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Abstract

We develop an O(kn3) time algorithm to establish the tradeoff
graph of minimum total separation (i.e. width) versus spread
(i.e. length) given k parallel river routing channels, each bounded by a
single component at the top and bottom, and a total of n nets. This
solves the two dimensional compaction problem for a special case of
slicing structured layout: a single hierarchical level structure with
single layer interconnections between adjacent components. It serves as
a first cut toward solving the two dimensional layout compaction

problem in a slicing structure with one layer interconnection.
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Introduction:

Compacting VLSI layouts to produce minimum area designs is a very important
issue in the VLSI design automation community. There are two major reasons: First,
more compact layout allows maximal functionality; second, the yield of fabricated
chips is inversely proportional to their areas. Producing an optimally compacted
layout, compaction, is known to be a very hard problem [3, 11]. Most efficient
compaction algorithms are one dimensional [e.g. 6, 7] : they work on the width and
length of a layout independently. Some indirect interaction between the two
dimensions can be obtained by iterating between horizontal and vertical compaction.
However, two dimensional compaction is more desirable because it allows direct
interactions between the two dimensions, potentially giving significantly better
layouts. Kedem and Watanabe proposed a graph-optimization technique for two
dimensional compaction that produces satisfactory layouts [2]. However it takes a

tremendous amount of running time and is only suitable for small circuits.

The two dimensional compaction problem has been considered by others in a
more tractable setting known as slicing structure [4, 9, 11, 12]. A slicing structure is
obtained by hierarchically partitioning a rectangle into smaller rectangles, called
slices, using parallel lines. Each of these slices is then divided into smaller slices
using parallel lines that are orthogonal to the previous set of parallel lines. Slices
resulting from the partitioning of a slice are called children of that slice. This process
can be repeated to any depth. Each slice in which no further partitioning is applied is
called a cell.(Figure 1) The compaction problem for a slicing structure is to find the
shape function of the bounding rectangle given the shape function of each cell. A
shape function is a stepwise monotonically decreasing tradeoff graph between
horizontal and vertical dimensions of a slice (Figure 2). The minimum of any cost
measure which is monotonically increasing in both dimensions can be found on this
graph. (e.g. area = horizontal dimension * vertical dimension). More general shape
functions are discussed in [9].

If no interconnection is considered, the shape function of a given slice can be
obtained by composing the shape functions of its children. The shape function of the
bounding rectangle can be computed in low order polynomial time [9, 11].
Unfortunately, with simple one layer interconnections the problem becomes
NP-Complete [10].



Optimal Compaction of Multiple Two Component Channels under River Routing

) i Ao
: » e 1..... 1> Y
.4l lllllll %
" Slices cells
Slicing structure
Figure 1
vertical
dimensiony 't‘ 'uk Shape funetion
y | i (tradeoff graph)
I I .
I 1
x T4 i >
I
]
- 1
i
(x,y) ={(1,4),(2,2),(3, 1)} -+, L S
(x, y) is the shape constraint of a 1 ¥
. i i — ‘__9.
rectangle. i.e. the dimensions of the 1 9 3
rectangle can be no less than x X y. . 1 1 >
I | 1

horizontal dimension x

Figure 2

We look at an optimization problem with one layer interconnections at one
hierarchical level in a slicing structure with fixed-shaped cells. We want to compute
the tradeoff graph of a slice given the fixed shapes of its children and interconnection
specifications between adjacent children. This is essentially a stack of rectangles

with one layer interconnections between them. (Figure 3) We develop a polynomial
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time algorithm to establish the tradeoff graph. We intend this algorithm to be used
as subroutine for a more efficient two dimensional compaction scheme.

Two dimensional compaction in one hierarchical level
Figure 3

Background:

