MAINTAINING AVAILABILITY OF REPLICATED DATA
IN A DYNAMIC FAILURE ENVIRONMENT
Daniel Barbara
Hector Garcia-Molina
Boris Kogan

CS-TR-064-86

December 1986

Maintaining Availability of Replicated Data in a Dynamic
Failure Environment '

Daniel Barbara

Universidad Simon Bolivar
Departamento de Matematicas y Cliencia de la Computacion
Caracas, Venezuela

Hector Garcia-Molina
Boris Kogan

Princeton University
Department of Computer Science
Princeton, New Jersey

ABSTRACT

An approach is presented for maintaining high availability in a replicated
database system with a failure prone communications network. The status of
the network is assumed to change dynamically making the detection of parti-
tions infeasible. The approach is based on restricting the data items transac-
tions can access and on special requirements placed on update propagation.

December 8, 1986

t This work has been supported by NFS Grants DMC-8505194 and DMC-8351616, New Jersey Governor’s
Commission on Science and Technology Contract 85-990660-6, and grants from DEC, IBM, NCR, and
Perkin-Elmer Corporations.

Maintaining Availability of Replicated Data in a Dynamic
Failure Environment |

Daniel Barbara

Universidad Simon Bolivar
Departamento de Matematicas y Ciencia de la Computacion
Caracas, Venezuela

Hector Garcia-Molina
Boris Kogan

Princeton University
Department of Computer Science
Princeton, New Jersey

1. Introduction.

A distributed database system becomes partitioned when, due to component failures,
there exist several isolated groups whose members cannot communicate with members of any
other group. The management of replicated data in a partitioned environment is a difficult
task. Transactions running in different groups of the partition could change the data in a way

that makes it hard to later integrate values.

In some applications it is undesirable to halt transaction processing whenever a partition
oceurs. In some cases it is because partitions occur at critical times. For instance, in military
applications a conflict can make communications unreliable and it is precisely at this time that
one wishes to have access to the data. In other cases, partitions are the normal mode of opera-
tion. For example, in the Unix UUCP network computers are usually disconnected from the net-
work. Periodically, they dial other computers and exchange data. In such an environment one
would like to process transactions even when there is no communication. In yet other cases,
partitions are not as common, but halting transaction processing causes a serious inconvenience

or economic loss. For example, an unavailable airline reservations system means lost customers.

Also note that even in conventional networks, partitions may be more common than what

one might initially imagine. First, partitions do occur when gateways connecting networks fail

-9.

or when Ethernet cables are inoperative (e.g., when an Ethernet terminator is removed, say to
add a new segment). Second, in most cases it is impossible to distinguish a node failure from the
disconnection of the node from the network (e.g., because its ARPANET IMP or its Ethernet
transceiver failed). Hence, every node failure must be considered a partition. Finally, “virtual”
partitions occur when a computer does not respond promptly to network messages. That is, all
network protocols have a timeout period. If a computer does not respond within this time limit,
it is declared failed, even though it could be operational but slow. The timeout period has to be
set relatively short, else it would take an unreasonable amount of time to detect and compen-
sate for real failures. This means that overloaded or slow computers may occasionally cause
virtual partitions when they respond late. In summary, even though partitions may not be fre-
quent events, they may occur with enough frequency so that halting transaction processing

every time they arise is not acceptable.

One approach for coping with partitions, followed by many systems, is to allow processing
in at most one of the groups. Voting mechanisms can be used to implement this technique
[Giff83]. The integration of values after the repair of the partition amounts to broadcasting the
changes to the nodes in other groups. This strategy has the advantage of requiring no
knowledge about the transactions that run in the system, and thus is a general approach. It
has, however, the drawback of limiting the availability of the data during a partition to the
active group in the system. Furthermore, note that in some partitions no group will have a

majority of votes, and hence there will be no active group.

