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ABSTRACT

The paper is concerned with the optimal schedule for the
permutation of n? data items on an n Xn square grid formed by
the orthogonal superposition of 2n time multiplexed buses. The
upper bound is proved by showing the existence of the n +1
cycle, uniform schedule (that is, all two-step transfers con-
sistently row first or alternately column first) for an arbitrary
permutation. The lower bound is proved by showing the non-
existence of n-cycle, non-uniform schedules for some non-
degenerate permutations. We also show a simple way to per-
form an arbitrary permutation dynamically with n buffers at
every bus intersection. We further show that, with specific
example of permutations, the potential increase in parallelism
by dynamically partitioning the 2n buses does not lead to a

further recuction in time.
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1. Introduction

Consider the permutation of N =n?

data items using two sets of n
parallel, time multiplexed buses. If one set of buses is considered to be hor-
izontal and the other vertical, they can be considered to be superposed with
communication between the horizontal and vertical buses at the bus inter-
sections (Figure 1.1). The time for the transmission of one data item on a
bus is considered to be a single cycle. With n buses in parallel, there can be
at most n simultaneous transmissions on one set of parallel buses. The over-
lapped, or pipelined, use of the two bus planes leads to an overall maximum

transmissions of 2n data items in a single cycle.

Using the conventional, Cartesian notation for the n? bus intersections,
the destination address xpy; of a data item is initially present at each of the
square array of address x;y; (0=<i,j,k,I=n —1). For permutation, all n? dis-
tinct addresses occur. A permutation is accomplished by transferring a data
item from x;y; to xy; for all i,j, where xpy; was the destination address of
the data item initially in the x;y; position. In the general case, there are
two bus broadcast steps to accomplish this transfer, i.e., horizontal then
vertical or vertical then horizontal (Figure 1.2). Bus pairs intersecting at
x;y; or xpy; must be used. Clearly, there are degenerate cases where source
and destination are in the same row or column, x;=x; or y;=y;, and only

one bus broadcast is required. Also none is required when x;=x; and y;=y;.
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For permutations without degenerate cases, that is, every transfer
requires two steps, a total of 2n? bus broadcast steps are necessary.
Exploiting the bus parallelism and overlap, it is clear that the best schedule
or shortest time to complete a single permutation would therefore be n
cycles. However, to complete a nondegenerate, single permutation within n
cycles, n horizontal bus broadcasts and n vertical bus broadcasts must be
accomplished every cycle including the first one. For the overlapped opera-
tions on the first cycle, mixed schedules, or mixtures of both the horizontal-
then-vertical and the vertical-then-horizontal transfers, are necessary. It is
interesting to know if there exists a minimum, mixed schedule for arbitrary

permutations.

On the other hand, as we prove in section 3, Hall's theorem on “Distinct
Representatives” (Hall[1935]) guarantees the existence of a uniform
schedulet, that is, an unmixed schedule when the transfers are uniformly
horizontal-then-vertical or vertical-then-horizontal. Because of the inherent
serial aspect of the two bus broadcasts, the uniform schedule takes n +1
cycles. That is, there can be no bus overlap on the first cycle. The uniform
schedule can be regarded optimal as well, because sequential permutations
could achieve an overlap of the additional cycle and thus complete one of a
sequence of permutations every n cycles. We show in section 4 that, with
specific example of permutations, no mixed schedule of n cycles exists for
single permutations. Although a mixed, n cycle schedule exists for some
permutations, one does not exist for all. Hence, the n +1 cycle, uniform
schedule is optimal for single permutations on an n Xn square grid of super-
posed parallel buses.