The single channel river routing problem has been studied extensively in the
literature, see in particular [1, 5, 8, 10]. The problem is stated as follows: Given two
rectangles, the top rectangle has m terminals qo, q1, ..., gm-1 00 its lower boundary;
the bottom rectangle has m terminals pg, p1, ..., Pm-1 On its upper boundary. Each of
the g;’s and p;’s denotes the position of a terminal with respect to the left boundary of
the corresponding rectangle. Terminal qj is to be routed to terminal p; by wire wiin a
single-layer-rectilinear wiring model. In this model, wires are laid out along the grid
lines of an integral grid and are separated by at least one grid unit. Each connecting
pair p; and qj is called a net. Terminals on the same side of the rectangles are
separated by integral grid units. The routing space between the rectangles is called
the channel. The horizontal grid lines are called tracks. Tracks are numbered 0, 1, 2,
..., t from bottom to top. t = 0 is called the separation of that channel. For t > 0,
wires are connected to track t vertically. An offset of a channel is the position of the
left boundary of the top rectangle with respect to the left boundary of the bottom
rectangle (Figure 4). A separation and offset pair (¢, w) is said to be a feasible pair if
there is a realizable routing with separation t at offset w. The offset range problem is,

given a separation t, find the range of offsets w such that (t, w) is feasible. A
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feasible set problem is to find all feasible (t, w) pairs. A necessary and sufficient
condition for (£, w) to be feasible is given in [5, 8]:

(t, w) is feasible if and only if L(t) = w = R(t)
Where,

L(t) = max{pit +t-qi [t=i <m}

IL{im) =-o
R(t) =min{pi+t-t-qi[/0<i<m-t}
R(m) = + =

Intuitively, when L(t) = R(t), L(t) is the leftmost position of the top rectangle
where (t, w) remains feasible, and R(t) is the rightmost position of the top rectangle
where (t, w) remains feasible. Call L(t) the left constraint and R(t) the right
constraint of the channel.

The following is true [8]:

L0)=L(1)=L(2)=..=L(m-1) = L(m)
R(0)<R(1)=R(2)=<..=R(m-1) = R(m)

To prove this, observe that in our rectilinear unit grid wiring model,

pi+1= pi +1
= pit+t-qi=pi-g+1) + E+1)-qi fort+1)=1<m
= L(t) = L(t+1)

Similarly,
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R(t) = R(t+1)
Notice that if w is feasible for t, then w is feasible for t+ 1. Since

L(t+1) = L(t) = w = R(t) = R(t+1)

Consider a variation of the feasible set problem in which the bottom rectangle is
confined in a given horizontal span called the spread. In this case, the feasible set
problem is to find, for a given separation t, the range of the top component with
respect to the left boundary of the spread for which the separation is realizable. We
do not restrict w to be positive, i.e. the top rectangle is not constrained by the spread.
We say (s, t, w) is feasible if and only if (t, w') is feasible: see Figure 5. The legal set
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problem is to find all feasible points for which the top rectangle also lies within the
spread.

Multiple channel single component:

We now extend the notions of feasibility and legality to multiple channels.
Consider a stack of k + 1 components which are rectangles. Each component contains
terminals on both of its upper and lower boundaries, except the bottom and top
components. The bottom component only contains terminals on its upper boundary

and the top component only contains terminals on its lower boundary. Terminals on
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the upper boundary of the ith component are to be routed to terminals on the lower
boundary of the (i + 1)st component. There are k channels in total and the sum of all k
separations of each of the k channelsis called the total separation.

For a given stack of (i + 1) components, a 3-tuple (s, t, w); is said to be legal if the
components can be positioned such that all of the (i+1) components lie within the
given spread s, each of the i channels is feasible, the top component is at position w
with respect to the left boundary of the spread and the total separation is t. The
3-tuple is said to be feasible if the components can be positioned with total separation
t such that the stack of i components is legal, and the top channel is feasible, i.e. the
top component is not constrained by the spread. We call a particular set of positions
for all the (i + 1) components such that (s, t, w); is legal a configuration. (Figure 6)
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Assume each channel is feasible and let tj be separation of j-th channel, thent = X ¢j

Total separation for i-1 channels = t-q

A configuration of a stack of i +1 components
Figure 6

Let,

m; : number of nets in ith channel.
length; : length of ith component.
L;(t) : left constraint of ith channel at separation t.
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R;(t) : right constraint of ith channel at separation t.
T;* : the smallest separation such that
Li(T;*) = Ri(Ti")
1. Li(T*- 1) > Ri(Ty*-1)
Tag" =10

We now define legality of a stack of i+1 components in terms of legality of the
stack of i components and the ith channel.

Definition:
For a given spread s, (s, t, w); is legal if and only if 0 = w = s - length; and there
exists (q, w') such that

(1) (q, w") is feasible for the ith channel.
(2) (s, t-q, w-w")i-1 is legal.