Another approach, followed by [Davi82] and [Park81] allows multiple groups to continue
processing transactions. Protocols are designed to detect, after the partition disappears, the
conflicts among the transactions that were run. In some cases, the backing out of a finished
transaction is necessary to guarantee the consistency of the overall schedule. Note that serial-
izability may not be preserved. Such strategies are called optimistic since they assume that the

number of conflicts will be small.

Recently, D. Skeen and D. Wright [SkWr84] described a technique to increase the availa-

-3-

bility in partitioned systems, while avoiding conflicts at the same time. Their approach divides
transactions into classes, and assigns classes to groups in the system. Analyzing a class conflict
graph, the system can decide whether or not to run a certain class of transactions in a particu-

lar group of the partition.

This approach successfully increases concurrency in the partitioned system. However, it
forces the system designer to classify the transactions. This restriction may be a drawback in
systems of heterogeneous users, where users submit unpredictable transactions. More important
yet, the approach assumes that the nodes belonging to a group have complete information about
the members of the group, and that the partition borders do not change dynamically. For
instance, this implies that all the links whose failure caused the partition are repaired at the
same time. We call this type of behavior clean partitions. The notion of clean partitions may
not represent a realistic scenario. Consider a network where failures of communication links
occur fairly often and repairs do not take long. That will result in the rapidly changing status
of the communication network. Moreover, as pointed out earlier, significant communication
delays are not easily distinguishable from failures. Clearly, under such conditions it will be
extremely difficult to detect when partitions occur and when they are repaired. It will also be

difficult to determine the exact constituency of every group.

Note that the other two approaches mentioned above suffer from the same limitation.
There are known techniques for maintaining availability in a dynamic failure environment, but

they usually do not guarantee serializability [Davi85], [Sari85).

In this paper we propose a solution to the management of transactions in a replicated dis-
tributed database environment that provides a high degree of availability in the face of com-
munications failures and does not depend on detection of partitions. The technique defines a
universal mode of operation for a distributed database system that is to be in effect at all times,
regardless of the current status of the communication network. The approach will guarantee
global serializability of transaction schedules by restricting transactions’ read and write access

rights in a certain systematic way and placing special requirements on the propagation of

-4 -

updates. We will allow nodes of the system to process transactions freely, without any explicit
synchronization with other nodes in the system. The resulting scheme has some strengths and

weaknesses that we will analyze later in the paper.

The paper is organized as follows. In Section 2, we describe the general basis for our tech-
nique. In Section 3, we describe the protocol that handles update propagation. Section 4 will
focus on extensions that enhance the approach. Finally, in Section 5 we will draw some conclu-

sions.

2. The Model.

A distributed database system is viewed as a set of data items and a set of nodes intercon-
nected by some communication network. We assume that the database is fully replicated’, i.e.,

each node has a complete copy of it.

In our scheme, the entire database is logically divided into k non-overlapping subsets of
data items, called fragments, denoted Fy, F, ..., Fy. Each node has a copy of every fragment.
FEach fragment F; is controlled by a unique node N (F;) responsible for updating items in the
fragment. We call the process at N(F;) that controls F; the agent of F}, or A(Fy). For simpli-

city we assume that each node (and agent) controls only one fragment.

Fach transaction executes at a single node and can only update the fragment whose agent
is local to that node, but it can, in general, read copies of other fragments. (Since there are local
copies of all fragments, these reads are performed at the updating node.) Subsequently, all
resulting updates are propagated throughout the system. Each node has a local concurrency
control mechanism used to schedule transactions within that node. However, there is no (expli-
cit) synchronization among the nodes. Therefore, each node can process transactions indepen-
dently and regardless of the current status of the communication network. We will also assume

that all nodes control some fragment. (Nodes that do not can still be considered as controlling

T This assumption is purely for the sake of simplicity. In real systems, complete replication is not common,
but the most valuable and frequently accessed data is replicated to improve reliability.

an empty fragment.)

