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ABSTRACT

The paper develops time complexity measures, including con-
stants, for bitonic sorting on non-partitionable and partitionable
buses, in both linear and two dimensional cases. The P processing
elements, which share the time multiplexed buses, have a single
input port and single output port which are connected to the
buses. The bus bandwidth, B, represented by the number of bus
cycles per processor cycle, is a parameter of the model. This
parameter can alternately be viewed as the number of parallel
buses having one bus cycle per processor cycle. The routing over
the buses is based on an optimal data movement for bitonic merge
on a linear bus. For the two dimensional case, the execution time

is close to optimal in terms of VLSI complexity.
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1. Introductions

Area-efficient sorting is an important issue in parallel supercomputing
(Leiserson[1983], Thompson[1983], Ullman[1984ab]). Sorting schemes based on
the hypercube, the cube-connected-cycle, or the shuffle-exchange networks suffer
from the quadratically growing wire area in VLSI implementations. Recent
results based on the AKS algorithm (Ajtai, Komlos and Szemeredi[1983] and
Bilardi and Preparata[1985a]) and related studies (Bilardi and Preparata[1985b]
and Leighton[1985]) have shown logarithmic time performance for new, parallel
sorting schemes. However, huge constant factors as well as the large wire area
make these algorithms unrealistic for VLSI implementation. Thus, a simple
parallel sorting scheme on a small area using a.simple interconnection is still
desirable for future systems. In other words, the constant factors in complexity

measures are important in the evaluation of parallel sorting algorithms.

Bitonic sort (Batcher[1968] and Knuth[1973]) has been studied extensively.
Its adaptations include the shuffle-exchange network (Stone[1971]), ILLIAC-IV
(Orcutt[1976]), a mesh-connected computer (Thompson and Kung[1977] and
Nassimi and Sahni[1979]), STAR (Stone[1978]), Ultracomputer (Meertens[1979]),
a data-base machine (Jayanata and Hsiao[1979]), magnetic bubble memories
(Chung, Luccio, and Wong [1980]), the cube-connected-cycles (Preparata and
Vuillemin[1981]), the orthogonal tree (the mesh-of-trees) (Nath, Maheshwari,
and Bhatt[1983] and Bonuccelli and Pagli[1984])), the pleated cube-connected
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cycles (Bilardi and Preparata[1984]), the distributed computers (Loui[1984]), and
more recently parallel computers with reduced hardware (Ja’ Ja’ and
Owen[1984], Owen and Ja’ Ja’[1985], Hsiao and Shen[1985], and Tseng, Hwang,
and Kumar[1985]). Thompson[1983] also included several adaptations of bitonic
sort in VLSI networks. Recently, the authors have extended this approach to a

k-way bitonic sort (Arden and Nakatani[1986d]).

Interest in area-efficient adaptations of bitonic sort has returned to mesh-
connected computers because of VLSI optimality (Thompson[1983]). One study
showed that the broadcasting feature cannot improve the asymptotic perfor-
mance of sorting on mesh-connected computers, although it can improve the
time complexity of other algorithms such as semi-group computation
(Stout[1983], Bokhari[1984] and Kumar and Raghavendra[1985]).

In this paper, we show that bus-partitionability as well as greater bus
speed can improve the time performance of bitonic sorting on bus interconnec-
tions. The buses are shared by many processors and are not limited to adjacent
neighbors as in mesh interconnections. First, we introduce an optimal data
movement for bitonic merge on a linear bus. By using this data movement, we
present an efficient adaptation of bitonic merge and sort on a two dimensional
grid of superposed parallel buses. We also describe how the bus ratio, B, affects
the time performance of bitonic merge and sort by means of the related VLSI

complexity measures.

The paper is organized as follows. In section 2, we summarize the model of
computation to understand the basic assumptions. In section 3, we review
bitonic merge and sort and introduce an optimal data movement for bitonic
merge on a linear bus. We develop time complexity measures for bitonic merge
and sort on both a non-partitionable and a partitionable linear bus. In section
4, using the data movement developed in section 3, we further show how we can
efficiently adapt this approach to a two dimensional grid of superposed parallel
buses. We also develop time complexity measures for bitonic merge and sort in
the two dimensional cases for both non-partitionable and partitionable buses.
In section 5, we develop the VLSI complexity of bitonic merge and sort in both

the linear and two dimensional cases, and the resultant optimality for the two



dimensional case.

