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ABSTRACT

The Monte Carlo Method has been studied and used to solve elliptic and parabolic partial
differential equations. It has several numerical and computational advantages over other methods.
The main computational advantage is the great amount of inherent parallelism it manifests.
However, an often costly part of the method has remained sequential. It is the random-walk
computation (RWC).

In this report, we parallelize (RWC) using fan-in and fan-out methods. The parallel algorithm

takes O(log n) time while the sequential one takes O(n) where n is the average random-walk length.



I . INTRODUCTION:

The Monte Carlo Method has been studied and used to solve elliptic and parabolic
partial differential equations [5] - [7]. It holds several advantages over other
methods, such as solving problems with irregular boundaries and/or discontinuities;
giving solutions at single points independently from the solutions at other points;
and allowing great parallelism .

The great amount of inherent parallelism is drawn from the fact that the solution
at different points are independent, paving the way to independent processes that
can run in parallel. Moreover, the solution at each point consists of evaluating a
“primary estimator” along a big number of random walks, then averaging these
values. The random walks are independent, so here too the estimations along the
random walks can be computed in parallel.

A much less obvious amount of parallelism can be introduced into the evaluation
of the primary estimator along a random walk. It is less obvious because the random
walk is constructed sequentially making the computation proportional to the length
of the random walk.

In this paper we parallelize the construction of random walks and along with it
the evaluation of the primary estimator (this is called intra-walk parallelism),
reducing the time of this part of the solution from O(n) to O(logn) where n is the
length of the random walk.

In section II, the Monte Carlo Method for PDE’s is presented briefly, and all its
possible areas of parallelism are pointed out. Section III, the main section of the
paper, introduces the intra-walk parallelism and presents the parallel algorithm for
the random walk construction. In section IV we analyze the complexity of the
algorithm and we conclude with a few remarks in section V.

[I. THE MONTE CARLO METHOD AND ITS INHERENT PARALLELISM:

Let AUy + 2BU,y +CUyy+DU+EU,+F =0 1)



be a PDE and D a region with boundary C. A, B, C, D, E and F are functions of x, y
and possibly the time variable ¢.

The Monte Carlo Method is used to solve the following two problems:
A. The elliptic PDE problem:

U,A,B,C,D,E and F are time-independent and B2 - AC <0onD.
Solve equation (1) subject to the boundary condition:
Ulx,y) = ¢(x,y) 1if (x,y) €C (2)
B. The parabolic PDE problem:

U,A,B,C,D,E and F are time-dependent and B2 - AC = O on D.
Solve equation (1) subject to:
Boundary condition: U(x,y,t) = ¢(x,y,t) if (x,y) €C (3)
Initial condition: U(x,y,0) = g(x,y) if (x,y) €D (4)

The region D is divided into a regular grid of size h. Each point P of the grid
(except the boundary points) has five neighbors Py, Pg, P3, P4, P5 as depicted in fig.1.
We denote by d; the direction along which we move from P to P; wherei = 1, 2, 3, 4,
5. A random number generator (RNG) generates random directions (i.e., di, d2, d3,
d4, d5). A random walk starting at P is constructed by moving away from P following
directions generated by (RNG) till an absorbing point is hit. In the elliptic case, the
absorbing points are the boundary points, while in the parabolic case, they are either
boundary points or points reached at time point 0.

Let (P) = 2(A -B + C) + h(E + D) where A, B, C, D, E and F are evaluated at
(x,y), the coordinates of P.

Let W; be a random walk starting at P and ending at a boundary point Q;, and
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The Monte Carlo solution of the elliptic equation (1) at point P, subject to (2),
consists of generating a number of random walks Wy, Wg, ..., WN;, all staring at P
and ending at Q1, Qg, ..., QN, respectively. Then, Z(Wj) is evaluated (or Z(Wj) is
evaluated while generating W;). Afterwards, U(P) is approximated by

1 X
Pz == Z(W. (8)
N?:l W)

Z(W,) is called the primary estimator of U(P), and 6 the secondary estimator. For
the proof that this method yields a good approximation of U, see [4], [8].

For the parabolic case, where U and the coefficients of (1) are time dependent, the
time scale is discretized into equal units of length % (i.e., t, = nk, n = 0), and U(P),
A B,C,D,E, F and r(P) at time t, are denoted U,(P), A, By, Cpn, Dp, Ep, Fp, and
rn(P), respectively.

Random walks W’s are constructed as before except that W is started at P at time
t, = nk, and at each step (following a new direction), the time is decreased one unit.



W is finished if either a boundary point is reached or time runs out (after n steps),
whichever comes first.