Some of the restrictions above can be easily dropped. For instance, an agent could very
well be implemented as a collection of processes running on a group of nodes, as long as these
processes follow a global distributed concurrency control algorithm to update the fragment con-
trolled by the agent. Also, the restriction that a transaction only updates one fragment can be
eliminated, as we will discuss later, albeit with some loss of availability. However, the notion of

having only one agent writing a fragment is fundamental to our technique.

Given the fragments, we are interested in knowing what restrictions have to be imposed on
the reading of items outside the fragment in order to guarantee a serializable schedule. To

characterize these restrictions, we define the following graph.

Definition 2.1. The read—access graph (RAG) is a directed graph G = (V, E), where
V={F,, Fy, ..., F,} and E = {(F;, Fj) : i # j and there is a transaction T that is initiated
by A(F;) and can read a data object contained in Fj 1

Figure 2.1 shows an example of a read-access graph with three fragments: F;, I’y and F.
Suppose that A(F;) resides at node 1, for ¢ =1, 2, 3. Then transactions that run at node 1 can

read items in fragments F; and F, those running at node 2 can read items in fragments Fy and

F5, and those running at node 3 can read items in fragments F; and Fj.

F1

F2 3

Figure 2.1

The restriction that we want to impose on RAGs is that they be acyclic. To show the need
for this, consider the example of Figure 2.1. Suppose that a partition occurs and leaves each

node in complete isolation. Our goal is to allow nodes to continue processing their transactions.

However, if the nodes do this, according to the sample RAG, the global schedule may not be
serializable. For instance, if transaction T runs at node 1, reads b € Fiy, and writes a € Iy,
transaction T runs at node 2, reading ¢ € F3 and writing b, and transaction T's runs at node 3
reading ¢ and writing ¢, the results cannot be integrated to match any serial schedule. Since the
nodes must be able to operate autonomously to deal with dynamic partitions, acyclicity is fun-
damental. Therefore, the application must be structured to guarantee that the corresponding
graph is acyclic.

The above read and write access restrictions may not be acceptable in some systems. On
the other hand, we are convinced that there are many applications simple enough to painlessly
incorporate these restrictions. Let us consider an example. Figure 2.2 shows the acyclic RAG of
an airline database system that handles flight reservations. We have divided the database into
three fragments: seat assignments, reservations and flight schedules. Each fragment is managed
by an agent located at a separate computer node. (The computer that handles flight schedules
may reside at the airline headquarters, the one managing reservations in a travel agency and
the one that manages seat assignments at the airport.) The restrictions over the read access
rights are quite natural. Transactions updating seat assigments need to read all three frag-
ments, while those that make reservations only need to read the fragment containing flight
schedules and their own fragment. Finally, transactions that update schedules do not need to

access any other fragment.

seat assignments reservations

flight schedules

Figure 2.2

In an actual airline reservation system, we may have more than one fragment for the seat

-7 -

assignments (one for each airport, for instance) or for the reservations (one for each scheduled
flight), but that only will increase the complexity of the graph without creating a cycle. Also,
any of the fragments may be managed by an agent that resides in a group of nodes (several
travel agencies, each using its own computer, may handle the reservation updates). But, as long
as the group of nodes follow a global concurrency control for the transactions, the basic idea

will be the same.

3. Update Propagation.

As was stated in Section 1, our goal is to devise a scheme that would provide for a uni-
form way to operate the database, that is, uniform with regard to the status of the communica-
tion network. Such a scheme would do away with the necessity for partition detection that is
normally done in traditional approaches in order to know when to switch from a regular distri-

buted concurrency control to a special partitioned mode of operation.

In the absence of any other synchronization provisions, acyclicity of the RAG still does not
guarantee serializable execution in a dynamic failure environment. To see this consider the
example shown in Figure 3.1. The database consists of three fragments: Fy, Fy, and Fs. Let q, &,
and ¢ be data items such that a € F;, b € Fy, and ¢ € F3. The RAG is acyclic, but here is how a

non-serializable schedule can arise.