2. Model of Computation

The model of computation we assume is a SIMD (Single Instruction stream
Multiple Data stream) machine. That is, we assume a parallel computer with P
identical processors that execute the same instructions. Each processor is essen-
tially a comparator with a pair of registers. The instructions can be either
broadeast from the central control unit or distributed to each processor site
beforehand. For the former case, the system must be synchronous. That is,
there is a single clock. For the latter case, each processor may have a clock but
there must be synchronization at the bus interface. With this qualification, the

algorithms we describe can be used in both cases.

Concerning the number of data items per processor, we assume that each
processor has exactly one data item to sort. Therefore, the total number of data
items, N, is equal to the number of processors, P. However, the problem in this
allocation scheme is that half of the processors are always idle throughout the
merge and sort processes. We shall discuss the more general case, where each
processor has m data items and N=mP, in the separate paper. Here, we focus

on the case of N=P.

To represent time complexity, we use ¢, as the transmission time for a pro-
cessor to send one data item to one of the other processors on a shared bus.
We use t, as the time for a processor to compare the contents of two registers.
Obviously when a bus is partitioned, data movement can occur simultaneously
on the partitions. A processor can make only one comparison at a time but col-

lectively they operate concurrently to the extent that the algorithm permits.

2.1. Bus Interconnections

The interconnections between the processors are buses. We consider two
cases: one is a non-partitionable bus, and the other is a partitionable bus. For
the second case, a bus can be partitioned into arbitrary, contiguous small seg-
ments, so that the system is divided into many subsystems that can work

independently. This feature is particularly important for a bus-connected
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computer to efficiently execute recursive or divide-and-conquer algorithms
(Arden and Ginosar[1982]).

Bus speed is represented by an integral ratio, B, which can be interpreted
as the number of bus transmissions per processor cycle. Equivalently, B can be
viewed as the number of parallel buses, where each is capable of one bus
transmission per processor cycle. Clearly, B<P and when B=P for partition-
able buses, bus partitionability is no longer productive. B is also an integral
power of two. An interesting special case occurs when the P processors are par-
titioned into K equal-sized, independent segments. Since dense, binary address-
ing is used throughout, all of the size parameters must be integral powers of
two. Accordingly, the number of processors, P, and the size of equal partitions,

K, are also integral power of two.

We consider two interconnection topologies: the linear bus and the two
dimensional grid of superposed parallel buses. For the linear bus (Figures 2.1a
and 2.1b), we assume that P processors are connected by either a non-
partitionable or a partitionable bus, with a bandwidth ratio B (1<B<P). When
B=1, a processor can access the bus either via an input or output port, but
only one of these within a processor cycle. For B>2, a processor can access one
of the buses (or alternately, one bus cycle) via input port and another via out-
put port within a processor cycle. For the two dimensional grid interconnection
(Figures 2.2a and 2.2b), P=pXp processors, and every row and column of p pro-
cessors are connected horizontally and vertically by a non-partitionable or a

partitionable bus. For the two dimensional case, we assume 1<B<p.

In an actual implementation, the bandwidth B of the bus would have to be
managed. Either the B time slots in processor cycle would have to be assigned
to processors or, in the case of B processor-speed buses the buses would have to
be assigned to specific processor pairs. In both cases, the assignment could be
done @ priori and carried out by a hardware bus manager, or arbitration unit.
For the purposes of determining time, it is not necessary to know the order in
which bus transmissions are made, but only the length of time the bus (or
buses) are occupied in making the necessary transfers. Therefore, the algo-

rithmic details of bus arbitration are not included in this paper.



2.2. Processor Design

The important feature of the processor design (Figure 2.3) in this paper is
the ingate and outgate pointer, pointer, which selects one of a pair of registers,
i.e., input-register[pointer], where pointer=0 or 1. In the conventional designs,
bitonic sorting algorithms require register exchange (swap) operations requiring
two processor cycles. We reduce this time commitment by introducing the
ingate and outgate pointer, pointer to the pair of registers. After the contents
of the pair of registers are compared, the condition code is set. The combina-
tion of the condition code, the order bit, and the flag bit determines which

register’s contents is transmitted on the bus.
The condition code, ce, will be set as follows:
ce=0 if input-register[0] > input-register[1]
ce=1 if input-register[0] < input-register(l]
The order bit, order, indicates whether the final order is to be increasing or
decreasing:
order=0 means the sequence will be sorted by non-decreasing order.
order=1 means the sequence will be sorted by non-increasing order.

