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ABSTRACT

The quest for efficiency in computational methods yields not
only fast algorithms, but also insights into the problems being
solved. Such insights can produce problem-solving methods that
combine speed with elegance, simplicity, and generality. This theme
is illustrated with two examples: an algorithm for testing planarity
of graphs, and a self-adjusting form of binary search tree.
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I was surprised and delighted to learn of my selection as the co-recipient of
the 1986 Turing Award. My delight turned to discomfort, however, as I realized
that with this great honor comes a great responsibility: to speak to the computing
community about some topic of one’s own choosing. Many of my friends, when
they learned of the award, suggested that I preach a sermon of some sort. But as I
am not the sermonizing kind, I decided upon reflection just to share with you some
thoughts about the work I do and what its relevance might be to the real world of
computing.

Most of my research concerns the design and analysis of efficient computer
algorithms. The goal in this field of study is to devise problem-solving methods
that are as fast and use as little storage as possible. The efficiency of an algorithm
is measured not by programming it and running it on an actual computer, but by

performing a mathematical analysis that gives bounds on its potential use of time
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and space. A theoretical analysis of this kind has one obvious strength: it is
independent of the programming of the algorithm, the language in which the pro-
gram is written, and the specific computer on which the program is run. This
means that conclusions based on such an analysis tend to be of broad applicability.
Furthermore, a theoretically efficient algorithm is generally efficient in practice

(though of course not always).

But something deeper is true. The approach of designing for theoretical
efficiency forces one to concentrate on the important aspects of the problem, to
avoid redundant computations, and to design data structures that represent exactly
the information needed to solve the problem. If this approach is successful, the
result is not only an efficient algorithm, but also a collection of insights and
methods extracted from the design process that can be transferred to other prob-
lems. Since the problems considered by theoreticians are generally abstractions of
real-world problems, it is these insights and general methods that are of most
value to practitioners, since they provide tools that can be used to build solutions

to the real-world problems.

I shall illustrate algorithm design with two examples. One is a graph algo-
rithm, for testing the planarity of a graph, developed by John Hopcroft and me.
The other is a data structure, a self-adjusting form of search tree devised by Danny

Sleator and me. Let me tell you how we obtained these results.

I graduated from CalTech in June of 1969 with a B.S. in mathematics, deter-
mined to pursue a Ph.D. but undecided about whether it should be in mathematics
or computer science. I finally decided in favor of the latter and enrolled as a gra-
duate student at Stanford in the fall of 1969. I thought that as a computer scien-

tist I could use my mathematical skills to solve problems of more immediate prac-
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tical interest than the problems posed in pure mathematics. I hoped to do
research in artificial intelligence, since I wished to understand the way reasoning,
or at least mathematical reasoning, works. But my course advisor at Stanford was
Don Knuth, and I think he had other plans for my future than the study of
artificial intelligence: his first advice to me was to read Volume 1 of his book, The

Art of Computer Programming [27].

By June of 1970, I had successfully passed my Ph.D. qualifying examinations,
and I began to cast around for a thesis topic. In that month John Hopcroft arrived
from Cornell to begin a sabbatical year at Stanford. We began to talk about the
possibility of developing efficient algorithms for various problems on ,g\,fraphs.1
Graphs serve as an important combinatorial model for problems in a variety of

fields [10].

As a measure of computational efficiency, we settled on using the worst-case
running time of an algorithm, as a function of the input size, on a sequential
random-access machine (an abstraction of a sequential general-purpose digital
computer). We chose to ignore constant factors in running time. This measure is
independent of both the machine model and the details of the algorithm implemen-
tation, because constant factors are ignored. It is realistic: an algorithm efficient
by this measure tends to be efficient in practice. It is also analytically tractable: we

could actually derive interesting results about it.