F2 T2

F1 3 T1 T3

(a) RAG (b) Serialization graph
Figure 3.1
Suppose A(F,) initiates transaction Ty:[(Ty, 7, el Ty s bl Ty ', a);! A(Fy) initiates

To: [(Tg, 7, ¢), (T2, w, b)]; and A(F3) initiates Tg: (Ts, r, ¢), (T3, w, ¢)]. Suppose further

ta parenthesized triplet denotes an atomic action, with the first element identifying the transaction it is

that update (T, w, b) is installed in the local copy of the node at which A(F}) is located before
action (T, r, b) is executed (generating dependency edge T, — 7' in the serialization graph);
action (T4, r, c) is executed before update (T3, w, c) is installed at the node of A(F);) (generat-
ing precedence edge T; — T3); and finally, (T's, w, c) is installed at the node of A(Fy) before
(T, r, ¢) is executed (generating dependency edge T's — Ts). The described sequence of events

yields a cyclic serialization graph, and hence, a non-serializable schedule.

To avoid such problems, our scheme also restricts the ways in which updates propagate in
the network. In Section 3.1 these restrictions are specified , and in Section 3.2 it is shown that
acyclic RAGs and our update propagation mechanism are sufficient to guarantee serializability

of transaction execution.

Before we proceed along the formal track, however, it would be helpfull to study a little
further the simple example that we have touched upon (Figure 3.1). No attempts have been
made to regulate how and when the updates should be propagated. As a result, a situation
occured which lead to the non-serializable schedule. One way to explain what went wrong is to
look at the sequence in which updates are installed at the nodes. As it happens, the update

generated by transaction T’ is installed at node 1! only after the update of transaction T'.

On the other hand, these same updates were installed at node 2 in the reverse order. It is
easy to see that if the order of installation of updates at node 1 followed that at node 2 (T
after T}), the schedule would be serializable. One way to achieve this is to have node 1 accept
update messages originating at node 3 only from node 2 (3 — 2 — 1). In addition to that, node
9 will make sure that if an update from node 3 is installed locally before a local update, then

the former will be dispatched to node 1 first.

In the next two sections this idea is generalized, and the resulting protocol is proven to be

sufficient to achieve serializability.

part of, the second element specifying the type of action (read or write), and the third element identifying
the data object on which the action is performed. The entire expression in brackets denotes the ordered se-
quence of actions comprising the transaction. See [Eswa76] for details.

t For brevity, we say, hereafter, "node " instead of "the node of agent A(F)

3.1. The Chain Update Propagation Protocol.

Since we have assumed that there is exactly one agent at every computer node in the sys-
tem, the nodes of the RAG can be viewed alternatively as computer nodes where the agents for
respective fragments reside. Let all the nodes be numbered 1 through n, according to some topo-
logical order (which must exist if the graph 1is acyclic), i.e., for any ¢ and j such that
1< i< j< n, there is no path from j to ¢ in the RAG. Let U(T}) denote the list of updates

produced by transaction Tj.

Informally, the propagation protocol can be described as follows. All updates flow along
the logical chain of nodes n — n—1 — - -+ — 1. This means that before an update from node
i can be installed at node j (7 >), it has to be installed at every node k such that ¢ > k> 4.
Furthermore, upon receipt of a message from node ¢ + 1 containing a list of updates to be
installed, node ¢ procedes with the installation, then puts at the head of the list all the updates
generated locally since the last dispatch was sent out to node ¢ — 1, and sends the enlarged list
to i — 1. The intent of all this is to ensure that all updates are installed in the same order sys-
temwide. We shall see soon why this is important. Note, in conclusion that the above men-
tioned chain of nodes is logical and may not coincide with the physical chain of propagation,
i.e., the update messages do not have to go directly from node ¢ to node ¢« — 1. However, after
updates are installed at node ¢ they must be installed at node 7 — 1 before any other node. It
may be possible to route the message from node ¢ to node ¢ — 1 via some intermediate nodes as

long as those nodes simply pass the message along without attempting to install the updates.