To achieve the specified final order, a particular pattern of low-high and high-
low exchanges are needed in the stages preceding the final result. This com-
parison specification can be obtained from the order value and a simple bit
function of the processor identification, ¢d. More specifically, in the linear case,
we can define the order for the segment of size K/2 as ordereid|logP—logK],
where o indicates bit-ezclusive-or. In the two dimensional case, we can define

the order for the segment of size K/QXK/Z as ordereid[logP—logK].

The processors are assumed to be indexed by the preloaded processor
identification registers, ¢d. For the linear case, we assume that the processors
are indexed in the natural order. For the two dimensional case, we assume that
the processors are indexed in row-major order. All the processors execute the
same (comparison) instructions but generate different transmission outcomes
depending upon their indices and the keys of their data to be sorted. Within a

processor, id may be treated as a bit vector. Thus, 1d[logP—logK] selects a



particular bit in <d.

The flag bit, flag, is used to represent whether the datum with the smaller key

is to be broadcast or not:
flag=0 if the datum with the larger key is to be transmitted.
flag=1 if the datum with the smaller key is to be transmitted.
The ingate and outgate pointer, pointer, is determined by the following rules:
pointer=flageorderecc.
If pointer=0, then the content of input-register|0] will be transmitted.

If pointer=1, then the content of input-register[l] will be transmitted.

3. Linear Bitonic Merge and Sort

Batcher’s linear bitonic merge algorithm (Figures 3.1a and 3.1b) for a
bitonic sequence of length K, Xk, on P/K contiguous segments of P processors

on a linear bus can be described recursively as follows:
procedure Bitonic-Merge(Xy, order);
begin
if K>2 begin
for X do
Compare-and-Exchange(Xg, order);
for each half of Xx in parallel do
Bitonic-Merge(Xg /o, order)
end

end;

3.1. Optimal Data Movement for Linear Bitonic Merge

Performance in parallel sorting based on Batcher’s bitonic merge depends
on how efficiently we can move the data to the right position. Comparison may
be carried out simultaneously as soon as all the data are moved to the right
position. A simple way (Figure 3.1a) to move the data for Compare-and-

Exchange of Bitonic-Merge is:



Data Movement 1:
procedure Compare-and-Exchange(Xg);
begin
Move the value z; of processor j to processor 1, where 1=7 (mod K [2);
Compare-Exchange(;, z;);
Mowe the result r; to processor j, where 7> and i=j (mod K /2);

end;

The bitonic sorting algorithms (Thompson and Kung[1977] and Nassimi
and Sahni[1979]) published for a mesh-connected computer are based on this
scheme. However, there is inefficiency in this data movement because com-
parison results must be moved back to the original positions after they are com-

pared.

If we can divide Xx into two halves X, and X, so that comparisons are
always carried out between X, and X, throughout the logK steps, then we have
no need to move the data back to the original place. Instead, we always move
X, to X,. One method to divide Xy into halves is to use parity of indexes. For

example, define X, and X, as follows:

X,={z; | even-parity(i)=0}

X,={z; | even-parity(1)=1}
That is, X, is the data group whose index numbers have an even number of
one’s in the binary representation. X, is the data group whose index numbers
have an odd number of one’s in the binary representation. Then, an improved

way (Figure 3.1b) to move the data for Compare-and-Ezchange of Bitonic-Merge

is:



Data Movement 2:
procedure Compare-and-Exchange(Xg);
begin
if initial then
Mowe the value z; of processor j to processor i, where z;€X, and
i=j (mod K/2);
Compare-Exchange(z;,z;);
if K>4 then

Move the result r; to processor I where z;€X, and jy=I (mod
K/4);
else

Move the result r; to the processor i, where 7;€X, and i=7 (mod
K/2);
end;

The improvement in data movement is apparent, if we view it on the
hypercube of dimension logK. For data movement 1 (Figure 3.3a), data moves
along the edges of the hypercube and the data must move back to the original
position before it moves to the destination of the next step. On the other hand,
for data movement 2 (Figure 3.3b), data takes diagonal paths to move to the
next destination. In Figures 3.2a and 3.2b, we also show two bitonic merge net-

works of different topologies corresponding to two data movements 1 and 2.