For completeness,

(s,t, w)gislegal fort = 0 and 0 = w < s - lengthy,
(t, w)p is feasible for the same t and w.

We would like to find the left and right boundary functions for feasibility and
legality to characterize the legal set of a stack of i+1 components.

Definitions:

t;*(s) = minimum tsuch thatli(s, t) = ri(s, t).

lo(s, t) = 0, for t = 0, undefined otherwise.

ro(s, t) = s- lengthg, for t = 0, undefined otherwise.

1;'(s, t) = min {}i.1(s, t-@) + Li(@) | Ti* = q = t-ti.1"(8)}
= undefined if t < ti-1*(s) + Ti*

ri(s, t)= max {ri1(s, t-q) + Ri(@) | Ti* = q = t- ti-1*(8)}
= undefined if t < ti.1*(s) + T}*

li(s, t) = max {0, 1;'(s, t) }, when li'(s, t) is defined.
= undefined otherwise

ri(s, t) = min {s - lengthj, ri'(s, t) }, when ri'(s, t) is defined.
= undefined otherwise

If there is an i such that s-length; < 0, then the ith component cannot be fitted in
spread s, and the legal set is empty. Without loss of generality, we assume
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s = length; for all i. We show that 1i'(s, t), rj'(s, t), li(s, t) and ri(s, t) are well defined,
and that they indeed characterize feasibility and legality of an i-channel stack.
Moreover we show t;*(s) is the minimum total separation for a stack of i+1
components, i.e. for a given spread s in a stack of i+1 components there is no legal
configuration for t < t;*(s). First, we show that li(s, t) and ri(s, t) are finite and t;*(s)
exists.

Lemma 1:
1i(s,t) and ri(s,t) are defined and finite for all t = ti 1*(s) + T;*, in addition

Ii(s, t) = li(s, t+1)
ri(s, t) < ri(s, t+1) for allt = ti-1%(s) + Ty*
and ti*(s) = ti-1*(s) + T;" exists.
Proof:
By induction on i.
Basis : lg(s,t) and ro(s,t) are defined and finite fort = 0.
0 =lp(s, 0) = 1p(s, 1) = ...
s-lengthg = ro(s, 0) = ro(s, 1) = ... fort = 0.
and to*(s) = 0
Induction step:

Assume 1; 1(s,t) and ri.1(s,t) are defined and finite for all t = ti.o%(8) + Ti1*

Li1(s, ©) = li1(s, £+ 1)
ri-1(s, t) = ri1(s, t+1) forallt = ti.9*(s) + Ti1*
and t;.1%(s) = ti-2*(s) + Ti-1* exists.

In the following we assume all t = ti.1*(s) + T;* or mention otherwise. We show
1;'(s, t) is defined and cannot be +=, this implies l;(s, t) is defined and finite, since
Li(s, t) = max {0, lj'(s, t)}.

(s, t) = min {li1(s, t-q) + Li(q) | Ti* = q = t- ti1*(s) } is defined. Because for
q = Ti%, t-Ti* = tia™(s) = ti2*(s) + Tia*, Lials, t-T;*) is defined and finite, and Li(T;")
is not +w. Therefore 1;'(s, t) is defined and cannot be +, so li(s, t) is defined and
finite. Similarly, ri(s, t) is defined and finite. In addition,
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1i'(s, t) = lia1(s, t-q") + Li(q") for some q' € [Ti*, t - ti.1%(s)]
=105, t+1-q") + Li(q" inductive hypothesis
=1i'(s,t + 1)

therefore, 1i'(s, t) = 1j'(s, t + 1)

If1i'(s, t) < 0, then Ii(s, t) = 0, and if 1i'(s, t) = 0, then Ii(s, t) = 1i'(s, ). Therefore
li(s, t) = li(s,t+1) for t = ti1*(s) + Ti*. Similarly, ri(s, t) = ri(s, t+ 1) for
t = ti.1%(s) + Ty*.

To show that t;*(s) exists, we find a t such that li(s, t) = ri(s, t). Since li(s, t) is
decreasing and ri(s, t) is increasing, there is a smallest t = ti-1*(s) + T;i* such that
li(s, t) = ri(s, t). This minimum t is the t;*(s) we are seeking and t;*(s) = ti-1*(s) + Ty*.