In this case,

n=s F__(P)
sy = vy Ry 2

5s(Q) ifQi€C,s =0 ’ n

(7)

Vs(Qi)

g(Qy) ifs=10 (i.e., Qi is reached at time 0, and may be a non-
boundary point)

The Monte Carlo solution of the parabolic equation (1) at point P, at time t,,
subject to (3) and (4) consists of generating W1, Wg, ..., WN, evaluating the Z(Wi)’s
and averaging them, asin the previous case.

Now it can be clearly seen that the random walks W1, Wg, ..., WN are
independent, Z(W1), Z(W3), ..., Z(WN) can be computed independently (and thus in
parallel). This inter-walk parallelism has been studied in [2], [3], [7]. It is also clear
to see that U can be computed at different points independently (and thus in
parallel).

The third candidate for parallelism is the generation of a random walk Wj, and
the computation of Z(W;) along with it. We call the whole thing random walk
computation (RWC).

We shall describe the sequential (RWC) next. The computation of Z(Wj) in the
elliptic case is carried out as follows:

x =0
temp-end = P; {holds the temporary end-point of the walk}
is-boundary = false;

while(is-boundary =false) do
begin
is-boundary = chech-boundary(temp-end);



if (is-boundary = false)
x = x + F(temp-end) / r(temp-end);

d = RNG(); {a random direction}

temp-end = new-node(temp-end,d); { updates the temporary end-point
using the previous

end end and the

direction d}
Z = ¢(temp-end) + hxh+x;

Algorithm 1.
The parabolic case is quite similar and will not be treated individually.

Some slight parallelism is obvious: the RNG, the updating of end-point, and the
checking of boundary-crossing are independent and can run in parallel. This
parallelism along with the inter-walk parallelism has been studied in [7]. Different
implementation schemes on different machine architectures such as SIMD, MIMD,
etc. ... have been studied in [1], [2], [3], [7].

The balk of the computation time remains in the sequentiality of the random
walk generation (the while-loop runs as many times as the random walk length). At
first glance, this sequentiality seems inherent. However, it can be parallelized,
cutting down the RWC time from O(n) to O(logn) where n is the random walk length.
This is the subject of the next sections.

0. NEW INTRA-WALK PARALLELISM:

The first idea is to have a number of independent RNG’s rather than only one.
They can be thought of as a multiple random number generator (MRNG) that
generates sequences of random numbers. Assume there are n RNG’sand n = 2%.

The problem can now be cast as follows: Given a grid, a point P of the grid, and a
sequence of random directions dj,, diy, ..., di, (taken from the five directions
introduced earlier), construct in parallel the random walk that starts at P and moves
away following direction dj,, di,, ..., di_, consecutively.



Suppose that the grid points are numbered from 1 to S, row-wise. We can think of
di,, di,, ..., dj, as functions acting on integers. As an example, take the grid in fig.2.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
Fig.2.

di, =i+ 1;dj, =1-4;di; = i-1;dj, =1+ 4;dj;, =1 +5.

To simplify the notation, let fi = di,,..., fn = di,.

Let P; = fi(P), Py = fo(Py), ..., Pn = fu(Pn-1). P, P1, Py, ..., Py is the random walk
sought. the problem then is to find Py, P9, ..., Prin parallel, and compute Z(W) as the
search for P1, P9, ..., P, takes place.

The algorithm consists of three phases. Phase I involves the following

computation:
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as depicted in fig.3, in a bottom-up fashion, assuming that n = 2% for simplicity.
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Each step can be processed in parallel by a number of processing elements (pe’s).

(k)
fl
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Step 1

Phase I
Fig.3.

In phase II, Py, Pg, ..., Py.1 are found in a top-down fashion as depicted in fig.5
where the indices of the points determined at the nodes in fig.5 coincide exactly with
the numbers of the nodes of that tree if it is a binary search tree with keys 1, 2, ..., n-
1. At the end, P, is determined by pej. Note that the assignment of the pe’s is the
same as in fig.4. Along with the determination of P1, P9, ..., Py goes the boundary-
crossing checking and the necessary measures to be taken in this case. This will be
explained in more detail later.

In phase III, the terms of the summation part of (5) (or (7)) that correspond to the
points found and proved to be within boundary in phase II are summed in a bottom-
up fashion, with the same assignment of pe’s asin fig.4.
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If the boundary is not reached yet, a new sequence of random directions is
generated and the three phases are repeated with this new sequence and the last
point reached (in the previous iteration) as input. This cycling continues until an
absorbing point Q is reached. During the cycling, the partial sums computed in
phase III are accumulated. In the final step, Z is computed by multiplying the
accumulated sum by ~A2 and then adding it to ¢(Q).