Furthermore, we can argue that data movement 2 is optimal. In Batcher’s
bitonic merge algorithm for K data items, at least K/2 data items must be
moved to the new destinations from one stage to another. In data movement 2,
we move exactly K/2 data items for the next comparison. Therefore, data

movement 2 is optimal.

The advantage of data movement 1 is the unified direction and constant
distance of the moves. The disadvantage of data movement 2 is the variable
direction and distance of the moves. Therefore, data movement 1 is more suit-

able for the SIMD mode on a mesh interconnection. Data movement 2 is more
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suitable for the SIMD mode on a bus interconnection. Throughout this paper,
we use data movement 2. Due to the reduced number of routing steps using

data movement 2, bus interconnections outperform mesh interconnections for

bitonic sorting.

For completeness, we now describe Compare-Exchange in a little more
detail:

procedure Compare-Exchange(X, order);
begin
flag:=id [logP—logK];
if input-register[0]<input-register[1] then
ce:=1
else
ce:=0;
pointer:=flageorderecc;

end;
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3.2. Time Complexity of Bitonic Merge
The time complexity, Tpy(K), of Bitonic-Merge for P/K bitonic sequences

of length K can be described recursively. Each of the P processors has one data

item and is connected to a linear bus of bandwidth B.

If a bus is non-partitionable (B<P/2),

2 T Iz‘f ot 1o, if instial*

2B
P g
Tpu(K) = 1 [E_]_TBM( )]'tr-l'l'tc if 1<K
0-{,40-¢, if K=1

If a bus is partitionable (B<P/2),

2 —2‘%+TBM( ot 418, if initial*

ox +TBM( Kyt it B<k
Tpu(K) = 1

[1—|—TBM( C 4102, if 1<K<B

0-£,40-t, it K=1

* Note: extra cycles are required for initial positioning of X, and X,.

Then, by solving the above recurrence equation, we obtain the following equa-
tions:

If a bus is non-partitionable (B<P/2),
P "
Tpu(K) = [Eg'logQK]-tr+[logK]-tc if K>1
If a bus is partitionable (B<P/2),

To(K) = [%'%HOQ;B-—l]'t,—E—[ZogK]-tc it K>1
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3.3. Linear Bitonic Sort

Batcher’s linear bitonic sort algorithm (Figures 3.4a and 3.4b) for an arbi-
trary sequence of length K, Xg, on P/K contiguous segments of P processors on

a linear bus can be described recursively as follows:
procedure Linear-Bitonic-Sort( Xk, order);
begin
if K>2 then begin
for each half of Xx in parallel do
Linear-Bitonic-Sort(Xg s, ordereid[logP—logK]);
for Xy do
Bitonic-Merge(X, order)
end

end;

3.4. Time Complexity of Linear Bitonic Sort
The time complexity, Trs(K), of Linear-Bitonic-Sort for P/K arbitrary

sequences of length K can be described recursively. Each of the P processors

has one data item and is connected to a linear bus of bandwidth B.

If a bus is non-partitionable (B<P/2),
K

TBM(I()'l'TLS(_z_) if enitial
, p K .
Tys(K) =\ [TesK)—5 51+ T1s() if K>1
0-4,40-t, if K=1
If a bus is partitionable (B<P/2),
K S 5
TBM(K)_‘“TLS(?) if initial
K K .
Tis(K) = 1 [Tem(K)— g1+ T1s(5) if K>1
0-£,+0-t, if K=1
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Then, by solving the above recurrence equation, we obtain the following equa-

tions:

If a bus is non-partitionable (B<P/2),

1
Tys(K) = [%-(élongf—{—gloglf—l—l)]-t,,—l—[ Llog K+ logK ], if K>1

If a bus is partitionable (B<P/2),

Tyo(K) = [3'%—}—(logB—-Z)'logK—%logQB+-g"logB—2]'t,+[%log2K+%logK]-tc it K>1

4. Two-Dimensional Bitonic Merge and Sort

Two dimensional bitonic merge algorithm requires two versions depending
on the merge direction of two subfiles; vertical or horizontal. When row-major
order is used, vertically merging two subfiles preserves the order of indices. On
the other hand, horizontally merging two subfiles requires both merging and
reordering. For this reason, horizontal merge requires a modified version of
Bitonic-Merge, called Bitonic-Merge-Relocate, which involves special data move-
ment (Figure 4.1). In Bitonic-Merge-Relocate, a bitonic sequence of length 2K is
globally-folded (Hsiao and Shen[1985]) at contiguous K-length segments of the P
processors on a linear bus. Also, each processor has exactly two data items.
After the completion of the algorithm, a monotonic sequence of length 2K is
locally-folded (Hsiao and Shen[1985]) at each K-length segment on a linear bus
(Figure 4.1). Therefore, Bitonic-Merge-Relocate performs both merging and
reordering. The algorithmic outline for Compare-and-Ezchange process of