Li(m;) = - wand Rj(mm;) = +=, since any offset is feasible for separation m;.
Therefore,
1i'(s, t;-1%(s) + my) = li1(s, ti-17(s)) + Li(mj) < 0, because 1;.1(s, ti-1*(s)) is finite

ri'(s, ti1*(s)+my) = rii(s, ti1*(s) +Ri(mi) > s-length;, because ri-i(s, ti.1*(s)) is
finite

Hence,
li(s,ti-1*(s) + mp) = 0, and ri(s, ti-1*(s) +m;) = s-length; =0, therefore
li(s,ti-1*(s) + myj) = ri(s, ti-1*(s) + my),
but,
li(s, t) = li(s,t+1)
ri(s, t) < ri(s,t+1)
there is t € [ ti1*(s) + Ti*, ti1*(s) + m; ] such that li(s, t) = ri(s, t), and if both

li(s, t-1) and ri(s, t-1) are defined li(s, t-1) > ri(s, t-1). If t = ti-1*(s) + Ty, then
1i(s, t-1) and ri(s, t-1) are undefined. In each case t;*(s) = t. Q.E.D.

Given Lemma 1, we know li(s, t) is defined if and only if t = tj.1%(s) + Ti*. For the
rest of this paper li(s, t) is assumed to be defined, i.e. t = ti-1*(s) + Ty*, whenever itis
used, unless mentioned otherwise. The same assumption is applied for ri(s, t). Notice
that 1i(s, t) = ri(s, t) if and only if t = t;*(s).

The following lemma shows that, in fact li(s, t) and ri(s, t) characterize exactly the
legal set of an i-channel stack.



Optimal Compaction of Multiple Two Component Channels under River Routing

Lemma 2:
(s, t, w);is legal if and only if li(s, t) = w < ri(s, t).
Proof:
Basis:
(s,t, w)gislegal © lg(s, t) = 0 = w < s - lengthg = ro(s, t)
Induction step:
Assume (s, t, w)i.1 is legal © 1i.1(s, t) = w < ri_1(s, t). The second condition implies
t = ti.1*(s).
[=] Assume (s, t, w); is legal. Then 0 < w < s - lengthj, and thereis(q, w') such that

(1) (g, w"); is feasible, i.e. Li(g) = w' < Ri(q)
(2) (s, t-q, w-w"i.1 is legal, i.e. li(s, t-q) < W - W' < ri(s, t). By induction
hypothesis.

But, for some q', q" € [T*, t - ti-1*(s)]

1'Gs, t) = li1(s, +-0) + Li(q") < Li-a(s, t-@) + Li(q) < Lia(s, t-q)+ W' < w-w'+W'=w
ri'(s, t) = ri1(s, t-q") + Ri(q") =ri-1(s, t-@) + Ri(q) = ri-1(s, t-q)+w = w-w'+wW=w

and 0 = w < s - length;, therefore li(s, t) = w < ri(s, t).

To prove the sufficient condition for legality we need the following:
Claim:
Ifthereis q € [Ti*, t-ti.1*(s)] such that 1i.1(s, t-q) + Li(q) s w < ri-1(s, t-q) + Ri(q),
then
there is w' € [Li(q), Ri(q)] such that li1(s, t-q) = w- w' = ri-1(s, t-q).
i.e. we can find w' such that (g, w"); is feasible and (s, t-q, w-w')i.1 is legal. (Figure 7)
Notice that 1 1(s, t-q) + Li(q) = ri.1(s, t-q) + Li(q) = ri1(s, t-q) + Ri(qg), since
q € [T, t-ti.1*(s)], i.e. t-q = ti-17(s).
If1;.1(s, t-q) + Li(q) = w < ri-1(s, t-q) + Li(q), choose w' = Li(q).
Then

Li(q) = w' = Li(q) = Ri(q), since q = T}*
and

10
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li-1(s, t-q) = w-w' = ria(s, t-q).
If ri1(s, t-q) + Li(q@) = w < ri.1(s, t-@) + Ri(q), choose w' = w - ri_1(s, t-q),
then

Li(q) = w' = Ri(q),
and
li.1(s, t-q) = ri-1(s, t-q) = w-w' = ri.1(s, t-q), since t-q = ti-1*(s). END CLAIM.