Other approaches we considered have weaknesses of various kinds. Edmonds
in the mid-1960’s stressed the distinction between polynomial-time and non-
polynomial-time algorithms [12], and though this distinction led in the early 1970’s

to the theory of NP-completeness [11,25], which now plays a central role in

b A graph is a collection of vertices and a set of unordered pairs of vertices called edges.
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complexity theory [16,26], it was too weak to provide much guidance in the choice
of algorithms in practice. On the other hand, Knuth practiced a style of algorithm
analysis in which constant factors and even lower-order terms are estimated
[27,28], but such detailed analysis was very hard to do for the sophisticated algo-
rithms we wanted to study and sacrificed implementation-independence. Another
possibility would have been to do average-case instead of worst-case analysis, but
for graph problems this is very hard and perhaps unrealistic: analytically tractable
average-case graph models do not seem to capture important properties of the

graphs that commonly arise in practice.

The state of algorithm design in the late 1960’s was not very satisfactory. The
available analytical tools 'lay almost entirely unused: the typical content of a
paper on a combinatorial algorithm was a description of the algorithm, a computer
program, some timings of the program on sample data, and conclusions based on
these timings. Since changes in programming details rcan affect the running time
of a computer program by an order of magnitude [8], such conclusions were not
necessarily justified. John and I hoped to help put the design of combinatorial
algorithms on a firmer footing by using worst-case running time as a guide in

choosing algorithmic methods and data structures.

The focus of our activities became the problem of testing the planarity of a
graph. A graph is planar if it can be drawn in the plane so that each vertex
becomes a point, each edge becomes a simple curve joining the appropriate pair of

vertices, and no two edges touch except at a common vertex. (See Figure 1.)

[Figure 1]
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A beautiful theorem of Kuratowski [29] states that a graph is planar if and
only if it does not contain as a subgraph a subdivision® of one of the two graphs in
Figure 2, the complete graph on five vertices (K5), and the complete bipartite

graph on two sets of three vertices (K3 3).

[Figure 2]

Unfortunately, Kuratowski’s criterion does not lead in any obvious way to a
practical planarity test. The known efficient ways to test planarity involve actu-
ally trying to embed the graph in the plane. Either the embedding process
succeeds, in which case the graph is planar, or the process fails, in which case the
graph is nonplanar. It is not necessary to specify the geometry of an embedding; a
specification of the topology of the embedding will do. For example, it is enough to

know the clockwise ordering around each vertex of its incident edges.2

Auslander and Parter [4] in 1961 formulated a planarity algorithm that I
shall call the path3 addition method (after Even [13]). The algorithm easy to state
recursively. Find a simple cycle4 in the graph. Removal of this cycle breaks the
rest of the graph into pieces, called segments. In a planar embedding, each seg-
ment must lie either completely inside or completely outside the embedded cycle.
Certain pairs of segments are constrained to be on opposite sides of the cycle. (See

Figure 3.) Test each segment together with the cycle for planarity by applying the

' A graph G is a subgraph of another grapk G g if the vertex set of G 1 is contained in that
of Gg, and the edge set of G is contained in that of Gg. A subdivision of a graph G is
formed by repeating the following step an arbitary number of times: Add a new vertex u to
G, and replace some edge {u, w} by the pair of edges {v, u} and {1, w}.

2 An edge {v, w} is said to be incident to v and to w.

3 A path in a graph is a sequence of edges {v1,U9}, {Ug,U3},..., {p —1,Up}. Vertices v and
Up are the end vertices of the path.

* A simple cycle in a graph is a sequence of edges {U 1,Va}, {Uo,Ugh,..., (Up —1,U}, {Ug,01}
such that v; # vjfor i # J.
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algorithm recursively. I each segment passes this planarity test, determine
whether the segments can be assigned to the inside and outside of the cycle in a
way that satisfies all the pairwise constraints. If so, the graph is planar; if not, it

is nonplanar,
[Figure 3]

As noted by Goldstein [17] in 1963, one must make sure that the algorithm
chooses a cycle that produces two or more segments; if only one segment is pro-
duced, the algorithm can loop forever. Shirey [33] in 1969 proposed a version of
the algorithm running in O(n3) time ! on an n-vertex graph. John and I worked

to develop a faster version of this algorithm.

