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Abstract

File system buffering strategies can produce unexpected system behavior. For instance, writing
one byte to a file can take more than twice as long as writing a 4096 bytes to the same file. To
examine this curious phenomenon and other aspects of file system performance, we develop models
for file system behavior which factor in contributions of processor speed and buffer cache
organization. These models agree very nicely with a set of performance measurements conducted on
a VAX-11/750 running the UNIX 4.3 BSD operating system.

We use these same models to predict the performance of recently proposed parallel mass storage
architectures. We demonstrate that these architectures can potentially provide orders of magnitude

more file system bandwidth than conventional non-parallel systems now provide.
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1. Introduction

File system performance can vary dramatically between different types of data transfer operations.
Bandwidth is usually higher for large block transfers, and is greatly reduced for smaller transfers.
This is an accurate generalization, but exactly how does this tradeoff operate? To examine this and
other characteristics of file system performance we develop a set of simple models. These models
predict file system performance on both read and write operations as a function of the size of a
transfer request. In section three we validate our models with a set of performance measurements on
a VAX-11/750 running UNIX 4.3 BSD. These models are then used to analyze the performance of
recently proposed parallel disk mass storage architectures [Kim85] [Park86] [Sale86]. These systems
are shown to provide orders of magnitude more mass storage bandwidth than conventional non-
parallel systems now provide.

2. Models

We are interested in how data transfer bandwidths vary as a function of the block size of a transfer
request. To estimate this performance we have developed a simple model of the file system. For read
operations we will call the transfer time per byte T, we break up 7' into three components. (1) seek
and latency time ¢ (ii) data transfer time from the disk into buffer cache ¢4 (iii) data transfer time
from buffer cache into data space ¢p.

T, =t + tg + tp

The seek and latency times can vary for individual requests, but the average seek and latency
times for a large number of randomly distributed data transfer operations will be fairly constant. We
will call the average seek and latency time S,. The seek and latency time per byte ¢, is inversely
proportionate to the block transfer size b because the cost of the initial seek time is amortized over the
number of bytes transferred. ¢, = S,/b

If the block size of the transfer exceeds the block size of the disk drive then an individual transfer
operation will involve accesses to multiple blocks and therefore multiple seek and latency times.
However, with the UNIX 4.3 file system, contiguous blocks of a file are usually placed on the same
eylinder group in rotationally optimized locations so that disk seeks between contiguous blocks of a
file will tend to be shorter than the initial seek to the first block of a file [Mcku83]. For this reason we
consider the time D, (time for a disk block transfer) to include the average seek and latency time
between contiguous blocks of a file.

Our definition of S, must be slightly modified now. This is because the time for accessing the first
disk block of a file will contain both S, and D,. We define S, to be the difference between the initial
seck and latency time and the seek and latency time between contiguous blocks of a file. In this way,
a portion of the initial seek and latency time will appear in D, of the first block.

The time to transfer data from disk into the buffer cache depends on the number of disk blocks
transferred. If transfer requests are assumed to start on block boundaries (It has been observed that
most file accesses involve complete file transfers [Oust85]. Since files begin on block boundaries our
model corresponds to actual system behavior), then the disk to buffer transfer time is the same for one



byte up to d bytes (where d the number of bytes in one disk block). At d + 1 bytes the time doubles
because two blocks have to be transferred. Block transfers of d +1 bytes to 2d bytes require the same
disk to buffer transfer time and so on. The time {4 is then given by the expression (g = 'b/d1D,/b
(Where b is the transfer request block size, d is the disk block size and D, is the time for a disk block
read operation.)