However, it is a time-consuming operation to find the broadcast order
for the uniform schedules. The uniform schedule is considered to be
equivalent to a time-division-multiplexing (Andresen and Harrison[1972]
and Marcus[1972]) of a three-stage n? Benes-Clos rearrangeable network
(Clos[1952] and Benes[1962]) and also to be equivalent to a time-
multiplexed crossbar (Marcus[1972]). The best known sequential algorithm

+ This is called a self-pipelined schedule in the previous paper (Arden and
Nakatani[1986al).
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to set the switches of a n? Benes-Clos rearrangeable network takes
O(n%logn) (Opferman and Tsao-Wu[1971] and Andresen[1977]). An
O (log*n) time parallel algorithm (Nassimi and Sahni[1982]) and Lev, Pip-
penger, Valiant[1981]) has also been described. Therefore, this schedule is
primarily applicable for static permutations. On the other hand, if we allow
n buffers at every bus intersection, there is a simple way to perform an arbi-
trary permutation dynamically in 2n cycles on a nXn grid of superposed
parallel buses. This simple schedule for dynamic permutations is considered

2 Q-network

to be equivalent to a time-division-multiplexing of a n
(Lawrie[1975]) and also to a nXn queuing crossbar (Marcus and

McDonald[1969]).

After these observations, the question naturally arises whether the per-
formance of permutations can be improved by partitionable buses. By parti-
tionable buses, we mean that the bus can be separated into arbitrary, con-
tiguous segments. if the system can be partitioned into many subsystems
that can work independently in parallel, then the time to perform permuta-
tions may be improved. This is the case for the divide-and-conquer algo-
rithms (Arden and Ginosar [1982] and Arden and Nakatani[1986b]). How-
ever, we prove that partitionable buses cannot improve the performance of
permutations. That is, it is shown that some permutations, such as the bit-
reversal permutation, require the same number of steps whether the buses

involved are partitioned or non-partitioned.

The paper is organized as follows: In section 2, some notation and
definitions are given for later use. In section 3, the upper bound for
schedules (that is, the existence of the uniform schedule) of an arbitrary per-
mutation on a nXn square grid of superposed parallel buses is proved. In
section 4, the lower bound for the schedules (that is, the non-existence of
mixed, n cycle schedules) of some permutations is proved. In section 5, it is
proved that if we assume n buffers at every bus intersection then there is a
simple way to perform an arbitrary permutation dynamically in 2n cycles.
In section 6, it is proved by example that partitionable buses do not improve
the performance of some permutations on a square grid of superposed paral-
lel buses.
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9. Mathematical Notations and Definitions
In this section, notation and definitions are described for later use.

Definition 1: A nXn square grid of superposed parallel buses, denoted as
SPB(n,n), is a system with n? processors and two sets of n buses; one,
called the row buses R through R, _;, can be viewed as horizontal and the
other, called the column buses C through C,_1, as vertical. A processor is
located at each cross point and each processor has two ports; one for a hor-
izontal bus and the other for a vertical bus. The address of each processor is
denoted by (x,y) or xy, where x represents x-coordinate, called the column
address, and y represents y-coordinate, called the row address. There are n
processors on each bus. The row bus R; supports n processors (i, 0) through
(i,n—1) for 0si<n—1. The column bus C; supports n processors 0,75)
through (n —1,j) for 0=j<n—1. Itis assumed in this paper that each pro-
cessor at the address (x,y) has a data item with its mailing address, called
destination address D (x,y), and that a mapping from (x,y) to D (x,y) forms a
permutation from SPB (n,n) to SPB (n,n).

Definition 2: A column selection is a set of n processors at the addresses
(x0,0) through (x, _1,n —1), where x; is an integer which is not necessarily
unique (0<x;<n —1). Similarly, a row selection is a set of n processors at
the addresses (0,y¢) through (n—1,y,-1), where y; need not be unique
(0=y;<n-1). A column-row selection is a set of n processors that forms

both a column and row selections at the same time.