A useful fact about planar graphs is that they are sparse: of the n(n—1)/2
edges that an n-vertex graph can contain, a planar graph can contain only at most
3n —6 of them (if n = 3). Thus John and I hoped (audaciously) to devise an O(n)-

time planarity test. In this we eventually succeeded.

The first step was to settle on an appropriate graph representation, one that
takes advantage of sparsity. We ﬁsed a very simple one, consisting of a list, for
each vertex, of its incident edges. For a possibly planar graph, such a representa-
tion is O(n) in size.

The second step was to discover how to do a necessary bit of preprocessing.
The path addition method requires that the graph be biconnected (that is, have no
vertices whose removal disconnects the graph). If a graph is not biconnected, it

can be divided into maximal biconnected subgraphs, called biconnected components.

! The notation “f(n) is O(g(n)),” used of two functions f and g of n, means that for some
positive constant ¢ and all sufficiently large n, f(n) = cg(n).
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A graph is planar if and only if all of its biconnected components are planar. Thus
planarity can be tested by first dividing a graph into its biconnected components
and then testing each component for planarity. We devised an algorithm for
finding the biconnected components of an n-vertex, m-edge graph in O(n + m)
time [22,38]. This algorithm uses depth-first search, a systematic way of exploring

a graph and visiting each vertex and edge.

We were now confronted with the planarity test itself. There were two main
problems to be solved. If the path addition method is formulated iteratively
instead of recursively, the method becomes one of embedding an initial cycle and
then adding a path at a time to a growing planar embedding. Each path is disjoint
from earlier paths except for its end vertices. When a path is embedded, there may
be several ways to embed it. Embedding of later paths may force changes in the
embedding of earlier paths. We needed a way to divide the graph into paths and a

way to keep track of the possible embeddings of paths so far processed.

After carefully studying the properties of depth-first search, we developed a
way to generate paths in O(n) time using such a search [22]. Our initial method
for keeping track of alternative embeddings used a complicated and ad hoc nested
structure whose correct working requires that paths be generated in a specific
order determined dynamically. Fortunately, our path generation algorithm was
flexible enough to meet this requirement, and we obtained a planarity algorithm

running in O(n log n) time [20].

Our attempts to reduce the running time of this algorithm to O(n) failed, and
we turned to a slightly different approach, in which the paths are all generated
first, then a graph representing their pairwise embedding constraints is con-

structed, and finally the graph is colored with two colors, corresponding to the two
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possible ways to embed each path. The problem with this approach is that there
can be a quadratic number of pairwise constraints. Obtaining a linear time bound
requires explicitly computing only O(n) such constraints, but enough so that if
these are satisfied so are all the rest. Working out this idea lead to an O(n)-time
planarity algorithm, which become the subject of my Ph.D. dissertation [37]. This
algorithm is not only theoretically efficient but fast in practice: my implementa-
tion, written in Algol W and run on an IBM 360/67, tested graphs with 900 ver-
tices and 2694 edges in about twelve seconds. This was about eighty times faster
than any other claimed time bound I could find in the literature. The program

runs about 500 lines long, not including comments.

This is not the end of the story, however. In preparing a description of the
algorithm for journal publication, we discovered how to avoid the task of con-
structing a graph representing pairwise embedding constraints and trying to color
it. We devised a data structure, called a pile of twir stacks, that can represent all
possible embeddings of paths so far processed and is easy to update to reflect the
addition of a new path. This led to a simpler algorithm, still with an O(n) time
bound [23]. Don Woods, a student of mine, programmed the simpler algorithm,
which tested graphs with 7000 vertices in eight seconds on an IBM 370/168. The
length of the program was about 250 lines of Algol W, of which planarity testing
required only about 170, the rest being used for actually constructing a planar

representation.

From this research we obtained not only a fast planarity algorithm, but also
an algorithmic technique — depth first search — and a data structure — the pile
of twin stacks — useful in solving many other problems. Depth first search has

been wused in efficient algorithms for a wvariety of graph problems
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[14,15,21,22,31,38,39,41,46]; the pile of twin stacks has been used to solve a sorting

problem and a problem of recognizing codes for planar self-intersecting curves [32].