Bitonic-Merge is:
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Data Movement 3 (Bitonic-Merge-Relocate):
procedure Compare-and-Exchange(Xg);
begin
Compare-Ezxchange(z;, v;);
if K>2 then
Move the result r; to processor j, where i=g (mod K /2);
end;

We can view it on the hypercube of dimension logK+1 (Figure 4.2). For
data movement 3, data moves to compare-exchange and it stops when it

reaches the new destination.

4.1. Time Complexity of Bitonic Merge Relocate

The time complexity, Tyr(K), of Bitonic-Merge-Relocate for P/K globally-
folded, bitonic sequences of length 2K can be described recursively. Each pro-

cessor has two data items and is connected to a linear bus of bandwidth B.

If buses are non-partitionable (B<P),

[%"‘TMR(;_{)]'tr—i-l'tc if K>1
TrlK) =1 o-t,41-, it K=1

If buses are partitionable (B<P),

[%+Tﬁarlzz(%)]-tr+1-tc it K>1

Tur(K) = 7 04,41, it Kl

Then, by solving the above recurrence equation, we obtain the following equa-

tions:

If buses are non-partitionable (B<P),

Tyr(K) = [%-logK]-tT-l—[logK]-tc if K>1
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If buses are partitionable (B<P),

Tyur(K) = [2-%HogB—Z]-tT—I—[logK]-tc it K>

4.2. Vertical Merge

Vertical merge algorithm (Figures 4.3a, 4.3b, and 4.3c) for a bitonic
sequence of length JK, X;g, on P/JK JXK rectangular segments of P=pXp

processors on superposed parallel buses can be described as:
procedure Vertical-Merge(X; g, order);
begin
for each column k (0<k<K—1) in parallel do
Bitonic-Merge(X, order);
for each row j (0<7<J—1) in parallel do
Bitonic-Merge(Xg, order)

end;

4.3. Time Complexity of Vertical Merge

The time complexity, Tya(J,K), of Vertical-Merge for P/JK bitonic
sequences of length JK can be described recursively. Each of the P=pXp pro-

cessors has one data item and is connected to a grid of superposed parallel
buses of bus bandwidth B.

Tym(J,K) = Tpu(I)+Tpu(K)
Then, by solving the above recurrence equation, we obtain the following equa-
tions:
If buses are non-partitionable (B<p/2),

[—2%-10{.3;4JK]-tr+[logJK]'tc if J>2 and K>1

Tym(J,K) =

2-—2%-t,+1-tc if J=2 and K=1
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If buses are partitionable (B<p/2),

[_2_.1%@+210g B—2]t,+[log JK ¢, if J>2 and K>1
Typu(J, K) = 2-t,+1-t, if J=2 and K=1

4.4. Horizontal Merge

Horizontal merge algorithm (Figures 4.4a, 4.4b, and 4.4c) for a bitonic
sequence of length JK, X;g, on P/JK JXK rectangular segments of P=pXp

processors on superposed parallel buses can be described as:
procedure Horizontal-Merge(X g, order);
begin
for each row j (0<;<J—1) in parallel do

Mowe the value z; of processor [ to processor k, where [>k and k=l
(mod K /2);

for each column £ (0<k<K—1) in parallel do
Bitonic-Merge-Relocate( X, order);

for each row j (0<j<J—1) in parallel do
Move the result r; to the processor I, where [>k and k=l (mod
K/2);

for each half of row 7 (0<7<J—1) in parallel do
Bitonic-Merge(Xg/o, order)

end;

4.5. Time Complexity of Horizontal Merge

The time complexity, Tgu(J,K), of Horizontal-Merge for P/JK bitonic
sequences of length JK can be described recursively. Each of the P=pXp pro-

cessors has one data item and is connected to a grid of superposed parallel
buses of bus bandwidth B.
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If buses are non-partitionable (B<p/2),

Tau(J,K) = [2'%]'%4' Tymr(J)+Teu(

K

5)