The time to transfer data from the buffer cache to the data space is proportionate to the number of
bytes transferred. The rate per byte is therefore a constant C,. The constant C, depends on the
memory to memory transfer speed of the system which in turn depends upon the bus width, memory
cycle time and CPU speed. The final expression for block read time is then:

T,=8,/b+ (IT'b/d1D)/b + C,
We are interested in the file transfer bandwidth on read operations B, = 1/T,. A graph of read

bandwidth B, as a function of transfer size (in bytes) appears in Figure 1. (We have assumed that S =
40 milliseconds D, = 15 milliseconds d = 4096 bytes and C, = 1 microsecond.)
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The sharp discontinuities at block boundaries arise because files are transferred in block sized
units from disk. Even if a transfer request exceeds a block boundary by only a single byte, an entire
block transfer operation must be performed for the single byte. This boundary effect becomes less
pronounced as the data transfer size increases causing the extra block transfer to be amortized over
more bytes. The initial seek time causes the asymptotic convergence toward the maximum
bandwidth which is similarly amortized over progressively larger data transfers.

Write operations are asynchronous in the 4.3 file system. To perform a write, the system writes the
file into the buffer cache and then passes the write request to the device driver which moves the data
from the buffer cache to the disk. After the request is queued, the application program is free to
continue processing while the write operation is performed asynchronously. However, if the buffer



cache is full of unprocessed write requests, the application program may have to wait for the device
driver to free buffers by completing an unprocessed write request.

To model simple write operations (not overwrites), we want to calculate the average write time per
byte. We call this quantity T,,. Like the model for read operations T',, has three components.

Tw=t+its+ iy

Because of the asynchronous nature of the write operation, ¢ can occur concurrently with £; and ¢4.
Because fp is in general much smaller than £ + {4, its contribution to the running time becomes
insignificant. The asynchronous nature of the write request also reduces average seek time. This is
because the write operations to disk do not have to be processed in the order in which they arrive. A
group of requests can be processed in an order that minimizes seek and latency times between
requests reducing the average seek and latency time for write operations S;. Our resulting data
transfer time per byte is then:

T, = Su/b + (Tb/d1D,)/b

A graph of this write transfer rate B,, = 1/T, also appears in Figure 1. (We have assumed that Sy,
= 10 milliseconds, D,, = 15 milliseconds, and d = 4096 bytes.) The write transfer operation behaves
similarly to the read accept that there is less initial seek and latency time which allows it to converge
to its maximum bandwidth more rapidly. The asynchronous operation of data space to buffer cache,
and buffer cache to disk data transfers removes the performance contribution of the data space to
buffer cache transfer time allowing for a higher maximum bandwidth.

The overwrite operation is more complicated to model. This is because if a disk block is only
partially overwritten, the block must first be read in from disk before it can be overwritten and sent
out to the disk. The time for a single block read must be included in the overwrite time if a block does
not end on disk block boundaries. (Remember we assume that files begin on block boundaries.) The
time for a single block read is merely S, + D, + C;b. The rest of the write time is similar to regular
write timings. Our total overwrite time then becomes:

Tow = Su/b + (Tb/d1D )b + (S, + D, + C,b)/b (if b = nd, for n any positive integer n.)

This write timing only applies if the transfer request is not a multiple of the disk block size. If it is
a multiple, the read is not performed and its contribution is not included in the running time:

Tow = Su/b + (Tb/d1D,)/b  (if b = nd, for n any positive integer n.)

A graph of Byy = 1/T,,, appears in Figure 2. (We have assumed that S, = 10 milliseconds, D,, = 15
milliseconds, S, = 40 milliseconds, D, = 10 milliseconds, C, = 1 microsecond, and d = 4096 bytes.)
The sharp spikes at the block boundaries arise because write operations which are even multiples
of block sizes do not require an additional block read and hence have higher bandwidths. This gives
rise to some interesting performance anomalies. It takes on average over twice as long to overwrite
one byte in a file as it does to overwrite 4096 bytes to the same file.
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We are interested in examining how file transfer performance depends on the buffer cache to data
space transfer rate C. To this end we have produced the graph in Figure 3 where S = 40 milliseconds,
D = 15 milliseconds, and C is varied from 0 to 1000 microseconds per byte. Increasing C has the
effect of limiting the maximum attainable bandwidth. This effect is noticeable as C is increased from
0 to 1 microseconds/byte, and it clearly dominates performance as C goes to 10 , 100, and 1000