[&] Assumeli(s,t) = w < ri(s, t), this implies t = t;*(s) and 0 = w =< s - length;.
Then 1j'(s,t) = li(s, t) = w = ri(s, t) = ri'(s, ).

ie. Ii's,t) = lia(s, t-q") + Li(q") = w < ria(s, t-q") + Ri(q") = ri'(s, t), for some

q', q" € [Ti", t-ti-17(s)]

Notice that ri-1(s, t-q") + Ri(q") =< ri'(s, t) = ri-1(s, t-q") + Ri(q"). There are two cases.

Casel: w =rii(s,t-q") + Ri(q). Since 0 = w < s - length;, then by above claim,
(s, t, w)iis legal.

Case 2: ri-1(s, t-q") + Ri(q") = w = ri-1(s, t-q") + Ri(q").

11
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(i) ift-q' = t-q", i.e.q' = q", then

w =ri1(s,t-q) + Ri(q)
= ri.1(s, t-q") + Ri(g"), since Ri(q") = Ri(q")
= 1;.1(s, t-q") + Ri(q"), since t-q' = ti.1*(s)
= li.1(s, t-q") + Ri(q"), since li.1(s, t-q") = Li-1(s, t-q")
= lia(s, t-q") + Li(q")

Since 0 < w < s-lengthj, by the above claim, (s, t, w); is legal.
(ii) ift-q' > t-q",i.e.q' < q", then

w =ri1(s,t-q) + Ri(q)
= ri-1(s, t-q") + Li(q"),
> ri1(s, t-q") + Li(q™), since Li(q") = Li(q")
> 1ri.1(s, t-q") + Li(q"), since ri-1(s, t-q') = ri-1(s, t-q")
> 15.1(s, t-q") + Li(q"), since t-q" = ti-1%(s)

Since 0 < w < s-lengthj, by the above claim, (s, t, w); is legal. Q.E.D.

Lemma 1 and Lemma 2 imply t;*(s) is indeed the minimum total separation. And
by Lemma 2, the legal set problem for a given spread s is equivalent to computing
Iik(s, t) and ri(s, t). In the actual computation we need only to compute li(s, t) and
ri(s, t) for t < Zm;, since the largest separation required to river route a channel with
m; nets is mj. With separation m; at channel i, we can place the ith component at an
arbitrary position within the spread. Therefore for t = Zmj, allocate mj tracks for the
jth channel, and li(s, t) = 0 and ri(s, t) = s - length;. And for t > Zmj, li(s, t) = li(s,
Zm;). Examining the definition of 1;'(s, t), we see that to compute 1;'(s, t), we are in
fact making an off diagonal sweep of the (l;.1(s, *) X Li(*)) matrix in which the af-th
entry is lj.1(s, @) + Li(B).

Let,
LB
M, = > m,, n=M,
j=1
The number of entries in the (li1(s, )X Lij(*)) matrix is Mj1 * m,. Similarly, to
compute ri'(s, t) we make an off diagonal sweep of the (rj-1(s, *) X Ri(*)) matrix whose

aB-th entry is ri1(s, @) +Ri(). Therefore the complexity of computing lk(s, t) and
ri(s, t) is

12
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k

k
C*> M, *m:<C*)
i=1 i=1

n* m, = C*n’= O(ng), for some constant C

In fact the actual number of entries we are required to consider in the
(1i-1(s, *) X Li(*)) matrix is less than m;*M;.1 , because some of the matrix entries are
undefined. To be more precise, li.i(s, a) is only defined for a = Ti1* + ti-2*(s) and
Li(P) is only defined for p = Ti*. Therefore, only (Mj_1 - (Ti-1* + ti2*(s)) + 1) * (m; -
T;* + 1) entries are defined. The same observation also applies to the
(ri-1(s, #*) X Ri(*)) matrix.

Above, we have shown how to calculate legal sets for a particular spread. To
establish the tradeoff graph of minimum separation versus spread, it is necessary to
establish the relation between them for all spreads. We introduce the notion of
critical spreads. Critical spreads at level i are spreads at which the minimum total
separation may change at level i-1 or level i. The following two lemmas characterize
exactly how the increase in spread affects the minimum total separation and the
corresponding left and right boundary functions of legality. Lemma 3 reveals that if
the minimum total separation remains constant over a small increment of spread,
the left boundary function of legality remains unchanged and the right boundary
function of legality increases by the same amount that the spread increases. Lemma
4 is a direct consequence of Lemma 3 and shows the existence of critical spreads. The
proof of Lemma 4 is constructive and provides an algorithm to construct the critical
spreads.