If buses are partitionable (B<p/2),
[2-%}-tT+TMR(J)+TBM(~I2£) it K>B

THM(']’I{) = K
z'tr'*'TMR(J)'l‘TBM(?) if K<B

Then, by solving the above recurrence equation, we obtain the following equa-
tions:

If buses are non-partitionable (B<p/2),

[*2%-(2£0gl—|—logK+2)]'tr—i-[logﬂﬂ-tc if J>2 and K>2
Tau(S,K) = 1 4 ‘t42:%, if J=2 and K=2

P_
2B
2-5%-@4-1-156 if J=1 and K=2

If buses are partitionable (B<p/2),

[2.% +%._f§.+210g B—3]-t,+[logJK]t,  if J>2 and K>2

T K) = 1 [2+-2§]-t,,+2-tc it J=2 and K=2

2:L+41+1; if J=1 and K=2

4.6. 2D Bitonic Sort

The two dimensional bitonic sort algorithm (Figures 4.5a, 4.5b, 4.5¢, and
4.5d) is simply a pair of vertical and horizontal merges. However, the order
depends on the time complexity of vertical and horizontal merges. That is, if
vertical merge takes fewer cycles than horizontal merge, then horizontal merge
should precede vertical merge to save cycles. This is the case when each proces-

sor has one data item.
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Two dimensional bitonie sort algorithm for an arbitrary sequence of length
K2, Xk K, on P/K2 KXK square segments of P=pXp processors on superposed

parallel buses can be described as:
procedure 2D-Bitonic-Sort Xy g, order):
begin
if K>2 then begin
for each quarter of Xk g in parallel do
2D-Bitonic-Sort( X /o k2, ordereid[2logp —logK]);
for each half of X g in parallel do
Horizontal-Merge(Xg /2, i ordereid[2logp—2logK]);
for Xx g do
Vertical-Merge(Xk g, order)
end

end;

4.7. Time Complexity of 2D Bitonic Sort

The time complexity, Tog(K,K), of 2D-Bitonic-Sort for P/K2 arbitrary
sequences of length K? can be described recursively. Each of the P=pXp pro-
cessors has one data item and is connected to a grid of superposed parallel

buses of bus bandwidth B.

T?S(%a é{_)‘l‘THM(%,K)'FTVM(K,If) if K>1
Tos(KK) =1 o-t,40-, it K=1

Then, by solving the above recurrence equation, we obtain the following equa-

tions:

If buses are non-partitionable (B<p/2),

Tos(K,K) = [E%{-g—'loggff-i-%'loglf)]-tr+[210g2K+logK]'tc if K>1
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If buses are partitionable (B<p/2),

Tos(K,K) = [—2-2"3—'%+(4}ogB—5)'logK—QloggB+1010gB~—12]'t,,,-{»[QlogQK—I—logK]'tc if K>1

5. VLSI Complexity of Sorting

We discuss two complexity measures for VLSI circuits. First, we consider
conventional AT? measures (Thompson[1979]) for the point-to-point networks.
Second, we consider AT?M? measures which are more applicable for multi-point
networks (Ullman[1984b]).

5.1. AT? Measures

We are concerned about the chip area, A, and the computation time, T of
the sorting networks. The basic assumptions we make on a VLSI model of sort-
ing are based on Thompson[1979] and also Bilardi and Preparata[1984]. Their

main features are as follows:
1) The synchronous model: we assume unst-delay for a wire.

2) The semellective model: we assume one-time-and-place availability of

inputs.

3) The when-and-where-determinate model: we assume the predetermined time

and places for inputs and outputs.

4) The word-local model: we assume the same input port for all the bits of a

word.

Under these assumptions, AT2=O(P2log2P) lower bound can be obtained
(Thompson[1979)) for sorting P words of (1-4€)logP bits each (€30).

For both linear and two dimensional bus interconnections with P proces-
sors, the area is A=0(Plog?P). We assume that bus bandwidth, B, is constant
and independent of P. We also assume BXP. For a partitionable linear bus,
the time for bitonic sorting is T=0(P) and AT?*=0(P%log?P). On the other
hand, for a two dimensional grid of partitionable superposed parallel buses,
T=O(\/I?) and AT?=0(P%log? P), and it is thus optimal within a constant fac-

tor.
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A two dimensional mesh interconnection has the same area, time, and AT?
asymptotic complexities as a two dimensional grid of superposed parallel buses.
However, if we take the constant factors into consideration, bus interconnec-

tions outperform mesh interconnections for time and AT? complexities.