microseconds/byte.
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The effect of varying the initial seek and latency time S is illustrated in Figure 4. C is held
constant at 1 microsecond/byte, D = 15 milliseconds, and d = 4096 bytes. S is varied between 0 and
1000 milliseconds. Increasing S has the effect of slowing the rate at which a system approaches its
maximum bandwidth. When S is 0, the maximum bandwidth is achieved immediately at the 4096
byte block size. When S reaches 1000 milliseconds, it significantly degrades performance on all
reasonable transfer request sizes.
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Finally the effect of varying the contiguous block transfer speed D is illustrated in Figure 5. S is
held at 40 milliseconds, C = 1 microseconds/byte, and d = 4096 bytes. D is varied between 0 and
1000 milliseconds. When D is 0, The system is mainly constrained by the initial seek time S, and the
maximum bandwidth of 106 bytes/second imposed by the value of C. We see a smooth curve, free of
the discontinuities imposed by block boundaries. As D is increased it not only accentuates breaks at
block boundaries, but it ultimately limits the maximum attainable bandwidth.

To validate these models we turn to empirical results in the next section

3. File System Benchmarks

We conducted a series of performance measurements on a VAX-11/750 running the UNIX 4.3 BSD
operating system. This VAX-11/750 system has a DEC UDAS50 disk controller connected to DEC
RAS80 disk drives. The file system that was configured for a 4096 byte block size with 512 byte
fragments. The buffer cache contained 77 buffers, each of size 4096 bytes (308K total). All of our
benchmark codes were written in the “C” programming language.

We tested data transfer speeds for read write and overwrite operations to and from the file system
using the read and write data transfer commands from the “C” programming language. We varied
the sizes of the data transfer requests between 512 and 65536 bytes. We collected data points at 1024
byte increments for block sizes from 1024 to 20480 bytes and then 4096 byte increments from 20480 to
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65536 byte block sizes. Data points were collected on each side of the 4K block boundaries to catch the
sharp discontinuities in data transfer speeds which exist around these boundaries.

Each data transfer was initiated at a random block boundary in an existing 4 megabyte file. (The
time to open and initialize the four megabyte file was not included in the running times.) To test the
speed of the read operation, the file pointer was repeatedly moved to a random block boundary, and
then a read operation was performed. The random block boundary was determined in such a way that
the read or write operation would never attempt to read or write past the end of the file. The read
operation was performed several hundred times for a given block size and then the total elapsed wall
time was measured. The data transfer speed was then calculated by dividing the total number of
bytes transferred by the total elapsed time. We found that the total elapsed time could vary by as
much as several percent between trials, so we repeated the file transfer benchmark forty times in
succession and then averaged the resulting data transfer times before calculating the data transfer
speed. Figure 6 presents the measured file system performance on read operations. This corresponds
very nicely with the performance predictions of our simple model.

Overwrite timings were calculated in the same fashion as read timings. Our measurements appear
in figure 7. The predicted spikes at block boundaries are readily apparent as well as the
characteristic underlying performance.

Write timings were more complicated. Creating a new file before each write operation proved to be
impractical because the write time would have been dominated by the large file creation time making
accurate measurements impossible. We could have repeatedly appended blocks to the end of a file,
but this wouldn’t have exhibited the random access performance that we desired to measure. We
remedied this by performing random read operations between each write. A file was initialized to
contain 3 megabytes and then approximately two megabytes of block write operations were
performed. In between each block write, a random read operation was performed. The time for the
random read operations was then subtracted from the total time before the data transfer speed was
computed. To ensure the writes always started on even block boundaries, each write operation was
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rounded up to the next largest block size multiple. This tends to require slightly more data transfer
time between the user data space and the buffer cache, but previous tests have indicated that this

effect accounts for at most several percent of the total data transfer time.