Lemma 3:
Given A = 0,ift;1*(s + A) = ti.1*(s), and for all t = ti.a(s) + Ti1",
lii(s+A,t) = 1i.1(s, 1), and ri-a(s + A, t) = ri-(s, t) + A, then for allt = t;.1(s) + Ty*
Li(s + A, t) = li(s, t)
ri(s + A, t) = ri(s, t) + A
Proof:
For t = tj.1(s) + Ti"
1i(s, t) = min {1i.1(s, t-@) + Li(q) | Ti* = q < t-ti-1*(s) }
li'(s + A, t) = min {1;.1(s + A, t-q) + Li(q) |Ti* =q=t-ti-1"(s + A)}
= min {1i1(s, t-@) + Li(@) | Ti* = g = t-ti-1"(s) }
= 1'(s, t)
But

13
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li(s, t) = max {0, 1;'(s, t) }, therefore li(s + A, t) = li(s, t).

ri'(s, t) = max {ri1(s, t-q) + Ri(@) | Ti* = q = t-ti1°(8) }
ri(s + A,t) =max{rii(s + A, t-q) + Ri(@) | T =g =t-ti1(s + A}
= max{rii(s,t) + A + Ri(q) | Ti* = q = t-ti.17(s) }
= max {ri1(s,t) + Ri(@) | Ti* s qg=t-ti1"(s)} + A
=ri'(s,t) + A
But,
ri(s, t) = min { s- length;, ri'(s, t) }, and
ri(s + A,t) = min{s + A-lengthj,ri'(s + A, )}
= min {s + A-length;j, rj'(s,t) + A}
= min {s- length;, ri'(s, t) } + A
=ri(s,t) + A
Q.E.D.

Lemma 4:
Given s and s' such thats < s', and for all A such that0 <A <s'-s,andall

t = tio(s) + Tia™:

ti-1*(s + A) = ti.17(s),

liii(s + A, t) = Li-1(s, t),

ri1(s + A, t) = ri-1(s, t) + A,
then there exists a sequence of spreads

$§=80<81<..<8p=¢
such that foreachj = 0,1, ..., m-1 and all  such that 0 =& < Sij+1-5Sj,and all
t = tia(s) + Ty

t*(So) > ti*(S1) > ti*(S2) > ... > ti*(Sm-1)=ti"(Sm),

¥ (S)) = ti*(S; + 9),

1i(S;+8, t) = Li(S;, t),

ri(Sj+8, t) = ri(S;, t) + 8.

Proof:

We prove this by constructing such a sequence.

Compute 1i(s, t), ri(s, t) and t;*(s) for all t. If t;i*(s) = Ti* + ti-17(s) the sequence
consists of two elements namely Sg = s and S; = s If ti*(s) > T{" + ti.17(s), L.e.
1i(s, t;*(s) - 1) and ri(s, ti*(s) - 1) are defined (Lemma 1), then choose
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So =5,
S1=Sp+1i(Sp, ti*(Sp)-1) - ri(So, ti*(Sp)-1).

We repeat this process by choosing Sj+1 = Sj + 1i(S;, ti*(Sj)-1) - ri(Sj, £i*(Sj)-1). We
stop when either t;*(S) = Ti* + ti-1%(Sj+1), or Sj+1 = s'. In either case we choose
S;+1=s".In addition, for 0 < 8 < Sj+1-Sj, by hypothesis

1% (Sj+8) = ti1*(s+(Sj+8-8) = ti1*(s) = ti "5+ (5j-9)) = ti17(5))

La(Sj48, 1) = lii(s+(S§j+8-9),t) = Li-1(s, t) = Li-t(s +(Sj-s), t) = 11.1(5;5, 1)

ri-1(8j+86,t) = ri.(s+(S5j+8-s),t) = ri-1(s,t) +Sj+8-s = ri-1(s,t) +(55-8) +6
= ri(s+Sj-s,t) + 8 = ri-1(S5, ) + 8