Definition 3: A column selection is called compatible when each processor i
in a column selection has a data item with the destination address (x;,y;)
and a set of n processors at the addresses {(x;,y;)} for 0=i<n —1 forms a
row selection. Similarly, a row selection is called compatible when each pro-
cessor i in a row selection has a data item with the destination address
(x;,y;) and a set of n processors at the addresses {(x;,y;)} for 0=i=n—1
forms a column selection. A column-row selection is called perfectly compati-
ble when it is compatible both as a column selection and as a row selection.
Moreover, k sets of column-row selections are called perfectly k-compatible,
(even if each column-row selection is not necessarily perfectly compatible
but) if the processors in %k sets of column-row selections have data items

with exactly k distinct destination row addresses for each of n destination
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column addresses or with exactly k distinct destination column addresses for

each of n destination row addresses.

Definition 4: The uniform schedule is n sequences of the horizontal-then-
vertical transfers (or equivalently n sequences of the vertical-then-
horizontal transfers) of data items chosen by n series of compatible column
selections (or equivalently n series of compatible row selections). This is
always possible according to Hall’s theorem on “Distinct Representatives”
(Hall[1935]) as we shall show in the next section. Since each selection 1is
compatible, all the selected data items can be broadcast on the row (the
column) buses right after they are broadcast on the column (the row) buses
without further delays. Therefore, by the uniform schedule, a single permu-
tation takes n +1 cycles and each of sequential or multiple permutations
takes n cycles in pipeline fashion. On the other hand, a mixed schedule is n
sequences including both the horizontal-then-vertical and the vertical-then-
horizontal transfers of data items chosen by a series of n compatible selec-
tions. The minimum schedule of n cycles is possible for some specific per-
mutations (for example, the bit-reversal permutation) using the mixed stra-
tegy, but in general n+1 is the best that can be achieved. Hence, such
schedules are optimal.

Definition 5: A permutation is called degenerate, if some pairs of source and
destination are in the same row or column. Otherwise, a permutation 1is

called nondegenerate.

Example 1: The bit-reversal permutation is nondegenerate and has an n-
cycle mixed schedule (Figure 2.1).

Example 2: The permutation D(x,y) is a bijection from the SPB(n,n) to
SPB (n,n) by the following rule:

D1(x,y)=(x —21,,ly +11,)1 for y=n —1
Dq(x,y)=(x —11,,ly +11,) for y=n —1

This permutation D;(x,y) is nondegenerate and has no n-cycle schedule, as
will be shown in the following section (see Figure 2.2 and Figure 2.3 for
example of the uniform schedule and the mixed schedule of Dq(x,y) respec-
tively).

t [m]l,=m (mod n)



3. The Upper Bound

In this section, we prove the existence of the n +1 cycle, uniform
schedule for an arbitrary permutation on the SPB(n,n).

Theorem 3.1: There always exists the uniform schedule for an arbitrary

permutation of n? data items in n +1 cycles on the SPB (n,n).

Proof: Consider nXn array of column destinations. There are exactly n
occurrences of each of the n column destinations in the array. This satisfies
the hypothesis of Hall's theorem on “Distinct Representatives” (Hall[1935]).
That is, for any k2 (1<k <n), there are at least k distinct column destina-
tions on any k rows. Therefore, there exists a compatible column selection.
That is, there exists a selection of distinct column destinations from each
row. After selection and removal of distinct representatives, Hall's theorem
is again satisfied with the n rows now containing n —1 column destinations.
Therefore, there continues to exist a compatible column selection until
exhausted. Thus, all the data items on the rows can be broadcast in n
cycles, and all the data items reach their destinations in n +1 cycles by

interleaving operations of row and column broadcasts.[]

4. The Lower Bound

In this section, the lower bound is proved by showing an existence of a
single permutation that requires at least n +1 cycles and n cycles, in pipe-

line fashion, for each of a sequence of permutations.

Theorem 4.1: The uniform schedule is optimal for permutations on the
SPB (n,n). That is, there exists a permutation that takes n +1 cycles for a
single permutation and n cycles in pipeline fashion for each of a sequence of

the permutations.