Our algorithm is not the only way to test planarity in O(n) time. Another.
approach, due to Lempel, Even, and Cederbaum [30], is to build an embedding by
adding one vertex and its incident edges at a time. A straightforward implementa-
tion of this algorithm gives an O(n?) time bound. When John and I were doing
our research, we saw no way to improve this bound, but later work by Even and
me [14] and by Booth and Lueker [9] yielded an O(n)-time version of this algo-
rithm. Again the method combines depth-first séarch, in a preprocessing step to
determine the order of vertex addition, with a complicated data structure for keep-
ing track of possible embeddings, the PQ-tree of Booth and Lueker. This data

structure itself has several other applications [9].

There is even a third O(n)-time planarity algorithm. Only recently I
discovered that a novel form of search tree called a finger search tree, invented in
1977 by Guibas, Plass, McCreight, and Roberts [18], can be used in the original
planarity algorithm that John and I developed to improve the running time from
O(n log n) to O(n) [19]. Deriving the time bound requires the solution of a
divide-and-conquer recurrence. Finger search trees had no particularly compelling
applications for several years after they were invented, but now they do, in the
realms of sorting [19] and computational geometry [47] in addition to graph algo-

rithms.

What conclusions can we draw from these developments? Choosing the
correct data structures is crucial to the design of efficient algorithms. Sometimes
these structures are complicated. It can take a long time — years — to distill a

complicated data structure or algorithm down to its essentials. But a good idea,
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even if complicated, has a way of eventually becoming simpler, and of providing
solutions to problems different from those for which it was intended. Just as in
mathematics, there are rich and deep connections among diverse parts of computer

science.

I want to shift the emphasis now from graph algorithms to data structures.
Let us reflect a little on whether worst-case running time is an appropriate meas-
ure of the efficiency of a data structure. A graph algorithm is generally run on a
single graph at a time. An operation on a data structure, however, does not occur
in isolation; it is one in a long sequence of similar operations on the structure.
What is important in most applications is the time taken by the entire sequence of
operations, not the time taken by a single opefation. (Exceptions occur in real-
time applications in which it is important to minimize the time of each individual

operation.)

We can estimate the total time of a sequence of operations by multiplying the
worst-case time of an operation by the number of operations. But this may pro-
duce a bound that is so pessimistic as to be useless. If in this estimate we replace
the worst-case time of an operation by the average-case time of an operation, we
may obtain a tighter bound, but one that is dependent on the accuracy of the pro-
bability model. The trouble with both these estimates is that they do not capture
the correlated effects that successive operations can have on the data structure. A
simple example is found in the pile of twin stacks used in planarity testing: a sin-
gle operation among a sequence of n operations can take time proportional to n,
but the total time for n operations in a sequence is always O(n). The appropriate
measure in such a situation is the amortized time, defined to be the time of an

operation averaged over a worst-case sequence of operations. (See my survey paper
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[44] for a thorough discussion of this concept.) In the case of a pile of twin stacks,

the amortized time per operation is O(1).

A more complicated example of amortized efficiency is found in a data struc-
ture for representing disjoint sets under the operation of set union [40,43]. In this
case the worse-case time per operétion is O( log n), where n is the total size of all
the sets, but the amortized time per operation is for all practical purposes constant
but in theory grows very slowly with n. (The amortized time is a functional

inverse of Ackermann’s function [1].)

These two examples illustrate the use of amortization to give a tighter
analysis of a known data structure. But amortization has a more profound use. In
designing a data structure to reduce amortized running time, one is led to a
different approach than if one were trying to reduce worse-case running time.
Instead of carefully crafting a structure with exactly the right properties to
guarantee a good worst-case time bound, one can try to design simple, local res-
tructuring operations that improve the state of the structure if they are applied
repeatedly. This approach can produce “self-adjusting” or “self-organizing” data
structures that adapt to fit their usage and that have an amortized efficiency close

to optimum among a broad class of competing structures.

