CS-TR-063-86, Department of Computer Science,
Princeton University. |

Arden, B. and T. Nakatani [1987]. “Optimal selection on superposed paral-
lel buses,” Technical Report CS-TR-???-87, Department of Computer Science,
Princeton University.

Batcher, K. E. [1968]. “Sorting networks and their applications,” 1968
Spring Joint Computer Conf., AFIPS Proc., vol. 32. Washington, D.C., pp.

- 20 -

307-314.

Bilardi, G. and F. P. Preparata [1984]. “An architecture for bitonic sorting
with optimal VLSI performance,” IEEE Trans. on Computers C-33:7, pp.
646-651.

Bilardi, G. and F. P. Preparata [1985]. “A minimum VLSI network for
O (logn) time performance,” IEEE Trans. on Computers C-34:4, pp. 336-343.

Gale D. and R. M. Karp [1972]. “A phenomenon in the theory of sorting,” ¢J.

of Computer and System Sciences, 6, pp.103-115.
Knuth, D. E. [1973]. The Art of Computer Programming, Vol 3: Sorting and
Searching. Reading, M.A., Addison-Wesley.

Kumar M. and D. S. Hirschberg [1983]. “An efficient implementation of
Batcher’s odd-even merge algorithm and its application in parallel sorting
schemes,” IEEE Trans. on Computers C-32:3, pp. 254-264.

Lang H., M. Schimmler, H. Schmeck, and H Schroder [1985]. “Systolic sort-
ing on a mesh-connected network,” IEEE Trans. on Computers C-34:7, pp.
652-658.

Leighton, T [1985]. “Tight bound on the complexity of parallel sorting,”
IEEE Trans. on Computers C-34:4, pp. 344-354.

Muller D. E. and F. P. Preparata [1975]. “Bounds to complexities of net-
works for sorting and for switching,” J. ACM 22:4, pp. 195-201.

Nassimi D. and S. Sahni [1979]. “Bitonic sort on a mesh-connected parallel
computer,” IEEE Trans. on Computers C-27:1, pp. 2-7.

Orcutt, S. E. [1976]. “Implementation of permutation functions in ILLIAC
IV-type computers,” IEEE Trans. on Computers C-25:9, pp. 929-936.

Preparata F. P. [1978]. “New parallel-sorting schemes,” IEEE Trans. on
Computers C-27:7, pp. 669-673.

_921 -

Scherson, I. D., S. Sen, and A. Shamir [1986]. “Shear sort: a true two-
dimensional sorting technique for VLSI networks,” Technical Report 86-20,

Department of ECE, University of California, Santa Barbara.
Schnorr C.P. and A. Shamir [1986]. “An optimal sorting algorithm for mesh
connected computers,” Proc. of 18th Annual Symposium on Theory of Com-

puting, pp. 255-263.

Thompson, C.D. and H. T. Kung [1977]. “Sorting on a mesh-connected
parallel computers,” Comm. ACM 20:4, pp. 263-271.

Thompson, C.D. [1979]. “A complexity theory for VLSL” Ph.D. Dissertation,
Carnegie-Mellon University, Pittsburgh, PA.

Thompson, C.D. [1983]. “The VLSI complexity of sorting,” IEEE Trans. on
Computers C-32:12, pp. 1171-1184.

Ullman, J. D. [1984a]. Computational Aspects of VLSI, Computer Science
Press, Rockville, Maryland.

Ullman, J. D. [1984b]. “VLSI complexity and supercomputers,” Proc. Fourth
Jerusalem Conf. on Information Technology, May, pp.646-649.

Yasuura H., H. Takagi, and S. Yajima [1982]. “The parallel enumeration

sorting scheme for VLSIL,” IEEE Trans. on Computers C-31:12, pp. 1192-
1201.

OOOO0LD0 O

T
o
EEEE
ST