We procede now with a more precise specification of the protocol. To avoid a possible
confusion the reader should keep in mind that any possible descrepancies between the informal
description above, on the one hand, and some of the details that follow, on the other hand, are
due solely to the desire to keep the former as simple as possible, and to build up an intuitive

understanding.

Every node ¢ will maintain two lists, which are initially empty. They are UPDATES (%)

and OUT(4). The protocol consists of three concurrent procedures.

- 10 -

(1) (Permanently in ezecution at node 1, 1 < ¢ < n.) For every local tranaction T;, append
U(T;) to UPDATES (). The order in which different transactions’ updates are appended to

the list is determined by the local serialization order.

(2) (Ewecuted at node i, 1 < i < n, upon receipt of OUT(i + 1).) Append OUT(i + 1) to
UPDATES(7) and atomically install all updates from OUT (1 + 1) in the local copy of the
database. Make sure that for every local transaction T; which is serialized before these

updates (and none other) U(T}) is appended to UPDATES(t) before OUT (i + 1).

(3) (ITterated with arbitrary intervals at node i, 1 < i < n.] Atomically copy UPDATES() to

OUT(i). Send OUT (i) to node ¢ — 1. Reinitialize UPDATES (%) to empty.

Note: Since UPDATES(q) is accessed concurrently by several procedures, it is essential that a

locking mechanism be used.

How often and when procedure (3) is executed has no bearing on the correctness of the

protocol. It may, however, affect its efficiency and performance.

3.2. Correctness of the Protocol.

Lemma 3.1. If for every edge (T}, T;) in the serialization graph, every update from
U(T;) is (effectively) installed systemwide before any update from U(T}), then the serialization
graph is acyclic.

Proof. Suppose not. Let C = (T, ..., Tk, T,) be a cycle in the graph. Then every update

from U(T;) must be installed systemwide before itself, which is an absurdity. O

Lemma 3.2. The protocol of Section 3.1 guarantees that for every edge (T;, T;) in the
serialization graph, every update from U(T}) is (effectively) installed systemwide before any

update from U(Tj).

Proof. Consider any pair of transactions T; and Tj such that (T;, T;) is in the edge set

of the serialization graph.

Case 1. Transactions T; and T; are local to the same node, say node ¢, 1 < g < n. Since

(Ty, T;) is an edge in the graph, T; must be serialized (locally) before Tj. Hence, U(T}) is

b

effectively installed in the local copy of the database before U(T;). Moreover, they are appended
to UPDATES(q) in the same order, and thus, will be installed in that order in the copies at
nodes ¢ — 1, ..., 1. Since all other nodes (n, ..., ¢ + 1) cannot read data written by T; and Tj,
we can say that the same order of installation holds at those nodes as well (even though U(T})

and U(T;) never actually reach them).

Case 2. Transaction T is local to node g, transaction Tj is local to node r, and
1 < ¢ < r < n. This means that T; overwrites a value read by T:. Therefore, T; is serialized at
node g before U(T}). Consequently, U(T;) is appended to UPDATES(q) before U(Tj;). This, in
turn, implies that nodes ¢ — 1, ..., 1 install U(T}) before U(T;). Since nodes n, ..., ¢ + 1 cannot
read data written by T;, we can say, as before, that the same installation order applies at these

nodes.

Case 8. As in Case 3, except r < ¢. Here, T; reads a value written by T;. Therefore,
U(T;) is serialized at node r before T}, U(T;) is appended to UPDATES(r) before U(T;), and
finally, U(T;) is installed at nodes r — 1, ..., 1 before U(T}). Similarly to Case 2, we say that
the installation order is the same at nodes n, ..., r + 1.