The splay tree, a self-adjusting form of binary search tree that Danny Sleator
and I developed [36], is one such data structure. In order to discuss it, I need first
to review some concepts and results about search trees. A binary tree is either
empty or consists of a node called the root and two node-disjoint binary trees,
called the left and right subtrees of the root. The root of the left (right) subtree is
the left (right) child of the root of the tree. A binary search tree is a binary tree

containing the items from a totally ordered set in its nodes, one item per node,
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with the items arranged in symmetric order: all items in the left subtree are less
than the item in the root, and all items in the right subtree are greater. (See Fig-

ure 4.)

[Figure 4]

A binary search tree supports fast retrieval of the items in the set it
represents. The retrieval algorithm, based on binary search, is easy to state recur-
sively. If the tree is empty, stop: the desired item is not present. Otherwise, if the
root contains the desired item, stop: the item has been found. Otherwise, if the
desired item is greater than the one in the root, search the left subtree; if the
desired item is less than the one in the root, search the right subtree. Such a
search takes time proportional to the depth of the desired item, defined to be the
number of nodes examined during the search. The worst-case search time is pro-

portional to the depth of the tree, defined to be the maximum node depth.

Other efficient operations on binary search trees include inserting a new item
and deleting an old one. (The tree grows or shrinks by a node, respectively.) Such
trees provide a way to represent static or dynamically changing sorted sets.
Although in many situations a hash table [28] is the preferred representation since
it supports retrieval in O(1) time on the average, a search tree is the data struc-
ture of choice if the ordering information among items is important. For example,
in a search tree one can in a single search find the largest item smaller than a
given one, something that in a hash table requires examining all the items.
Search trees also support even more complicated operations, such as retrieval of all
items between a given pair of items (range retrieval) and concatenation and split-

ting of lists. For further discussion of the properties of search trees, see any good
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An n-node binary tree has some node of depth at least logyn; thus for any
binary search tree the worst-case retrieval time is at least a constant times logn.
One can guarantee an O( logn) worst-case retrieval time by using a balanced tree.
Starting with the discovery of height-balanced trees of Adelson-Velskii and Landis

.[2] in 1962, many kinds of balanced trees have been discovered, all based on the
same general idea. The tree is required to satisfy a balance constraint, some local
property that guarantees a depth of O(logn). The balance constraint is restored
after an update, such as an insertion or deletion, by performing a sequence of local
transformations on the tree. In the case of binary trees, each transformation is a
rotation, which takes constant time, changes the depths of certain nodes, and

preserves the symmetric order of the items. (See Figure 5.)

[Figure 5]

Although of great theoretical interest, balanced search trees have drawbacks
in practice. Maintaining the balance constraint requires extra space in the nodes
for storage of balance information and complicated update algorithms with many
caseé. If the items in the tree are accessed more-or-less uniformly, it is simpler
and more efficient in practice not to balance the tree at all; a random sequence of
insertions will produce a tree of depth O( logn). On the other hand, if the access
distribution is significantly skewed, then a balanced tree will not minimize the
total access time, even to within a constant factor. To my knowledge, the only
kind of balanced tree extensively used in practice is the B-tree [5], a tree with in
general many more than two children per node, suitable for storing very large sets

of data on secondary storage media such as disc memories. B-trees are useful
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because the benefits of balancing increase with the number of children per node
and with the corresponding decrease in maximum depth. In practice, the max-

imum depth of a B-tree is a small constant (three or four).