Proof: From Lemma 4.4, the permutation D(x,y) has no n-cycle mixed
schedule. The uniform (n +1)-cycle schedule exists for all permutations and
is therefore optimal.[]

Lemma 4.1: The permutation D(x,y) is non-degenerate, that is it takes at
least n cycles on the SPB(n,n). This can be achieved only by compatible

selections.
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Proof: Every destination address of D;(x,y) requires both column and row
broadcasts. One cycle of SPB (n,n) can transmit at most n data items on the
column buses and at most n data items on the row buses. Therefore, at
least n2X2/(2n)=n cycles are required and this can be achieved only by
compatible selections.[]

Lemma 4.2: Any compatible column selection of D(x,y) is also a row selec-
tion but not compatible row selection. Therefore, any compatible column

selection of D1(x,y) is a column-row selection but not perfectly compatible.

Proof: For any compatible column selection of D;(x,y), let (0,y,) through
(n —1,y,_1) be the destination addresses of the selected processors’ data
items. Then, {y;} for 0=j=n—1 must form a permutation of integers
{0,1,...,n —1}. Since (x,y;) appears only on the row y;+1 for any x, a set of n
processors, which have the data items with the destination addresses {(j,y;)}
for 0<j <n —1, forms a row selection. However, in any compatible column
selection of Dq(x,y), exactly one processor must have a data item with the
destination address (x,_1,n —1) and the other processors must have data
items with the destination addresses (x;,i) for 0<i <n —2. Moreover, one
processor must be selected from the column [x, _; —1], excluding the loca-
tion ([x, 1 —1],,0), on which any of the processors has a data item with the
destination address (x,_1,h) for a A (0=h =n —2). That is, two processors,
which have the data items with the destination addresses (xp_1,n —1) and
(x,_1,h), must be selected as a part of any compatible column selection.
Therefore, this is not a compatible row selection, that is, not a perfectly

compatible column-row selection.[ ]

Lemma 4.3: In any compatible column selection of D;l(x, y), there are
exactly two processors whose data items have the same destination column
address and the rest of the processors have data items with distinct destina-

tion column addresses from each other and also from the two processors.

Proof: From the proof of Lemma 4.2, any compatible column selection con-
tains exactly two processors at the addresses (Ix; -1-11,,0) and
(lxn, 1 —2],,h +1), which have the data items with the destination
addresses (x,_1,n —1) and (x, _1,h) respectively. The rest of the processors
are located at the addresses {(j,i)}, for any i (i20,h+1) and any j

(G #Zlxp—1 —115,0x, -1 —2],), and have the data items with the destination
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addresses {([j +21,,li —11,)}. Therefore, the rest of the processors have the
data items with distinct destination column addresses {lx, —1+t],} for
9<t<n —1 and only two processors have the data items with the same des-
tination column address x, —1.[]

Lemma 4.4: The permutation D(x,y) has no n-cycle mixed schedule.

Proof: From Lemma 4.3, in any compatible column selection of D(x,y), the
selected processors’ destination column addresses are distinct except for the
two. More precisely, the processors in a compatible column selection con-
tains the destination column addresses of two x, 1 and no [x,_1+1], and
each of the other integers. Because of this rule, for any E (1<k <n), the
processors in any k sets of compatible column selections cannot have the
same number of aliases for each destination column address except for the
case of k =n. That is, any & sets of compatible column selections cannot be
perfectly k-compatible column-row selections except for the case of k =n,
when all the compatible selections are the column selections. Therefore,
either n compatible column selections or n compatible row selections are the
only compatible selections for the whole permutation of Di(x,y). From
Lemma 4.1, the permutation D(x,y) takes at least n cycles and this is pos-
sible only with compatible selections. The only way with compatible selec-
tions is either by n compatible column selections or by n compatible row
selections. That is, the permutation Dj(x,y) has no n-cycle mixed
schedule.[]

5. A Simple Method for Dynamic Permutation

If we allow n buffers at every bus intersection, we can perform an arbi-
trary permutation dynamically in 2n cycles on the SPB(n,n). In this
schedulet, the broadcast order is fixed and independent of permutations (see
Figure 5.1 for example).