Cases 1, 2, and 3 exhaust all possibilities. Thus, U(T;) is installed systemwide before
U(T;).0

Lemmas 3.1 and 3.2 together establish the following theorem.

Theorem 3.1. The protocol of Section 3.2 guarantees a serializable schedule for any exe-

cution characterized by an acyclic RAG.

Note that acyclicity of RAG was not used explicitly in the proof of the lemmas. This pro-
perty is essential, however, for without it the logical chain of propagation (of the type required

by the protocol) cannot be formed.

3.3. Discussion

Under the protocol we have described, each node operates quite autonomously. Whenever

possible it receives updates from the node that follows it in the topological order, and it sends

-12-

out updates to the node that preceeds it. However, if these updates cannot be received or sent,
the node is not blocked. It continues processing its local transactions. The node does not coor-
dinate the execution of its transactions with other nodes (e.g., with a two phase commit proto-
col), nor does it care if the network is partitioned or not. In this sense, the database is always

available for transaction processing.

Of course, we do not get all this for free. As we know, a node is not free to execute any
transaction it wishes. It can only run those that do not cause RAG cycles. Furthermore,
although consistency is preserved, the transactions may operate on data that is not up to date.
To illustrate, let us return to the flight reservation example of Figure 2.2. Suppose that the
flight schedules node cannot communicate with the reservations node, but all other communica-
tions are possible. Say a transaction modifies the schedules. This update will not be received
by the reservations node, and it will continue to make reservations based on the "old" schedule.
The seat assignments node could receive the latest schedule, but because of the chain propoga-

tion protocol, it does not. Hence it also operates with the "old" schedule.

We see then that failures cannot halt transaction processing and cannot cause the data-

base to be inconsistent. However, they can slow down the propagation of updates.

4. Extensions.

The scheme presented in the last two sections can be enhanced in two fundamental ways:
by modifying the chain protocol of Section 3.1 so as to speed up the propagation of updates, and
by removing some of the restrictions of the scheme (possibly at the cost of decreasing availabil-
ity).

This section is devoted to exploring these possibilities. However, the reader should view
the material assembled here as representing not necessarily a completed work but rather a col-

lection of ideas currently under development.

= 8

4.1. A Speedier Propagation of Updates.

In Section 3 we showed that if update propagation is done in a certain controlled fashion,
serializability can be achieved without any explicit synchronization. However, the chain protocol
incurs the price of a slower propagation of updates, as compared to unrestricted broadcasting of
updates. While it was demonstrated that the latter may lead to unserializable behavior, there is
nothing to indicate that one cannot have a protocol which gives a speedier update propagation

than the "chain" protocol and still enforces serializability.

Once again, let us turn to an example. Figure 4.1 depicts an acyclic RAG with the three

nodes numbered topologically.

Figure 4.1

The chain protocol would dictate that updates from node 3 have to be installed at node 2
before they can be accepted by node 1. It is not hard to convince oneself, however, that having
update messages go directly from 3 to 1 bypassing 2 will never violate serializability. Thus we
can make updates from node 3 more readily available at node 1 at no cost in terms of correct-

ness.

This example may suggest that instead of sending updates along the linear topological
chain one can propagate along all available paths in the RAG (in the reverse direction).
Another example, however, will show that this conclusion is a little hasty. Consider the data-
base described by the RAG of figure 4.2. Suppose that update messages are sent along two
routes: 4 — 2 — 1 and 4 — 3 — 1. Let a, b, ¢, and d be data items belonging to fragments

F,, Fy, F3, and F, respectively.

- 14 -

Figure 4.2

Let T, Ts, Ts and T4 be transactions that execute at nodes 1, 2, 3, and 4 respectively. They

are as follows:

Tl: [(Th Ty b):(Tll L c):(Tlr w, &)]
T2: [(T2: Ty d)’(TQ.J w, b)]
TS: [(TS) T d)l(T3? w, c)]
Ty (T4, 7, d))(Ts, w, d)]

Consider the following sequence of events at every node.