The write performance appears in Figure 8. After averaging forty successive trails, the write
performance still exhibited a great amount of variability. Even so, the measured performance closely

follows our models predictions.
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We have demonstrated that our models very nicely predict system performance for conventional
mass storage systems. In the next system we will use these same model to predict performance of
recently proposed parallel mass storage systems.

4. Assessment of Parallel Mass Storage Architectures

We are interested in assessing performance of parallel mass storage architectures. These
architectures provide a large amount of mass storage bandwidth by combining the bandwidth of a
large number of disk drives on block transfer operations to and from mass storage [Kim85] [Park36]
[Sale86]. A typical system configuration is presented in Figure 9. Blocks of data are distributed
across a large number of disk drives so that a single block transfer operation can utilize the aggregate
transfer rate of many parallel disk drives.

These disk drives are rotationally synchronized (using a phase-locked loop), so that seek and
rotational latency times will be approximately the same for all disk drives. If the drives were not
synchronized, the system would have to wait for the slowest drive before performing a data transfer
operation. This worst case time can be double the average access time for a single drive.
Synchronization effectively makes the parallel system behave as a single drive so that the access time
of the parallel system approximates the access time to a single drive.

We have modeled the performance of a sixteen drive parallel system composed of individual drives
which exhibit the same performance as the UDA50/RA80 system that we tested. Of course if higher
performance disk drives are used, performance can be expected to increase proportionately. (Note
that we have done nothing to modify any characteristics of the operating system or disk drive and
controller. One would expect that modifications of the disk block size, changes in buffer cache
replacement algorithms, and modifications to the disk scheduler will provide further performance
improvements. These optimizations will be the topic of future research.) Each drive is partitioned
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into 4096 byte blocks. Since there are sixteen drives, each logical block is then 65536 bytes in size.
We did not want to factor the contribution of processor speed into our performanee numbers, so we set
the buffer cache to data space transfer time “C” to zero. This has the effect of assuming infinite
processor speed. Of course if disk to main memory bandwidth is increased sufficiently, processor
speed will ultimately constrict system performance. However, we are interested in assessing the
component of file system performance which is independent of processor speed.

We contrast the performance of the 16 way parallel system and a conventional non-parallel system
in figures 10 and 11. Note that the peak bandwidth has improves by orders of magnitude for the
larger transfer requests.
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However, as transfer requests decrease in size, so do the performance advantages. This is because
performance on small transfer requests is constrained mainly by the seek and latency time which is
not improved for these parallel architectures.

10
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To examine the performance gains on smaller transfer requests we have produced the graph of
Figure 12 which is merely an enlargement of the initial portion of the graph in Figure 10. Although
performance is improved many times for these smaller block sizes, we do not see the same order of
magnitude gains present in larger data transfer operations.
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We can lessen the number of smaller transfer requests by increasing the buffer cache size as long as
a sequence of accesses maintains a reasonable amount of temporal locality [Oust85] [Smit85]. A
system which incorporates both the high bandwidth capabilities of a parallel data transfer and the

11



bandwidth reducing attributes of a massive buffer cache will provide excellent performance on all
tasks except ones that perform many small block accesses which exhibit neither spatial nor temporal
locality.

Our research has not focused on paging performance of parallel of mass storage systems. Paging
activity involves numerous transfers of small blocks of data so one would not expect paging
performance to be greatly improved by parallel systems that improve performance on large block
transfers. However, paging performance merits closer observation. Perhaps performance can be
gained by enlarging page sizes, or compacting related pages onto larger blocks to be transferred to
and from mass storage.

5. Conclusions

We have shown that file system performance can be accurately predicted with a set of simple
models. These models demonstrate that mass storage bandwidths can be increased by many orders of
magnitude by using parallel mass storage architectures.
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