Several questions arise at this point:
(i) Whether the composition of those functions can be carried out easily and
independently from arguments. The answer is positive, as will be seen later, making

phase I implementable.

(ii) How to compose those functions (in order to find the pointsin phase II).
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Fig.5.

(iii) Whether the resulting functions reveal if there is any boundary crossing and
where. The answer is negative.

(iv) What measures to take to detect boundary crossing (in order to make phase II
implementable).
We handle these questions next.

If the region is a full grid as in fig.6, we number its nodes row-wise from 1 to S.
However, if it is irregular as in fig.7, we embed it in a full grid, but we delete two
exterior nodes from each row and each column so that all the rows have the same
number of nodes and so do all the columns (fig.8), then we number it row-wise.. This
numbering scheme is used to make the five direction-functions simple. Suppose the
row size is m. Then, d1(i) =i + 1,dg(i) = i- m,d3() =i-1,d4(i) =i + m,and
dsi) =i+ m + 1.

The f’s are taken from {d; d2 d3 d4 ds}, and their composition is the composition
of the di’s. Note that the dyi’s are “translations” of the form ¢, where t4(x) = x+a.
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Since t,tp = 545, each translation t, can be identified by its parameter a (i.e., its
computer representation is the number a), and the composition is done by adding the
corresponding parameters without referring to the argument x. This answers
question (i). Hence, the functions of phase I are computed by mere additions of their
representations, and are themselves translations, answering question (ii). It is
important to note the distinction between computation of a function and evaluation

of a function at some integer; the first yields a function while the second yields an

integer.

As to question (iii), note that since f;(i) is a translation (of parameter a;;, say), a;j
does not provide any information as to whether the boundary is crossed (except in
the case where a;; > S).

Now we come to the last and most important question, the boundary-crossing
detection. This will be done in phase II of the algorithm as follows: As the finding of
the P;’s proceeds in the top-down fashion, each time a Pj is computed at some pe;, P is
checked if it is on boundary, off boundary or within boundary. If P; is within
boundary, the computation proceeds normally to find the other points; if it is off
boundary, P; and all the the Pg for s>i are discarded from the walk (i.e,, all the
points computed (or will be computed) at the right side of P; in the tree in fig.5); if it
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is on boundary, all Pg for s>1i are discarded. Discarding those points can be carried
out on a SIMD machine by having the pe that computes P; report to the control unit
that P; is off boundary; then the control sends instructions to all the pe’s responsible
for Ps, s>i, to discard those Pg’s. In phase IIl, those discarded points do not
contribute to the sum.

The implementation of the checking is discussed next. In case the region is a full
grid asin fig.6., it is simple:

Let] = Pymod m (recall that Pjis an integer)
IfP; > Sor P;<1, itisoffboundary

IfI = Oorl, itis on boundary

Otherwise, itis within boundary

In case the region is irregular as in fig.7, some data structure has to be kept in the
memory of each processing element. After embedding the region in a grid as in fig.8,
for each row i, we keep B(i) and TV(i), beginning and ending nodes of row i on the

region, respectively.

Letl =.[Pim] (the row number of P;)

IfP; > SorP; < lorP; < B(I)orP; > T(I), itisoffboundary
If P; = B(I) or P; = T'(I), itison boundary

If B(I) < P; < T(I), itiswithinboundary

The full algorithm is shown below.

procedure RWC(P)
begin

2= {holds the accumulated sum}

Py =P; {Pj holds the temporary end of the random walk which is initially the
point P only}

Z =0; {the primary estimator}

boundary = false; { a boolean variable to tell if the boundary has been
crossed}
while(boundary = false) do
begin



12

fori=1tonstep 1in parallel do
begin
fi = RNG;j(); {parallel generation of n random directions. fi = 1,-
1,m-morm+1}
end
{phase I next}
fori = 1tok step1ldo {iis the step number of fig.3}
forj = 1ton/2istep 1 in parallel do
fP =fox{" 4+ foxi.1%V ; { as seen earlier, function composition is

equivalent to}
{the addition of their representations
}
{phase Il next}
fori = kto1lstep =-1do {iis the step number in fig.5}
begin
P, = Py; {thisisforindex handlingonly}
forj = 1to n/2istep 1in paralleldo
begin
index = (2%j-1)*2i-1; {the index of the j-th point (from left) in
the i-th
step of
fig.5}
father index = (I(j-1)/27 +2)*2i-1; {the index of the
father of Pindex }
Pindex = fj'(i) + Ptather-index {KP) = f +P if f|is a
translation}
boundary = check__boundary(Pindex);
end
end

if(boundary = false) then
begin
Ph=fn +Pn1;
boundary = check__boundary(Py);
if(boundary = false) then {updates the temporary end-point of
the walk
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Po= Py if the boundary is not yet reached}
end
{phase III next}
forj = 1tonstep 1in parallel do
if (Pj is discarded) then
Xj(()) =0
else x;” = F(P)/r(P));
fori = 1tok stepldo
forj = 1ton/2istep 1in parallel do