Therefore, by Lemma 3, 1i(S; +86, t) = 1i(S;, t) and ri(Sj+8,t) = ri(S;, t). In fact, for
Sj+1 < s'the above argument also holds for § = Sj+1 - Sj. Moreover, for
0=8<Sj+1-SjandSj+1 =+

1i(S; + 8, ti*(Sp) = Li(S;, ti*(8)) = ri(Sy, ti*(S)) = 1i(S;, i°(Sy) + 8
= ri(S; + 8, ti"(Sp)

and when t;%(S;) - 1 = Ti* + ti-17(S;)

ri(Sj + 8, ti*(Sj)-1) = ri(Sy, ti*(Sp)-1) + 8 < ri(S;, ti*(8)-1) + Sj+1-5;
= 1i(S;, ti*(Sp-1) = Li(Sj + 8, ti°(Sp-1)
ie.  L(Sj+ 8 ti"(S)) = ri(Sj + 8, t*(Sp)
and  Li(Sj + 8, t*(Sj)-1) > ri(S; + 8, ti7(55)-1),
therefore t;*(S; + 8) = ti*(S;).
Also for §j+1 < '
Li(S;+1, ti*(S)-1) = Li(Sj + (S5+1- Sy, ti*(S)-1) = 1i(S;, £°(Sy)-1)
ri(Sj+ 1, ¥ SP-1) = riS) + (Sj+1- ), 7 (S)-1) = ri(S;, ti7(Sy)-1) + (Sj+1-5))
= 1i(S;, ti*(Sp-1)
therefore t;i*(Sj+1) = ti"(§))-1 < ti7(Sp.

Let m be the index such that Sy, = s'. To show that t;*(Sm-1) = ti*(Sm), observe
that for any spread S and S' > S, Ii(S, t) = 1;(S', t) and ri(S, t) = ri(S', t), for all t such
that 1i(S, t) and ri(S, t) are defined. This means that for a larger spread, the top
component has a larger range of legality, which is intuitively true. In fact this can be
proved by simple induction which we leave to the reader. Since Sy-1 < Sm,

1i(Sm, t*(Sm-1) = LiSm-1, ti*(Sm-1)) = rilSm-1, ti*(Sm-1)) = ri(Sm, ti* (Sm-1))
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i.e.1;(Sm, ti*(Sm-1)) = ri(Sm, ti*(Sm-1)), therefore t;*(Sm-1) = ti*(Sw). Q.E.D.

Formally we compute the sequence as follow:

SEQUENCKT (s, s")
Sp=s
Compute li(Sp, t), ri(Sp, t) for all t.
j=0
While Sj <s'
Compute t;i*(S;)
If t%(Sj) = T;* + ti-1"(s) then
Sj+1=35"
Else
Sj+1 = S; + Li(S;, ti*(Sj) - 1) - ri(S;j, t;"(Sj) - 1)
i=5r+1

The complexity of SEQUENCE is O(n2). It requires O(n2) time to compute li(s, t)
and ri(s, t). The time required for the loop is (number of Sj's) # (time to compute
ti*(S;)). (Number of Sj's) is equal to (number of £;*(S;)). But t;*(S;) = Mj < n, and the
sequence of t;*(S;) is strictly decreasing. Therefore (number of Sj's) = Mj < n. Asin
Lemma 1, t;*(S;) can be computed in O(t;*(Sy)) time. So SEQUENCE can be computed
in O(n2) time. To be more precise, if information on li-1(*, *) and rj.1(*, *) is kept,
1i(s, t) and ri(s, t) can be computed in O(M; 1 * m;) time (see Lemma 2). If a pointer is
kept on t;*(S;), the sequence of t;*(S;)'s and Sj's can be computed in O(M;) time. Thus
SEQUENCE can be implemented in time O(M;.1 * mj + M;).

Theorem:
The tradeoff graph of minimum total separation versus spread can be computed
in O(kn3) time.

Proof:
We show this by providing an algorithm to compute a sequence of spreads
max {length;} =Sg < 81 < Sg < ... <Sy= I length;
such that
t*(So) = t*(S1) = ... = t*(SN) and t*(Sp) = tc*(Si+4), for0 =A< Si+1-9i.
Notice that this sequence of spread covers the range of essential spreads, since for
any spread s > Sy, tk*(s) = ZTi".
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We construct sequences inductively until we have constructed Sg, Sy, ..., SN.