The invention of splay trees arose out of work I did with two of my students,
Sam Bent and Danny Sleator, at Stanford in the late 1970’s. I had returned to
Stanford as a faculty member after spending some time at Cornell and Berkeley.
Danny and I were attempting to devise an efficient algorithm to compute max-
imum flows in networks. We reduced this problem to one of constructing a special
kind of search tree, in which each item has a positive weight and the time to
retrieve an item depends on its weight, heavier items being easier to access than
lighter ones. The hardest requirement to meet was the need to perform drastic
update operations fast; each tree was to represent a list, and we needed the ability
to do list splitting and concatenation. Sam, Danny, and I, after much work, suc-
ceeded in devising an appropriate generalization of balanced search trees, called
biased search trees [7], which become the subject of Sam’s Ph.D. thesis [6]. Danny
and I combined biased search trees with other ideas to obtain the efficient max-
imum flow algorithm we had been seeking. This algorithm was the subject of
Danny’s Ph.D. thesis [34]. The data structure that forms the heart of this algo-

rithm, called a dynamic tree, has a variety of other applications [35].

The trouble with biased search trees and with our original version of dynamic
trees is that they are complicated. One reason for this is that we had tried to
design these structures to minimize the worst-case time per operation. In this we
had not been entirely successful; update operations on these structures only have
the desired efﬁ(;iency in the amortized sense. After Danny and I both moved to

AT&T Bell Laboratories at the end of 1980, he suggested the possibility of simpli-
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fying dynamic trees by explicitly_ seeking only amortized efficiency instead of
worst-case efficiency. This idea led naturally to the problem of designing a “self-
adjusting” search tree, which would be as efficient as balanced trees but only in
the amortized sense. Having formulated this problem, it was only a few weeks
before we had a candidate data structure, although it took us much longer to

analyze it. (And, as I shall discuss below, the analysis is still incomplete).

In a splay tree, each retrieval of an item is followed by a restructuring of the
tree, called a splay1 operation. A splay moves the retrieved node to the root of the
tree, approximately halves the depth of all nodes accessed during the retrieval, and
increases the depth of any node in the tree by at most two. Thus a splay makes all
nodes accessed during the retrieval much easier to access later, while making

other nodes in the tree only a little harder to access, if that.

The details of a splay operation are as follows. To splay at a node x, repeat

the following step until node x is the tree root (see Figure 6):
[Figure 6]
Splay Step: Apply the appropriate one of the following three cases:

Zig case. If x is a child of the tree root, rotate at x. (This case is termi-

nal.)

Zig-zig case. If x is a left child and its parent is a left child, or if both

are right children, rotate at the parent of x and then at x.

Zig-zag case. If x is a left child and its parent is a right child, or vice-

1 Splay, as a verb, means “to spread out”.
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versa, rotate at x and then again at x.

[Figure 7]

As suggested by the example in Figure 7, a sequence of costly retrievals in an
originally very unbalanced splay tree will quickly drive it into a reasonably bal-
anced state. Indeed, the amortized retrieval time in an n-node splay tree is
O(log n) [36]. Splay trees have even more striking theoretical properties. For an
arbitrary but sufficiently long sequence of retrievals, a splay tree is as efficient to
within a constant factor as an optimum static binary search tree, one expressly
constructed to minimize the total retrieval time for the given sequence [36]. Splay
trees perform as well in an amortized sense as biased search trees, which allowed

Danny and I to obtain a simplified version of dynamic trees [36], our original goal.

On the basis of these results, Danny and I have made the conjecture that
splay trees are a universally optimum form of binary search tree in the following
sense: Consider a fixed set of n items and an arbitrary sequence of m = n
retrievals of these items. Consider any algorithm that performs these retrievals by
starting with an initial binary search tree, performing each retrieval by searching
from the root in the standard way, and intermittently restructuring the tree by
performing rotations anywhere in it. The cost of the algorithm is the sum of the
depths of the retrieved items (when they are retrieved) plus the total number" of
rotations. We conjecture that the total cost of the splaying algorithm, starting
with an arbitrarily bad initial tree, is within a constant factor of the minimum cost
of any algorithm. Perhaps this conjecture is too good to be true. I invite you to
think about it. One additional piece of evidence supporting the conjecture is that

accessing all the items of a binary search tree in sequential order using splaying
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takes only linear time [45].