Xj(il :XQ*j(ill) + Xz*j_lti-l) :

{ end of phase III}

x=x + x1%; {update the accumulated sum}
end {of the while loop)
Z =h*h*x + ¢(Pyp); {final value of the random walk}

end
Algorithm 2.

The check__boundary procedure is presented next for the general (i.e., irregular)
region :

procedure check__boundary(P;)

begin
L= EPilinl;
if(P;> S or P;<1 or P;<B(I) or P;>T(I)) then
begin
discard all Psfors = i;  {done by the control unit}
boundary = true;
end
if(P; = B(I) or P = T(I)) then
begin
discard all Psfors > i;  {done by the control unit}
boundary = true;
Fo=Pu {update endpoint of the walk}
end

return(boundary);
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end

Algorithm 2 is for elliptic equations. For parabolic equations, it needs only minor,
straightforward modifications.

IV. COMPLEXITY OF THE ALGORITHM:

This section discusses the computation time, the number of pe’s needed for full
parallelism, and the communication time.

Let n be the average random-walk length, p the number of pe’s used for the RWC,
and g the number of RNGs.

The sequential time of RWC is O(n) because the while-loop of algorithm 1 loops n
times. For the parallel time (of algorithm 2), suppose first that p=n/2. The expected
number of times algorithm 2 will loop is q/n1. Each step of phase I takes one time
unit because it involves one addition (actually many additions all done in parallel
because the available pe’s are more than the addition operations). Thus, phase I
takes k£ = logn time.Each of the remaining two phases have similar computational
patterns (i.e., k steps, each executes in parallel and takes a constant time).
Therefore, the three phases take O(logn) time, and the whole algorithm takes
O(T'g/nTlogn) time = O(logn) if g = n.

If p<n/2, each of the three phases takes O(I'(n/2)/plogn) time; consequently, the
whole algorithm takes O(I'g/n1l(n/2)/pTlogn) time.

To complete the solution at one point, the Z(W;)’s (N of them) have to be computed
and averaged. Their computation can be done in parallel taking Np pe’s and
O(Tg/nr(n/2)/pTlogn) time. Averaging them takes logN +1 time units on N pe’s.

As a result, U(P) takes O(logn) + logN +1 time on Nn/2 pe’s if the RWC is fully
parallelized, and O(n) + logN +1 time if RWC is run sequentially.

The above figures are for the computation time. For the communication time,
fig.3, fig.4 and fig.5 show that the three phases have the same communication

patterns: A binary tree pattern, bottom-up or top-down. the communication
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implementation is architecture-dependent.Different architectures are considered
below, yielding different communication times for algorithm 2. The proof should be
straightforward.

(i) Mesh-connected machine of size p (perfect square): 2(Vp -1) communication steps.
(ii) Hypercubes of size p (power of 2): logp steps.

(iii) Omega- or Benes-connected machines of size p: logp permutations.

Same argument applies to the computation of 6 of (6) because it has the same
communication pattern.

To keep the communication time at the same complexity as that of the
computation time (i.e., O(logN)+O(logn)) time, it is recommended to use
hypercubes, omega-connected machines or Benes-connected machines.

From the analysis above, it is concluded that if the grid is large and fine-grained,
then there are very many grid points and n is expected to be very large, and parallel
RWC offers great speed-up ( in the order of n/logn). On the other hand, if n is
relatively small, the speed-up is small and may not warrant the cost of extra
processing elements.

It should be noted that if the number of available pe’s is less than or equal the
number of random walks, then running RWC in parallel would increase the overall
computation time of 6. Consequently, Parallel RWC should be used only when the
number of pe’s exceeds that of the random walks.

V.CONCLUSION:

We have parallelized the part that was the most sequential and often costly of the
whole Monte Carlo solution of partial differential equations, reducing the time of
this solution to what we conjecture to be the minimum. In parallelizing RWC, we
used a principle that underlies many parallel algorithms. This principle involves the
formulation of a problem as a composition of mathematical functions which can be
composed rapidly and independently of arguments (or input). Then these functions
are composed in a binary-tree fashion (as in fig.3), similar to any semi-group
computation (e.g., addition or multiplication of n numbers).
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