5.2. AT?M? Measures

As a next step, we consider VLSI complexity for the multi-point and high
“fluz’ networks proposed by Ullman[1984b]. That is, we assume a high-
bandwidth bus where each processor on the bus can transmit one data item to
its destination processor on the same bus within a processor cycle. Under this
assumption, AT?M2=0(P?) lower bound can be obtained (Ullman[1984b]),
where M is the maximum number of processors supportable on a bus within a
unit of time. For our model, we can assume M=B=P for a linear bus and

M=B=V\/P for a two dimensional grid of superposed parallel buses.

For a linear bus, the time for bitonic sorting is T=O(log2P) and
AT?M?*=0(P®log®P). On the other hand, for a two dimensional grid of super-
posed parallel buses, T=O(log2\/F) and AT2M?*=0(P%log®P), and it is thus

optimal within a logarithmic factor.

6. Conclusions

We developed time complexity measures, including constants, for bitonic
sorting on non-partitionable and partitionable buses, for both linear and two
dimensional cases. First, an optimal data movement for bitonic merge and sort
on a linear bus was given. Using this improved data routing over the buses, an
efficient adaptation of bitonic merge and sort on one and two dimensional bus
interconnections was devised. It was also shown that bus-partitionability as
well as greater bus speed improves the time performance of sorting on bus inter-
connections, with the result that partitionable bus interconnections outperform
one and two dimensional mesh interconnections executing bitonic merge and
sort. Particularly for the two dimensional case, a grid of superposed parallel
buses is optimal with regard to VLSI complexity, within a constant factor or

logarithmic factor using AT? and AT?M? measures, respectively.
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Partitionable bus interconnections are not always advantageous, however.
We have shown that bus-partitionability cannot improve the performance of
permutations on bus interconnections (Arden Nakatani[1986a,b,c,e]). Ongoing

studies include adaptations of other parallel sorting algorithms to bus intercon-

nections.
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Figure 2.1a: Alinear bus (P =8)
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Figure 2.1b: A partitionable linear bus (P=8)
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Figure 2.2a: A square grid of superposed parallel buses (P =4x4)
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Figure 2.3: A processor chip for bitonic sorting
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Figure 3.1a: Data movement 1 for the bitonic-merge algorithm (N =P, P=8)
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Figure 3.1b: Data movement 2 for the bitonic-merge algorithm (N =P, P =8)



a bitonic a monotonic

sequence of sequence of
length 8 length 8
S 0 0 -
a‘\ / — a‘I
a, — 4,
0 0 0
a; — aj
- 0 0 "
as / as
a(; _ aﬁ
0 0 0
a, — 3

Figure 3.2a: A 8-bitonic merger (Data movement 1)

a bitonic a monotonic
sequence of sequence of
length 8 length 8
a — a

¢ 0 0 0 0
aq T a'I
a — a
’ 1 \/ 9 0 ’
a, a,
a, — a,

3 K 1\ 0 5
; =X
an Bl an K178 K1

a
d

Note: The comparator with flag =1 reverses the output.

Figure 3.2b: A 8-bitonic merger (Data movement 2)
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Figure 3.4a: Linear Bitonic-sort (N=P, P =8)




Figure 3.4b: Data movement for the linear-bitonic-sort algorithm (N =P, P =8)
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Figure 4.1: Data movement 3 for the bitonic-merge-relocate (N =2P, P =8)
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Figure 4.2: Data movement 3 on the 4-cube
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Figure 4.3a: Vertical-merge (N=P, P= 4x4)
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Figure 4.3b: Vertical-merge (N =P, P =4x4)



Figure 4.3c: Vertical-merge (N=P, P= 4x4)
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Figure 4.4a: Horizontal-merge (N=P, P= 4x4)
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Figure 4.4b: Horizontal-merge (N=P, P= 4x4)



Figure 4.4c: Horizontal-merge (N = P, P =4x4)
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Figure 4.5a: 2D-bitonic-sort (N =P, P =4x4)
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Figure 4.5b: 2D-bitonic-sort (N = P, P =4x4)
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Figure 4.5¢: 2D-bitonic-sort (N =P, P =4x4)
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Figure 4.5d: 2D-bitonic-sort (N =P, P =4x4)