Begin with component 0.
s = max {length; },s' = Z length;.
For0=A<s'-s,andt =0,

to*(s + A) = 0 = tp*(s),
lo(s+ A, t) = 1g(s, t) = 0,
ro(s+A, t) = s+A-lengthg = ro(s, t) + A

By Lemma 4, we can construct a sequence of S,''s such that
§=8<8 <8 <. <8 =dl
t1*(Sol)>t1*(Sll)> o tl*(Sm_Ll)Ztl*(Sml),

andfor0<i<m,and0=A<S§  '-S!

t1*(8;Y) = t1*(5;' + A).
LS +4,t) = LS ),
ri(S+A,t) = ri(SL, 1) + A.

In general we get a set of sequences at channel i: each of these sequences is
generated by applying Lemma 4 to a pair of consecutive elements of the sequence for
channel i-1. The sequence for channel i is the concatenation in order of these
sequences. The algorithm is described as follow:

FINAL___SEQUENCE:
Let W + 1be the number of §''s.
S,° = max{length;},S,” = T length;

1=1,Pg=1
Whilei <k
j=0,l=0
Whilej < ¥;.;
compute a sequence S/ = S} <8yt <8’ <o <Sl+a+1 =8,

as in Lemma 3. This is done by calling SEQUENCE(S i S 4.
l=1+a+1
j=j+1
End whilej
e |
i=i+1
End whilet
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FINAL SEQUENCE produces the required sequence. For each S, 18K, 1),
ri(SK, t) and t*(S;*) are computed in the course of computing the S*. Thus the
complete tradeoff graph is obtained.

The complexity of FINAL_SEQUENCE depends on the complexity of
SEQUENCE and the number of times it is called. The number of times SEQUENCE
is called is equal to the total number of S's intervals (i=0,1,...,k-1). Let [SY| denotes
number of S! intervals. We show now that |Si| = M; + [S*!| = O * Mj).

After the sequence of S's is created, ti*(S;) is strictly decreasing except at some
S, = S/, where, t*(S,") = ti*(S,}). Therefore [Si| = M; + |S"!|. But,

IS =1*M; +1
|S2| = Mg + M1 + 1 =<2*Ms
IS = M; + (i-1) My, for i > 1.
=M; + (i-1) Mj
<=i*M;
therefore [S|| = O@ * M), fori > 1.

The complexity of SEQUENCE(SJ.“, S, L) is O(Mj1 * mj + Mj), and the (number
of Si-1 intervals) = O((i-1) * Mj.1). Therefore the time required to compute critical
spreads for level i is O((i-1) * (M;.12 * m; + M1 * Mj), and the complexity to
establish the tradeoff graph is at most,

E-1 k-1

C*Y it *m  + MM, )SC*k*n® Y (m + D<= C*(k*n®+ E7*n%
i=1 i=1

Without lost of generality, n = k, i.e. there is at least one net in each channel.
Therefore the complexity is O(kn3). Q.E.D.

Concluding remarks:

We have presented a polynomial time algorithm to solve the multiple channel
single component river routing problem. It is a dynamic programming approach
which allows incremental updating of the solution from previous solutions. This type
of algorithm is especially desirable for interactive VLSI design systems. In an
interactive design environment, designers would like to see the compacted layout
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right after a new component is added to the design. Our algorithm provides such
incremental updating capability.

Another feature of the algorithm is that placement of components and routing
can be done independently yet a legal placement ensures routability. This feature is
also very desirable for interactive VLSI design systems. There can be as many as
O(n2) wire segments for a design of n nets. Laying them out can be time consuming,
and displaying them can clutter a design. Since the routability condition is insured,
a router can be called at anytime during the design if needed. Whenever area is the
primary concern, designers have no interest in knowing the appearance of the wires
as long as routability is ensured.

A natural extension of our work is to consider rows containing more than one
component. However Pinter has shown that the problem for multiple components per
row is NP-Complete [10]. Thus the problem for slicing structured layout with one
layer routing is also NP-Complete. Therefore, for the more general slicing
structures, we wish to find approximate solutions which ensure routability and give
good compactions. This problem is open.

We have considered only one layer interconnections between adjacent
components. Another open problem is to find similar algorithms for more general
routing models. Since more general routing is generally NP-Complete, we expect
these algorithms to be approximation algorithms using measures of channel width
such as density.
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