Theorem 5.1: There exists a schedule for an arbitrary, dynamic permuta-
tion of n? data items in 2n cycles on the SPB (n,n) and n buffers are neces-

sary and sufficient at every bus intersection.

+ This is called a multi-pipelined schedule in the previous paper (Arden and
Nakatani[1986a]).
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Proof: Since there are n data items on each row, all the data items can
reach their destination columns by n row broadcasts (that is, n cycles).
There are exactly n column broadcasts (that is, n cycles) can convey all the
data items to their destinations. Row and column broadcast orders are both
fixed, independent of permutations. That is, it takes 2n cycles to permute
n2 data items dynamically on the SPB(n,n). In the worst case of permuta-
tions, as many as n data items must be received by the processor at a inter-
section on a destination column. Therefore, n buffers are necessary. On the
other hand, for any k (1=k <n), after k column broadcasts, at most n —k
data items remain in the processor for transmissions on columns and at

most k data items have been received from row transmissions. Therefore, n
buffers are sufficient.[]

6. Permutation with Partitionable Buses

In this section, we assume partitionable buses for the SPB (n,n) so that
a nXn square grid of processors can be partitioned into arbitrary, rectangu-
lar or square segments (see Figure 6.1 for the partitionable SPB (4,4)).
Thus, partitionable buses induce more parallelism. However, the perfor-
mance of permutations cannot be improved for some permutations (see Fig-

ure 6.2 for the bit-reversal permutation).

Theorem 6.1: There exist some permutations that take the same number of

cycles on the partitionable SPB (n,n) as on the non-partitionable one.

Proof: We assume direct transfers of data items, that is, no intermediate
storage of data items, but it is easily shown that no improvement can be
made even with intermediate storage. Consider the bit-reversal permuta-
tion. First, we partition a square grid into two halves; the upper half and
the lower half. Since every data item must cross the boundary, we cannot
partition the buses until every processor finishes sending and receiving a
data item. When the buses are ready to be partitioned, no processor has a
data item to send. Second, we partition a square grid into four quarters; the
upper right, the upper left, the lower left, and the lower right. Every pro-
cessor in the upper left quarter must send and receive a data item to and
from the lower right quarter. Similarly, every processor in the upper right

quarter must send and receive a data item to and from the lower left



-10 -

quarter. Therefore, we cannot partition the buses until all the processors
finish sending and receiving a data item. In general, wherever partitions
are made, we cannot partition the buses until all the processors in one parti-
tion finish sending and receiving a data item. When the buses are ready to
be partitioned, there is no data items left to send and receive in that parti-
tion. Therefore, partitionable buses do not reduce the time required for the

permutation.[]

7. Concluding Remarks

In this paper, we have proved the upper and lower bounds of permuta-
tions on the SPB (n,n). We have also shown the simple schedule of dynamic
permutations on the SPB (n,n), although it requires n buffers at every bus
intersection. We have further proved that the performance of some permu-
tations, like the bit-reversal permutation, cannot be improved by the parti-
tionable SPB(n,n).

In the previous paper (Arden and Nakatani[1986a]), we studied VLSI
optimality of the SPB (n,n) for permutations on the unit delay model and
showed that the SPB (n,n) has the best time performance among the linear-

area interconnections.

As a closely related subject, we also studied the sorting problem on the
SPB (n,n) (Arden and Nakatani[1986b]). We showed that the performance
of bitonic sorting can be dramatically improved on the partitionable
SPB (n,n) with even better performance than the known adaptation of
bitonic sorting on the mesh interconnection (Thompson and Kung{1977] and
Nassimi and Sahni[1979]).
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