In addition to their intriguing theoretical properties, splay trees have poten-
tial value in practice. Splaying is easy to implement, and it makes tree update
operations such as insertion and deletion simple as well [36]. Preliminary experi-
ments by Doug Jones [24] suggest that splay trees are corﬁpetitive with all other
known data structures for the purpose of implementing the event list in a discrete
simulation system. They may be useful in a variety of other applications, although

verifying this will require much systematic and careful experimentation.

The development of splay trees suggests several conclusions. Continued work
on an already-solved problem can lead to major simplifications and additional
insights. Designing for amortized efficiency can lead to simple, adaptive data
structures that are more efficient in practice than their worst-case-efficient cousins.
More generally, the efficiency measure chosen suggests the approach to be taken in

tackling an algorithmic problem and guides the development of a solution.

I want to make few comments about what I think the field of algorithm design
needs. It is trite to say that we could use a closer coupling between theory and
practice, but it is nevertheless true. The world of practice provides a rich and
diverse source of problems for researchers to study. Researchers can provide not
only practical a.lgofithms for specific problems, but broad approaches and general

techniques useful in a variety of problems.

Two things would support better interaction between theory and practice.
One is much more work on experimental analysis of algorithms. Theoretical
analysis of algorithms rests on sound foundations; we understand how to do it.
This is not true of experimental analysis. We need a disciplined, systematic,

scientific approach. Experimental analysis is much harder than theoretical
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analysis in a way because it requires writing programs. Comparing algorithms
experimentally without introducing bias through the coding process or through the

choice of sample data is not easy.

Another need is for a programming language or notation that will simultane-
ously be easy to understand by a human and efficient to execute on a machine.
Conventional programming languages force the specification of too much irrelevant
detail, whereas newer very-high-level languages pose a challenging implementa-
tion task, one that requires much more work on data structures, algorithmic

methods, and their selection.

There is now tremendous ferment within both the theoretical and practical
communities over the issue of parallelism. To the theoretician, parallelism offers a
new model of computation and thereby changes the ground rules of theoretical
analysis. To the practitioner, parallelism offers the possibility of obtaining
tremendous speedups in the solution of certain kinds of problems. But it is impor-
tant to realize that parallelism is no panacea. Parallel hardware will not make
theoretical analysis unimportant. Indeed, as the size of solvable problems
increases, asymptotic analysis becomes more, not less important. New algorithms
are being developed and will be developed that exploit parallelism, but many of the
ideas developed for sequential computation will transfer to the parallel settiﬁg, and
not all problems are amenable to parallel solution. Understanding the impact of

parallelism is a central goal in much research in algorithm design today.

I do recearch in algorithm design not only because it offers the possibility of
affecting the real world of computing, but because I love the work itself, the rich
and surprising connections among problems and solutions it reveals, and the oppor-

tunity it provides to share with creative, stimulating, and thoughtful colleagues in
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the discovery of new ideas. I thank the Association for Computing Machinery and
the entire computing community for this award, which recognizes not only my own
ideas but those of the individuals with whom I have had the pleasure of working.
They are too many to name here, but I want to acknowledge all of them, and espe-
cially John Hopcroft and Danny Sleator, for sharing their ideas énd efforts in this

process of discovery.
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Figure 1. A planar graph.



Figure 2.

The forbidden subgraphs of Kuratowski.
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Figure 3. Division of the graph of Figure 1 into five segments
by removing cycle C. Segments 1 and 2 must be embedded on
opposite sides of C, as must 1 and 3, 1 and 4, 2 and 5, 3 and 5,

and 4 and 5.



Figure 4. A binary search tree. The items are letters, ordered
alphabetically.
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Figure 5. A rotation in a binary search tree. The right rotation
75 at node x, the inverse left rotation is at node y. The triangles
denote arbitrary subtrees, possibly empty. The tree shown can be
part of a larger tree.
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Figqure 6. The cases of a splay step. In the zig-zig and zig-zag cases, the
free shown can be part of a larger tree.



Figure 7. A sequence of two costly splays on an initially unbalanced
tree.