At node 4:

(T4, r, d)
(T4, w, d)
Updates sent to nodes 2 and 3

At node 3:

Updates from node 4 received and installed
(T3, r, d)
(T3, w, c)
Updates sent to node 1

At nodes 2:

(T25 L) d)
(TQ) w, b)
Updates sent to node 1
Updates from node node 4 received and installed

At node 1:

Updates from node 3 received and installed
(T17 Ty b)
(Tl, 7 c)
(T17 w, a]

Updates from node 2 received and installed

-15-

The serialization graph that corresponds to the above schedule is shown in Figure 4.3(a).

Tl T1
T2 T3 T2 T3
T4 T4
(a) (b)
Figure 4.3

Tt is cyclic, and thus, the schedule is non-serializable. The problem is caused by the fact that
transaction 7'; reads inconsistent versions of data items b and ¢, i.e., the version of b is com-
puted based on the old version of data item d, whereas the version of ¢ is computed based on
the new version of d. To guarantee that this cannot happen, we shall require that node 1 install
the updates forwarded from node 2 and those from node 3 as an atomic unit. This implies that
if one of these messages is received, it will not be installed until the other arrives as well. This

rule will change the sequence of events at node 1 as follows.

At node 1:

Updates from node 3 received
(Th " b)
(Ty, r, €)
(T, w, a)
Updates from node 2 received
Updates from nodes 2 and 3 installed

The serialization graph corresponding to the new schedule is shown in Figure 4.3(b). One of the
edges has been redirected by following the suggested rule, which broke the cycle and rendered

the schedule serializable.

We believe that the rule can be generalized to produce a new update propagation protocol

which would have the property of delivering updates faster than the "chain" protocol and would

- 16 -

still guarantee serializability (although a formal proof of the latter is unavailable at present).

4.2. Multiple Agents at a Node.

Until now, we have required that only one agent be at every node in the system. However,

there is no reason for this restriction other than for making the exposition simpler.

There are two ways to deal with multiple agents at one node. One way is to replace con-
ceptually the entire group of such agents by one agent. Practically, it means that instead of
having several types of transactions, with different access privilleges that could run at the given
node, one will have just one type with wider privilleges. To be more specific, every transaction
running at the given node will be able to write any of the fragments whose agents are at the
node and read any of the fragments that transactions initiated by these agents were allowed to

read.

(a) Before (b) After

Figure 4.5. Collapsing two nodes of the RAG into one.

To illustrate consider the RAG of Figure 4.5. Suppose that agents 2 and 3 are located at
the same computer node (Figure 4.5(a)). Then the corresponding nodes of the RAG will be col-

lapsed to form one node as shown in Figure 4.5(b).

Such fusion of nodes, however, may lead to problems. Namely, an acyclic RAG may

become cyclic as a result of it, as the example in Figure 4.6 indicates.

s 17 =

(a) Before
1/4
(b) After

Figure 4.8. Collapsing of nodes introduces a cycle in the RAG.

When this type of situation occurs, fusion cannot be done. Instead, the system should
maintain logical separation of agents at the computer node. Transactions initiated by one agent
cannot update fragments controlled by another. As far as the update propagation protocol is
concerned, it should treat the node with multiple agents as several distinct virtual nodes. Thus,
an update sent to the virtual node of one of the agents cannot, in general, be shared with other

agents located at the same physical node.

4.3. Transactions that Update Multiple Fragments.

One of the underlying assumptions in our scheme was that every transaction can update
at most one fragment — the fragment controlled by the agent initiating the transaction.
Although, in Section 2, we argued (with the help of an example) that this restriction is not as
limiting as it might seem at first, one has to admit that there well may be circumstances in
which it will be necessary to execute a transaction that updates more than one fragment. To
that end, the following exception-handling provision can be incorporated into the scheme, albeit

at some cost in availability whenever it is used.

To update a fragment which it is normally not allowed to write into, a transaction must
obtain exclusive locks on the copy of this fragment (or a part of it) at every node with an agent
that can read the fragment. Then the transaction proceeds to install the update atomically at
all those nodes. And after that the locks can be released. Note that this mechanism is very simi-

lar to a number of commonly used concurrency control algorithms for distributed systems.

- 18 -

The described provision guarantees that the conditions of Lemma 4.1 are satisfied, and
thus serializability is preserved. An optimization is possible here. Suppose transaction T,
updates several fragments controlled by agents located at nodes numbered higher than j (in the
topological order). Then the updates of T, should be installed atomically at nodes
4, 7+ 1, ..., n. However, those same updates can be propagated to nodes 1, ..., j — 1 in the

usual manner.

4.4. Violations of the RAG Restriction.

Just as it may be necessary to run transactions that update more than one fragment, it
may also be necessary to run transactions that would (or could) create a cycle in the RAG.
Again, the solution here is to use conventional locking to run these special transactions. By
locking all data involved, these transactions could ensure that transactions that used the chain
protocol either fully preceded them or followed them in the serialization order. Failures during

the execution of these transactions could cause blocking and decrease availability.

5. Conclusions

We have presented an approach for managing replicated data in a dynamic failure
environment. It yields a high degree of node autonomy and data availability while ensuring
serializability. Partitions do not have to be detected and nodes do not need to have a con-

sistent view of the operational state of the nodes and communication links.

The major drawback of this approach is that the read patterns of transactions must be
pre-analyzed and that the resulting RAG must be acyclic. As discussed in section 4, these res-
trictions can be periodically relaxed, but each time this is done locking is introduced and availa-

bility suffers.

We believe that this is not a limitation of our particular approach, but an inherent pro-
perty of dynamic failure environments. One simply cannot run arbitrary transactions in a par-

titioned network and guarantee serializability. If for a particular application it is necessary to

-19 -

run arbitrary transactions, then one must either give up serializability or the ability to operate

in partitioned networks. If an application demands serializability and operation in a dynamic

failure environment, then the transactions must be simple enough so that they can be pre-

analyzed. Furthermore, it is necessary to structure the application so that the RAG is acyclic.

6. Acknowledgments.

We would like to thank the referees for their useful comments.

7. Bibliography.

[Da,vi84]

[Davigs)

[Eswa76|

(GaKo86]

[Gifi83)]

[Parksl]

[Sari8s)

[SkWr84]

Davidson, $.B., "Optimism and Consistency in Partitioned Database Systems," ACM
Trans. Database Syst., Vol. 9, Num. 3, September 1984, pp. 456-481.

Davidson, SB., H. Garcia-Molina, and D. Skeen, "Consistency in Partitioned Net-
works," ACM Computing Surveys, Vol. 17, Num. 3, September 1985, pp. 341-370.

Eswaran, et. al., "The Notions of Consistency and Predicate Locks in a Database
System," Communications of the ACM, Vol. 19, Num. 11, November 1976, pp. 624-
633.

Garcia-Molina, H., and B. Kogan, "Achieving High Availability in Distributed Data-
bases,” Technical Report CS-TR-043-86, Department of Computer Science, Princeton
University, June 1986.

Gifford, D.K., "Weighted Voting for Replicated Data,” Proc. 7th Symp. on Princ. of
Database Syst., March 1983, pp. 8-15.

Parker, R.S., et. al., "Detection of Mutual Inconsistency in Distributed Systems,”
Proc. 5th Berkeley Workshop on Distributed Data Management and Computer Net-
works, February 1981.

Sarin, S.K., "Robust Application Design in Highly Available Distributed Databases,"
Computer Corporation of America, Technical Report, May 1985,

Skeen, D., and D.Wright, "Increasing Availability in Partitioned Networks," Proc.
3rd ACM SIGACT-SIGMOD Symp. on Princ. of Database Systems, April 1984, pp.
290-299.

